def test_conjugates(self):
     """com1 is real and com4 is imaginary."""
     for scalar in (x, z):
         self.assertEqual((conjugate(com1(scalar))
                           - com1(conjugate(scalar))).expand(), 0)
         self.assertEqual((conjugate(com4(scalar))
                           + com4(conjugate(scalar))).expand(), 0)
Пример #2
0
def test_pretty_functions():
    f = Function('f')

    # Simple
    assert pretty( (2*x + exp(x)) ) in [' x      \ne  + 2*x', '       x\n2*x + e ']
    assert pretty(abs(x)) == '|x|'
    assert pretty(abs(x/(x**2+1))) in [
            '|  x   |\n|------|\n|     2|\n|1 + x |',
            '|  x   |\n|------|\n| 2    |\n|x  + 1|']
    assert pretty(conjugate(x)) == '_\nx'
    assert pretty(conjugate(f(x+1))) in [
            '________\nf(1 + x)',
            '________\nf(x + 1)']

    # Univariate/Multivariate functions
    assert pretty(f(x)) == 'f(x)'
    assert pretty(f(x, y)) == 'f(x, y)'
    assert pretty(f(x/(y+1), y)) in [
            ' /  x     \\\nf|-----, y|\n \\1 + y   /',
            ' /  x     \\\nf|-----, y|\n \\y + 1   /',
            ]

    # Nesting of square roots
    assert pretty( sqrt((sqrt(x+1))+1) ) in [
            '   _______________\n  /       _______ \n\\/  1 + \\/ 1 + x  ',
            '   _______________\n  /   _______     \n\\/  \\/ x + 1  + 1 ']
    # Function powers
    assert pretty( sin(x)**2 ) == '   2   \nsin (x)'

    # Conjugates
    a,b = map(Symbol, 'ab')
Пример #3
0
def test_issue_11518():
    x = Symbol("x", real=True)
    y = Symbol("y", real=True)
    r = sqrt(x**2 + y**2)
    assert conjugate(r) == r
    s = abs(x + I * y)
    assert conjugate(s) == r
Пример #4
0
def pinv(A_expr):

    a_wild_expr = sympy.Wild("a_wild")
    assert A_expr == A_expr.replace(sympy.conjugate(a_wild_expr),a_wild_expr)
    A_pinv_expr = A_expr.pinv()
    A_pinv_expr = A_pinv_expr.replace(sympy.conjugate(a_wild_expr),a_wild_expr)
    return A_pinv_expr
Пример #5
0
def test_erf2():

    assert erf2(0, 0) == S.Zero
    assert erf2(x, x) == S.Zero
    assert erf2(nan, 0) == nan

    assert erf2(-oo,  y) ==  erf(y) + 1
    assert erf2( oo,  y) ==  erf(y) - 1
    assert erf2(  x, oo) ==  1 - erf(x)
    assert erf2(  x,-oo) == -1 - erf(x)
    assert erf2(x, erf2inv(x, y)) == y

    assert erf2(-x, -y) == -erf2(x,y)
    assert erf2(-x,  y) == erf(y) + erf(x)
    assert erf2( x, -y) == -erf(y) - erf(x)
    assert erf2(x, y).rewrite('fresnels') == erf(y).rewrite(fresnels)-erf(x).rewrite(fresnels)
    assert erf2(x, y).rewrite('fresnelc') == erf(y).rewrite(fresnelc)-erf(x).rewrite(fresnelc)
    assert erf2(x, y).rewrite('hyper') == erf(y).rewrite(hyper)-erf(x).rewrite(hyper)
    assert erf2(x, y).rewrite('meijerg') == erf(y).rewrite(meijerg)-erf(x).rewrite(meijerg)
    assert erf2(x, y).rewrite('uppergamma') == erf(y).rewrite(uppergamma) - erf(x).rewrite(uppergamma)
    assert erf2(x, y).rewrite('expint') == erf(y).rewrite(expint)-erf(x).rewrite(expint)

    assert erf2(I, 0).is_real is False
    assert erf2(0, 0).is_real is True

    assert expand_func(erf(x) + erf2(x, y)) == erf(y)

    assert conjugate(erf2(x, y)) == erf2(conjugate(x), conjugate(y))

    assert erf2(x, y).rewrite('erf')  == erf(y) - erf(x)
    assert erf2(x, y).rewrite('erfc') == erfc(x) - erfc(y)
    assert erf2(x, y).rewrite('erfi') == I*(erfi(I*x) - erfi(I*y))

    raises(ArgumentIndexError, lambda: erfi(x).fdiff(3))
Пример #6
0
def test_im():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert im(nan) == nan

