def test_hypergeometric_symbolic(): N, m, n = symbols("N, m, n") H = Hypergeometric("H", N, m, n) dens = density(H).dict expec = E(H > 2) assert dens == Density(HypergeometricDistribution(N, m, n)) assert dens.subs(N, 5).doit() == Density(HypergeometricDistribution(5, m, n)) assert set(dens.subs({ N: 3, m: 2, n: 1 }).doit().keys()) == set([S.Zero, S.One]) assert set(dens.subs({ N: 3, m: 2, n: 1 }).doit().values()) == set([Rational(1, 3), Rational(2, 3)]) k = Dummy("k", integer=True) assert expec.dummy_eq( Sum( Piecewise( (k * binomial(m, k) * binomial(N - m, -k + n) / binomial(N, n), k > 2), (0, True), ), (k, 0, n), ))
def test_hypergeometric_symbolic(): N, m, n = symbols('N, m, n') H = Hypergeometric('H', N, m, n) dens = density(H).dict expec = E(H > 2) assert dens == Density(HypergeometricDistribution(N, m, n)) assert dens.subs(N, 5).doit() == Density(HypergeometricDistribution(5, m, n)) assert set(dens.subs({N: 3, m: 2, n: 1}).doit().keys()) == set([S(0), S(1)]) assert set(dens.subs({N: 3, m: 2, n: 1}).doit().values()) == set([S(1)/3, S(2)/3]) k = Dummy('k', integer=True) assert expec.dummy_eq( Sum(Piecewise((k*binomial(m, k)*binomial(N - m, -k + n) /binomial(N, n), k > 2), (0, True)), (k, 0, n)))
def test_binomial_symbolic(): n = 2 p = symbols('p', positive=True) X = Binomial('X', n, p) t = Symbol('t') assert simplify(E(X)) == n * p == simplify(moment(X, 1)) assert simplify(variance(X)) == n * p * (1 - p) == simplify(cmoment(X, 2)) assert cancel((skewness(X) - (1 - 2 * p) / sqrt(n * p * (1 - p)))) == 0 assert cancel((kurtosis(X)) - (3 + (1 - 6 * p * (1 - p)) / (n * p * (1 - p)))) == 0 assert characteristic_function(X)(t) == p**2 * exp( 2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1)**2 assert moment_generating_function(X)( t) == p**2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1)**2 # Test ability to change success/failure winnings H, T = symbols('H T') Y = Binomial('Y', n, p, succ=H, fail=T) assert simplify(E(Y) - (n * (H * p + T * (1 - p)))) == 0 # test symbolic dimensions n = symbols('n') B = Binomial('B', n, p) raises(NotImplementedError, lambda: P(B > 2)) assert density(B).dict == Density(BinomialDistribution(n, p, 1, 0)) assert set(density(B).dict.subs(n, 4).doit().keys()) == \ set([S(0), S(1), S(2), S(3), S(4)]) assert set(density(B).dict.subs(n, 4).doit().values()) == \ set([(1 - p)**4, 4*p*(1 - p)**3, 6*p**2*(1 - p)**2, 4*p**3*(1 - p), p**4]) k = Dummy('k', integer=True) assert E(B > 2).dummy_eq( Sum( Piecewise((k * p**k * (1 - p)**(-k + n) * binomial(n, k), (k >= 0) & (k <= n) & (k > 2)), (0, True)), (k, 0, n)))
def dict(self): if self.is_symbolic: return Density(self) return { k * self.succ + (self.n - k) * self.fail: self.pmf(k) for k in range(0, self.n + 1) }
def dict(self): if self.k.is_Symbol: return Density(self) d = {1: Rational(1, self.k)} d.update( dict((i, Rational(1, i * (i - 1))) for i in range(2, self.k + 1))) return d
def test_ideal_soliton(): raises(ValueError, lambda: IdealSoliton('sol', -12)) raises(ValueError, lambda: IdealSoliton('sol', 13.2)) raises(ValueError, lambda: IdealSoliton('sol', 0)) f = Function('f') raises(ValueError, lambda: density(IdealSoliton('sol', 10)).pmf(f)) k = Symbol('k', integer=True, positive=True) x = Symbol('x', integer=True, positive=True) t = Symbol('t') sol = IdealSoliton('sol', k) assert density(sol).low == S.One assert density(sol).high == k assert density(sol).dict == Density(density(sol)) assert density(sol).pmf(x) == Piecewise( (1 / k, Eq(x, 1)), (1 / (x * (x - 1)), k >= x), (0, True)) k_vals = [5, 20, 50, 100, 1000] for i in k_vals: assert E(sol.subs(k, i)) == harmonic(i) == moment(sol.subs(k, i), 1) assert variance(sol.subs( k, i)) == (i - 1) + harmonic(i) - harmonic(i)**2 == cmoment( sol.subs(k, i), 2) assert skewness(sol.subs(k, i)) == smoment(sol.subs(k, i), 3) assert kurtosis(sol.subs(k, i)) == smoment(sol.subs(k, i), 4) assert exp(I * t) / 10 + Sum(exp(I * t * x) / (x * x - x), (x, 2, k)).subs( k, 10).doit() == characteristic_function(sol.subs(k, 10))(t) assert exp(t) / 10 + Sum(exp(t * x) / (x * x - x), (x, 2, k)).subs( k, 10).doit() == moment_generating_function(sol.subs(k, 10))(t)