    assert im(oo*I) == oo
    assert im(-oo*I) == -oo

    assert im(0) == 0

    assert im(1) == 0
    assert im(-1) == 0

    assert im(E*I) == E
    assert im(-E*I) == -E

    assert im(x) == im(x)
    assert im(x*I) == re(x)
    assert im(r*I) == r
    assert im(r) == 0
    assert im(i*I) == 0
    assert im(i) == -I * i

    assert im(x + y) == im(x + y)
    assert im(x + r) == im(x)
    assert im(x + r*I) == im(x) + r

    assert im(im(x)*I) == im(x)

    assert im(2 + I) == 1
    assert im(x + I) == im(x) + 1

    assert im(x + y*I) == im(x) + re(y)
    assert im(x + r*I) == im(x) + r

    assert im(log(2*I)) == pi/2

    assert im((2 + I)**2).expand(complex=True) == 4

    assert im(conjugate(x)) == -im(x)
    assert conjugate(im(x)) == im(x)

    assert im(x).as_real_imag() == (im(x), 0)

    assert im(i*r*x).diff(r) == im(i*x)
    assert im(i*r*x).diff(i) == -I * re(r*x)

    assert im(
        sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)
    assert im(a * (2 + b*I)) == a*b

    assert im((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2

    assert im(x).rewrite(re) == x - re(x)
    assert (x + im(y)).rewrite(im, re) == x + y - re(y)
def test_DiracDelta():
    assert DiracDelta(1) == 0
    assert DiracDelta(5.1) == 0
    assert DiracDelta(-pi) == 0
    assert DiracDelta(5, 7) == 0
    assert DiracDelta(nan) == nan
    assert DiracDelta(0).func is DiracDelta
    assert DiracDelta(x).func is DiracDelta

    assert adjoint(DiracDelta(x)) == DiracDelta(x)
    assert adjoint(DiracDelta(x - y)) == DiracDelta(x - y)
    assert conjugate(DiracDelta(x)) == DiracDelta(x)
    assert conjugate(DiracDelta(x - y)) == DiracDelta(x - y)
    assert transpose(DiracDelta(x)) == DiracDelta(x)
    assert transpose(DiracDelta(x - y)) == DiracDelta(x - y)

    assert DiracDelta(x).diff(x) == DiracDelta(x, 1)
    assert DiracDelta(x, 1).diff(x) == DiracDelta(x, 2)

    assert DiracDelta(x).is_simple(x) is True
    assert DiracDelta(3*x).is_simple(x) is True
    assert DiracDelta(x**2).is_simple(x) is False
    assert DiracDelta(sqrt(x)).is_simple(x) is False
    assert DiracDelta(x).is_simple(y) is False

    assert DiracDelta(x*y).simplify(x) == DiracDelta(x)/abs(y)
    assert DiracDelta(x*y).simplify(y) == DiracDelta(y)/abs(x)
    assert DiracDelta(x**2*y).simplify(x) == DiracDelta(x**2*y)
    assert DiracDelta(y).simplify(x) == DiracDelta(y)
    assert DiracDelta((x - 1)*(x - 2)*(x - 3)).simplify(x) == \
        DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2

    raises(ArgumentIndexError, lambda: DiracDelta(x).fdiff(2))
    raises(ValueError, lambda: DiracDelta(x, -1))
def test_gegenbauer():
    n = Symbol("n")
    a = Symbol("a")

    assert gegenbauer(0, a, x) == 1
    assert gegenbauer(1, a, x) == 2*a*x
    assert gegenbauer(2, a, x) == -a + x**2*(2*a**2 + 2*a)
    assert gegenbauer(3, a, x) == \
        x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a)

    assert gegenbauer(-1, a, x) == 0
    assert gegenbauer(n, S(1)/2, x) == legendre(n, x)
    assert gegenbauer(n, 1, x) == chebyshevu(n, x)
    assert gegenbauer(n, -1, x) == 0

    X = gegenbauer(n, a, x)
    assert isinstance(X, gegenbauer)

    assert gegenbauer(n, a, -x) == (-1)**n*gegenbauer(n, a, x)
    assert gegenbauer(n, a, 0) == 2**n*sqrt(pi) * \
        gamma(a + n/2)/(gamma(a)*gamma(-n/2 + S(1)/2)*gamma(n + 1))
    assert gegenbauer(n, a, 1) == gamma(2*a + n)/(gamma(2*a)*gamma(n + 1))

    assert gegenbauer(n, Rational(3, 4), -1) == zoo

    m = Symbol("m", positive=True)
    assert gegenbauer(m, a, oo) == oo*RisingFactorial(a, m)

    assert conjugate(gegenbauer(n, a, x)) == gegenbauer(n, conjugate(a), conjugate(x))

    assert diff(gegenbauer(n, a, x), n) == Derivative(gegenbauer(n, a, x), n)
    assert diff(gegenbauer(n, a, x), x) == 2*a*gegenbauer(n - 1, a + 1, x)
def test_heaviside():
    assert Heaviside(0).func == Heaviside
    assert Heaviside(-5) == 0
    assert Heaviside(1) == 1
    assert Heaviside(nan) == nan

    assert Heaviside(0, x) == x
    assert Heaviside(0, nan) == nan
    assert Heaviside(x, None) == Heaviside(x)
    assert Heaviside(0, None) == Heaviside(0)
    # we do not want None in the args:
    assert None not in Heaviside(x, None).args

    assert adjoint(Heaviside(x)) == Heaviside(x)
    assert adjoint(Heaviside(x - y)) == Heaviside(x - y)
    assert conjugate(Heaviside(x)) == Heaviside(x)
    assert conjugate(Heaviside(x - y)) == Heaviside(x - y)
    assert transpose(Heaviside(x)) == Heaviside(x)
    assert transpose(Heaviside(x - y)) == Heaviside(x - y)

    assert Heaviside(x).diff(x) == DiracDelta(x)
    assert Heaviside(x + I).is_Function is True
    assert Heaviside(I*x).is_Function is True

    raises(ArgumentIndexError, lambda: Heaviside(x).fdiff(2))
    raises(ValueError, lambda: Heaviside(I))
    raises(ValueError, lambda: Heaviside(2 + 3*I))
Пример #10
0
def test_pretty_functions():
    f = Function("f")

    # Simple
    assert pretty((2 * x + exp(x))) in [" x      \ne  + 2*x", "       x\n2*x + e "]
    assert pretty(abs(x)) == "|x|"
    assert pretty(abs(x / (x ** 2 + 1))) in [
        "|  x   |\n|------|\n|     2|\n|1 + x |",
        "|  x   |\n|------|\n| 2    |\n|x  + 1|",
    ]
    assert pretty(conjugate(x)) == "_\nx"
    assert pretty(conjugate(f(x + 1))) in ["________\nf(1 + x)", "________\nf(x + 1)"]

    # Univariate/Multivariate functions
    assert pretty(f(x)) == "f(x)"
    assert pretty(f(x, y)) == "f(x, y)"
    assert pretty(f(x / (y + 1), y)) in [
        " /  x     \\\nf|-----, y|\n \\1 + y   /",
        " /  x     \\\nf|-----, y|\n \\y + 1   /",
    ]

    # Nesting of square roots
    assert pretty(sqrt((sqrt(x + 1)) + 1)) in [
        "   _______________\n  /       _______ \n\\/  1 + \\/ 1 + x  ",
        "   _______________\n  /   _______     \n\\/  \\/ x + 1  + 1 ",
    ]
    # Function powers
    assert pretty(sin(x) ** 2) == "   2   \nsin (x)"

    # Conjugates
    a, b = map(Symbol, "ab")
def test_assoc_laguerre():
    n = Symbol("n")
    m = Symbol("m")
    alpha = Symbol("alpha")

    # generalized Laguerre polynomials:
    assert assoc_laguerre(0, alpha, x) == 1
    assert assoc_laguerre(1, alpha, x) == -x + alpha + 1
    assert assoc_laguerre(2, alpha, x).expand() == \
        (x**2/2 - (alpha + 2)*x + (alpha + 2)*(alpha + 1)/2).expand()
    assert assoc_laguerre(3, alpha, x).expand() == \
        (-x**3/6 + (alpha + 3)*x**2/2 - (alpha + 2)*(alpha + 3)*x/2 +
        (alpha + 1)*(alpha + 2)*(alpha + 3)/6).expand()

    # Test the lowest 10 polynomials with laguerre_poly, to make sure it works:
    for i in range(10):
        assert assoc_laguerre(i, 0, x).expand() == laguerre_poly(i, x)

    X = assoc_laguerre(n, m, x)
    assert isinstance(X, assoc_laguerre)

    assert assoc_laguerre(n, 0, x) == laguerre(n, x)
    assert assoc_laguerre(n, alpha, 0) == binomial(alpha + n, alpha)

    assert diff(assoc_laguerre(n, alpha, x), x) == \
        -assoc_laguerre(n - 1, alpha + 1, x)

    assert conjugate(assoc_laguerre(n, alpha, x)) == \
        assoc_laguerre(n, conjugate(alpha), conjugate(x))

    raises(ValueError, lambda: assoc_laguerre(-2.1, alpha, x))
Пример #12
0
def test_erf():
    assert erf(nan) == nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) == 0

    assert erf(I*oo) == oo*I
    assert erf(-I*oo) == -oo*I

    assert erf(-2) == -erf(2)
    assert erf(-x*y) == -erf(x*y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(I).is_real == False
    assert erf(0).is_real == True