def dict(self): if self.is_symbolic: return Density(self) return {k: self.pmf(k) for k in self.set}
def test_Density(): X = Die('X', 6) d = Density(X) assert d.doit() == density(X)
def test_dice(): # TODO: Make iid method! X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) a, b, t, p = symbols('a b t p') assert E(X) == 3 + S.Half assert variance(X) == S(35) / 12 assert E(X + Y) == 7 assert E(X + X) == 7 assert E(a * X + b) == a * E(X) + b assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2) assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2) assert cmoment(X, 0) == 1 assert cmoment(4 * X, 3) == 64 * cmoment(X, 3) assert covariance(X, Y) == S.Zero assert covariance(X, X + Y) == variance(X) assert density(Eq(cos(X * S.Pi), 1))[True] == S.Half assert correlation(X, Y) == 0 assert correlation(X, Y) == correlation(Y, X) assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert smoment(X, 0) == 1 assert P(X > 3) == S.Half assert P(2 * X > 6) == S.Half assert P(X > Y) == S(5) / 12 assert P(Eq(X, Y)) == P(Eq(X, 1)) assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3) assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3) assert E(X + Y, Eq(X, Y)) == E(2 * X) assert moment(X, 0) == 1 assert moment(5 * X, 2) == 25 * moment(X, 2) assert quantile(X)(p) == Piecewise((nan, (p > S.One) | (p < S(0))),\ (S.One, p <= S(1)/6), (S(2), p <= S(1)/3), (S(3), p <= S.Half),\ (S(4), p <= S(2)/3), (S(5), p <= S(5)/6), (S(6), p <= S.One)) assert P(X > 3, X > 3) == S.One assert P(X > Y, Eq(Y, 6)) == S.Zero assert P(Eq(X + Y, 12)) == S.One / 36 assert P(Eq(X + Y, 12), Eq(X, 6)) == S.One / 6 assert density(X + Y) == density(Y + Z) != density(X + X) d = density(2 * X + Y**Z) assert d[S(22)] == S.One / 108 and d[S(4100)] == S.One / 216 and S( 3130) not in d assert pspace(X).domain.as_boolean() == Or( *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]]) assert where(X > 3).set == FiniteSet(4, 5, 6) assert characteristic_function(X)(t) == exp(6 * I * t) / 6 + exp( 5 * I * t) / 6 + exp(4 * I * t) / 6 + exp(3 * I * t) / 6 + exp( 2 * I * t) / 6 + exp(I * t) / 6 assert moment_generating_function(X)( t) == exp(6 * t) / 6 + exp(5 * t) / 6 + exp(4 * t) / 6 + exp( 3 * t) / 6 + exp(2 * t) / 6 + exp(t) / 6 # Bayes test for die BayesTest(X > 3, X + Y < 5) BayesTest(Eq(X - Y, Z), Z > Y) BayesTest(X > 3, X > 2) # arg test for die raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides. raises(ValueError, lambda: Die('X', 0)) raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides. # symbolic test for die n, k = symbols('n, k', positive=True) D = Die('D', n) dens = density(D).dict assert dens == Density(DieDistribution(n)) assert set(dens.subs(n, 4).doit().keys()) == set([1, 2, 3, 4]) assert set(dens.subs(n, 4).doit().values()) == set([S(1) / 4]) k = Dummy('k', integer=True) assert E(D).dummy_eq(Sum(Piecewise((k / n, k <= n), (0, True)), (k, 1, n))) assert variance(D).subs(n, 6).doit() == S(35) / 12 ki = Dummy('ki') cumuf = cdf(D)(k) assert cumuf.dummy_eq( Sum(Piecewise((1 / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k))) assert cumuf.subs({n: 6, k: 2}).doit() == S(1) / 3 t = Dummy('t') cf = characteristic_function(D)(t) assert cf.dummy_eq( Sum(Piecewise((exp(ki * I * t) / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert cf.subs( n, 3).doit() == exp(3 * I * t) / 3 + exp(2 * I * t) / 3 + exp(I * t) / 3 mgf = moment_generating_function(D)(t) assert mgf.dummy_eq( Sum(Piecewise((exp(ki * t) / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert mgf.subs(n, 3).doit() == exp(3 * t) / 3 + exp(2 * t) / 3 + exp(t) / 3
def dict(self): if self.is_symbolic: return Density(self) return dict((k, self.pmf(k)) for k in self.set)
def test_GaussianEnsemble(): G = GaussianEnsemble('G', 3) assert density(G) == Density(G) raises(ValueError, lambda: GaussianEnsemble('G', 3.5))
def density(self, expr): return Density(expr)