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == x
    assert erf(1/x).as_leading_term(x) == erf(1/x)

    assert erf(z).rewrite('uppergamma') == sqrt(z**2)*erf(sqrt(z**2))/z

    assert limit(exp(x)*exp(x**2)*(erf(x+1/exp(x))-erf(x)), x, oo) == 2/sqrt(pi)
    assert limit((1-erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi)
    assert limit((1-erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1
    assert limit(((1-erf(x))*exp(x**2)*sqrt(pi)*x-1)*2*x**2, x, oo) == -1

    raises(ArgumentIndexError, 'erf(x).fdiff(2)')
Пример #13
0
def test_DiracDelta():
    assert DiracDelta(1) == 0
    assert DiracDelta(5.1) == 0
    assert DiracDelta(-pi) == 0
    assert DiracDelta(5, 7) == 0
    assert DiracDelta(0) == oo
    assert DiracDelta(0, 5) == oo
    assert DiracDelta(nan) == nan
    assert DiracDelta(x).func == DiracDelta
    assert conjugate(DiracDelta(x)) == DiracDelta(x)
    assert conjugate(DiracDelta(x - y)) == DiracDelta(x - y)

    assert DiracDelta(x).diff(x) == DiracDelta(x, 1)
    assert DiracDelta(x, 1).diff(x) == DiracDelta(x, 2)

    assert DiracDelta(x).is_simple(x) == True
    assert DiracDelta(3 * x).is_simple(x) == True
    assert DiracDelta(x ** 2).is_simple(x) == False
    assert DiracDelta(sqrt(x)).is_simple(x) == False
    assert DiracDelta(x).is_simple(y) == False

    assert DiracDelta(x * y).simplify(x) == DiracDelta(x) / abs(y)
    assert DiracDelta(x * y).simplify(y) == DiracDelta(y) / abs(x)
    assert DiracDelta(x ** 2 * y).simplify(x) == DiracDelta(x ** 2 * y)
    assert DiracDelta(y).simplify(x) == DiracDelta(y)

    raises(ArgumentIndexError, lambda: DiracDelta(x).fdiff(2))
    raises(ValueError, lambda: DiracDelta(x, -1))
Пример #14
0
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n)*gegenbauer(n, a + S(1)/2, x)/RisingFactorial(2*a + 1, n)
    assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
                                   factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
                                   gamma(-b + n + 1)/gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(S(3)/2, n)*chebyshevu(n, x)/factorial(n + 1)
    assert jacobi(n, -S.Half, -S.Half, x) == RisingFactorial(S(1)/2, n)*chebyshevt(n, x)/factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)

    assert conjugate(jacobi(m, a, b, x)) == jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    assert diff(jacobi(n,a,b,x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n,a,b,x), x) == (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x)
Пример #15
0
def test_gamma():
    assert gamma(nan) == nan
    assert gamma(oo) == oo

    assert gamma(-100) == zoo
    assert gamma(0) == zoo

    assert gamma(1) == 1
    assert gamma(2) == 1
    assert gamma(3) == 2

    assert gamma(102) == factorial(101)

    assert gamma(Rational(1, 2)) == sqrt(pi)

    assert gamma(Rational(3, 2)) == Rational(1, 2)*sqrt(pi)
    assert gamma(Rational(5, 2)) == Rational(3, 4)*sqrt(pi)
    assert gamma(Rational(7, 2)) == Rational(15, 8)*sqrt(pi)

    assert gamma(Rational(-1, 2)) == -2*sqrt(pi)
    assert gamma(Rational(-3, 2)) == Rational(4, 3)*sqrt(pi)
    assert gamma(Rational(-5, 2)) == -Rational(8, 15)*sqrt(pi)

    assert gamma(Rational(-15, 2)) == Rational(256, 2027025)*sqrt(pi)

    assert gamma(Rational(
        -11, 8)).expand(func=True) == Rational(64, 33)*gamma(Rational(5, 8))
    assert gamma(Rational(
        -10, 3)).expand(func=True) == Rational(81, 280)*gamma(Rational(2, 3))
    assert gamma(Rational(
        14, 3)).expand(func=True) == Rational(880, 81)*gamma(Rational(2, 3))
    assert gamma(Rational(
        17, 7)).expand(func=True) == Rational(30, 49)*gamma(Rational(3, 7))
    assert gamma(Rational(
        19, 8)).expand(func=True) == Rational(33, 64)*gamma(Rational(3, 8))

    assert gamma(x).diff(x) == gamma(x)*polygamma(0, x)

    assert gamma(x - 1).expand(func=True) == gamma(x)/(x - 1)
    assert gamma(x + 2).expand(func=True, mul=False) == x*(x + 1)*gamma(x)

    assert conjugate(gamma(x)) == gamma(conjugate(x))

    assert expand_func(gamma(x + Rational(3, 2))) == \
        (x + Rational(1, 2))*gamma(x + Rational(1, 2))

    assert expand_func(gamma(x - Rational(1, 2))) == \
        gamma(Rational(1, 2) + x)/(x - Rational(1, 2))

    # Test a bug:
    assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4))

    assert gamma(3*exp_polar(I*pi)/4).is_nonnegative is False
    assert gamma(3*exp_polar(I*pi)/4).is_nonpositive is True

    # Issue 8526
    k = Symbol('k', integer=True, nonnegative=True)
    assert isinstance(gamma(k), gamma)
    assert gamma(-k) == zoo
Пример #16
0
def test_re():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert re(nan) == nan

    assert re(oo) == oo
    assert re(-oo) == -oo

    assert re(0) == 0

    assert re(1) == 1
    assert re(-1) == -1

    assert re(E) == E
    assert re(-E) == -E

    assert re(x) == re(x)
    assert re(x*I) == -im(x)
    assert re(r*I) == 0
    assert re(r) == r
    assert re(i*I) == I * i
    assert re(i) == 0

    assert re(x + y) == re(x + y)
    assert re(x + r) == re(x) + r

    assert re(re(x)) == re(x)

    assert re(2 + I) == 2
    assert re(x + I) == re(x)

    assert re(x + y*I) == re(x) - im(y)
    assert re(x + r*I) == re(x)

    assert re(log(2*I)) == log(2)

    assert re((2 + I)**2).expand(complex=True) == 3

    assert re(conjugate(x)) == re(x)
    assert conjugate(re(x)) == re(x)

    assert re(x).as_real_imag() == (re(x), 0)

    assert re(i*r*x).diff(r) == re(i*x)
    assert re(i*r*x).diff(i) == I*r*im(x)

    assert re(
        sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)
    assert re(a * (2 + b*I)) == 2*a

    assert re((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + Rational(1, 2)

    assert re(x).rewrite(im) == x - im(x)
    assert (x + re(y)).rewrite(re, im) == x + y - im(y)
Пример #17
0
def test_DiracDelta():
    assert DiracDelta(1) == 0
    assert DiracDelta(5.1) == 0
    assert DiracDelta(-pi) == 0
    assert DiracDelta(5, 7) == 0
    assert DiracDelta(i) == 0
    assert DiracDelta(j) == 0
    assert DiracDelta(k) == 0
    assert DiracDelta(nan) == nan
    assert DiracDelta(0).func is DiracDelta
    assert DiracDelta(x).func is DiracDelta
    # FIXME: this is generally undefined @ x=0
    #         But then limit(Delta(c)*Heaviside(x),x,-oo)
    #         need's to be implemented.
    #assert 0*DiracDelta(x) == 0

    assert adjoint(DiracDelta(x)) == DiracDelta(x)
    assert adjoint(DiracDelta(x - y)) == DiracDelta(x - y)
    assert conjugate(DiracDelta(x)) == DiracDelta(x)
    assert conjugate(DiracDelta(x - y)) == DiracDelta(x - y)
    assert transpose(DiracDelta(x)) == DiracDelta(x)
    assert transpose(DiracDelta(x - y)) == DiracDelta(x - y)

    assert DiracDelta(x).diff(x) == DiracDelta(x, 1)
    assert DiracDelta(x, 1).diff(x) == DiracDelta(x, 2)

    assert DiracDelta(x).is_simple(x) is True
    assert DiracDelta(3*x).is_simple(x) is True
    assert DiracDelta(x**2).is_simple(x) is False
    assert DiracDelta(sqrt(x)).is_simple(x) is False
    assert DiracDelta(x).is_simple(y) is False

    assert DiracDelta(x*y).expand(diracdelta=True, wrt=x) == DiracDelta(x)/abs(y)
    assert DiracDelta(x*y).expand(diracdelta=True, wrt=y) == DiracDelta(y)/abs(x)
    assert DiracDelta(x**2*y).expand(diracdelta=True, wrt=x) == DiracDelta(x**2*y)
    assert DiracDelta(y).expand(diracdelta=True, wrt=x) == DiracDelta(y)
    assert DiracDelta((x - 1)*(x - 2)*(x - 3)).expand(diracdelta=True, wrt=x) == (
        DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2)

    assert DiracDelta(2*x) != DiracDelta(x)  # scaling property
    assert DiracDelta(x) == DiracDelta(-x)  # even function
    assert DiracDelta(-x, 2) == DiracDelta(x, 2)
    assert DiracDelta(-x, 1) == -DiracDelta(x, 1)  # odd deriv is odd
    assert DiracDelta(-oo*x) == DiracDelta(oo*x)
    assert DiracDelta(x - y) != DiracDelta(y - x)
    assert signsimp(DiracDelta(x - y) - DiracDelta(y - x)) == 0

    with raises(SymPyDeprecationWarning):
        assert DiracDelta(x*y).simplify(x) == DiracDelta(x)/abs(y)
        assert DiracDelta(x*y).simplify(y) == DiracDelta(y)/abs(x)
        assert DiracDelta(x**2*y).simplify(x) == DiracDelta(x**2*y)
        assert DiracDelta(y).simplify(x) == DiracDelta(y)
        assert DiracDelta((x - 1)*(x - 2)*(x - 3)).simplify(x) == (
            DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2)

    raises(ArgumentIndexError, lambda: DiracDelta(x).fdiff(2))
    raises(ValueError, lambda: DiracDelta(x, -1))
    raises(ValueError, lambda: DiracDelta(I))
    raises(ValueError, lambda: DiracDelta(2 + 3*I))
Пример #18
0
def test_conjugate_transpose():
    A, B = symbols("A B", commutative=False)
    p = Piecewise((A*B**2, x > 0), (A**2*B, True))
    assert p.adjoint() == \
        Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True))
    assert p.conjugate() == \
        Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True))
    assert p.transpose() == \
        Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True))
Пример #19
0
def test_sign():
    assert sign(1.2) == 1
    assert sign(-1.2) == -1
    assert sign(3*I) == I
    assert sign(-3*I) == -I
    assert sign(0) == 0
    assert sign(nan) == nan

    x = Symbol('x')
    assert sign(x).is_zero == None
    assert sign(x).doit() == sign(x)
    assert sign(1.2*x) == sign(x)
    assert sign(2*x) == sign(x)
    assert sign(I*x) == I*sign(x)
    assert sign(-2*I*x) == -I*sign(x)
    assert sign(conjugate(x)) == conjugate(sign(x))

    p = Symbol('p', positive = True)
    n = Symbol('n', negative = True)
    m = Symbol('m', negative = True)
    assert sign(2*p*x) == sign(x)
    assert sign(n*x) == -sign(x)
    assert sign(n*m*x) == sign(x)

    x = Symbol('x', imaginary=True)
    assert sign(x).is_zero == False
    assert sign(x).diff(x) == 2*DiracDelta(-I*x)
    assert sign(x).doit() == x / Abs(x)
    assert conjugate(sign(x)) == -sign(x)

    x = Symbol('x', real=True)
    assert sign(x).is_zero == None
    assert sign(x).diff(x) == 2*DiracDelta(x)
    assert sign(x).doit() == sign(x)
    assert conjugate(sign(x)) == sign(x)

    x = Symbol('x', nonzero=True)
    assert sign(x).is_zero == False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = Symbol('x', positive=True)
    assert sign(x).is_zero == False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = 0
    assert sign(x).is_zero == True
    assert sign(x).doit() == 0
    assert sign(Abs(x)) == 0
    assert Abs(sign(x)) == 0

    nz = Symbol('nz', nonzero=True, integer=True)
    assert sign(nz)**2 == 1
    assert (sign(nz)**3).args == (sign(nz), 3)
Пример #20
0
def test_atan2():
    assert atan2.nargs == FiniteSet(2)
    assert atan2(0, 0) == S.NaN
    assert atan2(0, 1) == 0
    assert atan2(1, 1) == pi/4
    assert atan2(1, 0) == pi/2
    assert atan2(1, -1) == 3*pi/4
    assert atan2(0, -1) == pi
    assert atan2(-1, -1) == -3*pi/4
    assert atan2(-1, 0) == -pi/2
    assert atan2(-1, 1) == -pi/4
    i = symbols('i', imaginary=True)
    r = symbols('r', real=True)
    eq = atan2(r, i)
    ans = -I*log((i + I*r)/sqrt(i**2 + r**2))
    reps = ((r, 2), (i, I))
    assert eq.subs(reps) == ans.subs(reps)

    x = Symbol('x', negative=True)
    y = Symbol('y', negative=True)
    assert atan2(y, x) == atan(y/x) - pi
    y = Symbol('y', nonnegative=True)
    assert atan2(y, x) == atan(y/x) + pi
    y = Symbol('y')
    assert atan2(y, x) == atan2(y, x, evaluate=False)

    u = Symbol("u", positive=True)
    assert atan2(0, u) == 0
    u = Symbol("u", negative=True)
    assert atan2(0, u) == pi

    assert atan2(y, oo) ==  0
    assert atan2(y, -oo)==  2*pi*Heaviside(re(y)) - pi

    assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2))
    assert atan2(y, x).rewrite(atan) == 2*atan(y/(x + sqrt(x**2 + y**2)))

    ex = atan2(y, x) - arg(x + I*y)
    assert ex.subs({x:2, y:3}).rewrite(arg) == 0
    assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5)
    assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I)
    assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(2/S(3)) + atan(3/S(2))
    i = symbols('i', imaginary=True)
    r = symbols('r', real=True)
    e = atan2(i, r)
    rewrite = e.rewrite(arg)
    reps = {i: I, r: -2}
    assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2))
    assert (e - rewrite).subs(reps).equals(0)

    assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y))

    assert diff(atan2(y, x), x) == -y/(x**2 + y**2)
    assert diff(atan2(y, x), y) == x/(x**2 + y**2)

    assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2)
    assert simplify(diff(atan2(y, x).rewrite(log), y)) ==  x/(x**2 + y**2)
Пример #21
0
def test_Abs():
    x, y = symbols('x,y')
    assert sign(sign(x)) == sign(x)
    assert sign(x*y).func is sign
    assert Abs(0) == 0
    assert Abs(1) == 1
    assert Abs(-1) == 1
    assert Abs(I) == 1
    assert Abs(-I) == 1
    assert Abs(nan) == nan
    assert Abs(I * pi) == pi
    assert Abs(-I * pi) == pi
    assert Abs(I * x) == Abs(x)
    assert Abs(-I * x) == Abs(x)
    assert Abs(-2*x) == 2*Abs(x)
    assert Abs(-2.0*x) == 2.0*Abs(x)
    assert Abs(2*pi*x*y) == 2*pi*Abs(x*y)
    assert Abs(conjugate(x)) == Abs(x)
    assert conjugate(Abs(x)) == Abs(x)

    a = Symbol('a', positive=True)
    assert Abs(2*pi*x*a) == 2*pi*a*Abs(x)
    assert Abs(2*pi*I*x*a) == 2*pi*a*Abs(x)

    x = Symbol('x', real=True)
    n = Symbol('n', integer=True)
    assert Abs((-1)**n) == 1
    assert x**(2*n) == Abs(x)**(2*n)
    assert Abs(x).diff(x) == sign(x)
    assert abs(x) == Abs(x)  # Python built-in
    assert Abs(x)**3 == x**2*Abs(x)
    assert Abs(x)**4 == x**4
    assert (
        Abs(x)**(3*n)).args == (Abs(x), 3*n)  # leave symbolic odd unchanged
    assert (1/Abs(x)).args == (Abs(x), -1)
    assert 1/Abs(x)**3 == 1/(x**2*Abs(x))
    assert Abs(x)**-3 == Abs(x)/(x**4)
    assert Abs(x**3) == x**2*Abs(x)

    x = Symbol('x', imaginary=True)
    assert Abs(x).diff(x) == -sign(x)

    eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
    # if there is a fast way to know when you can and when you cannot prove an
    # expression like this is zero then the equality to zero is ok
    assert abs(eq).func is Abs or abs(eq) == 0
    # but sometimes it's hard to do this so it's better not to load
    # abs down with tests that will be very slow
    q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
    p = expand(q**3)**Rational(1, 3)
    d = p - q
    assert abs(d).func is Abs or abs(d) == 0

    assert Abs(4*exp(pi*I/4)) == 4
    assert Abs(3**(2 + I)) == 9
    assert Abs((-3)**(1 - I)) == 3*exp(pi)
Пример #22
0
def test_DiracDelta():
    assert DiracDelta(1) == 0
    assert DiracDelta(5.1) == 0
    assert DiracDelta(-pi) == 0
    assert DiracDelta(5,7) == 0
    assert DiracDelta(0) == oo
    assert DiracDelta(0,5) == oo
    assert DiracDelta(x).func == DiracDelta
    assert conjugate(DiracDelta(x)) == DiracDelta(x)
    assert conjugate(DiracDelta(x - y)) == DiracDelta(x - y)
 def test_conjugates(self):
     for op in real_ops:
         self.assertEqual(conjugate(op(x)), op(x))
         self.assertEqual(conjugate(op(z)), op(conjugate(z)))
     self.assertEqual(conjugate(delta(x)), deltab(x))
     self.assertEqual(conjugate(deltab(x)), delta(x))
     self.assertEqual(conjugate(delta(z)), deltab(conjugate(z)))
     self.assertEqual(conjugate(deltab(z)), delta(conjugate(z)))
Пример #24
0
def test_airy_base():
    z = Symbol('z')
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)

    assert conjugate(airyai(z)) == airyai(conjugate(z))
    assert airyai(x).is_real

    assert airyai(x+I*y).as_real_imag() == (
        airyai(x - I*x*Abs(y)/Abs(x))/2 + airyai(x + I*x*Abs(y)/Abs(x))/2,
        I*x*(airyai(x - I*x*Abs(y)/Abs(x)) -
             airyai(x + I*x*Abs(y)/Abs(x)))*Abs(y)/(2*y*Abs(x)))
Пример #25
0
def test_transpose():
    assert transpose(A).is_commutative == False
    assert transpose(A*A) == transpose(A)**2
    assert transpose(A*B) == transpose(B)*transpose(A)
    assert transpose(A*B**2) == transpose(B)**2*transpose(A)
    assert transpose(A*B - B*A) == transpose(B)*transpose(A) - transpose(A)*transpose(B)
    assert transpose(A + I*B) == transpose(A) + I*transpose(B)

    assert transpose(X) == conjugate(X)
    assert transpose(-I*X) == -I*conjugate(X)
    assert transpose(Y) == -conjugate(Y)
    assert transpose(-I*Y) == I*conjugate(Y)
Пример #26
0
def test_erf():
    assert erf(nan) == nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) == 0

    assert erf(I*oo) == oo*I
    assert erf(-I*oo) == -oo*I

    assert erf(-2) == -erf(2)
    assert erf(-x*y) == -erf(x*y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(erfinv(x)) == x
    assert erf(erfcinv(x)) == 1 - x
    assert erf(erf2inv(0, x)) == x
    assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x

    assert erf(I).is_real is False
    assert erf(0).is_real is True

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == 2*x/sqrt(pi)
    assert erf(1/x).as_leading_term(x) == erf(1/x)

    assert erf(z).rewrite('uppergamma') == sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z
    assert erf(z).rewrite('erfc') == S.One - erfc(z)
    assert erf(z).rewrite('erfi') == -I*erfi(I*z)
    assert erf(z).rewrite('fresnels') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
        I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erf(z).rewrite('fresnelc') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
        I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erf(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi)
    assert erf(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [-S.Half], z**2)/sqrt(pi)
    assert erf(z).rewrite('expint') == sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi)

    assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
        2/sqrt(pi)
    assert limit((1 - erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi)
    assert limit((1 - erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1
    assert limit(((1 - erf(x))*exp(x**2)*sqrt(pi)*x - 1)*2*x**2, x, oo) == -1

    assert erf(x).as_real_imag() == \
        ((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
         erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
         I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
         erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
         re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))

    raises(ArgumentIndexError, lambda: erf(x).fdiff(2))
Пример #27
0
def test_scalars():
    x = symbols('x',complex=True)
    assert Dagger(x) == conjugate(x)
    assert Dagger(I*x) == -I*conjugate(x)

    i = symbols('i',real=True)
    assert Dagger(i) == i

    p = symbols('p')
    assert isinstance(Dagger(p), Dagger)

    i = Integer(3)
    assert Dagger(i) == i
Пример #28
0
def test_im():
    x, y = symbols('x,y')

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert im(nan) == nan

    assert im(oo*I) == oo
    assert im(-oo*I) == -oo

    assert im(0) == 0

    assert im(1) == 0
    assert im(-1) == 0

    assert im(E*I) == E
    assert im(-E*I) == -E

    assert im(x) == im(x)
    assert im(x*I) == re(x)
    assert im(r*I) == r
    assert im(r) == 0
    assert im(i*I) == 0
    assert im(i) == -I * i

    assert im(x + y) == im(x + y)
    assert im(x + r) == im(x)
    assert im(x + r*I) == im(x) + r

    assert im(im(x)*I) == im(x)

    assert im(2 + I) == 1
    assert im(x + I) == im(x) + 1

    assert im(x + y*I) == im(x) + re(y)
    assert im(x + r*I) == im(x) + r

    assert im(log(2*I)) == pi/2

    assert im((2+I)**2).expand(complex=True) == 4

    assert im(conjugate(x)) == -im(x)
    assert conjugate(im(x)) == im(x)

    assert im(x).as_real_imag() == (im(x), 0)

    assert im(i*r*x).diff(r) == im(i*x)
    assert im(i*r*x).diff(i) == -I * re(r*x)
Пример #29
0
def test_re():
    x, y = symbols('x,y')

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert re(nan) == nan

    assert re(oo) == oo
    assert re(-oo) == -oo

    assert re(0) == 0

    assert re(1) == 1
    assert re(-1) == -1

    assert re(E) == E
    assert re(-E) == -E

    assert re(x) == re(x)
    assert re(x*I) == -im(x)
    assert re(r*I) == 0
    assert re(r) == r
    assert re(i*I) == I * i
    assert re(i) == 0

    assert re(x + y) == re(x + y)
    assert re(x + r) == re(x) + r

    assert re(re(x)) == re(x)

    assert re(2 + I) == 2
    assert re(x + I) == re(x)

    assert re(x + y*I) == re(x) - im(y)
    assert re(x + r*I) == re(x)

    assert re(log(2*I)) == log(2)

    assert re((2+I)**2).expand(complex=True) == 3

    assert re(conjugate(x)) == re(x)
    assert conjugate(re(x)) == re(x)

    assert re(x).as_real_imag() == (re(x), 0)

    assert re(i*r*x).diff(r) == re(i*x)
    assert re(i*r*x).diff(i) == -I * im(r*x)
Пример #30
0
def test_Abs():
    x, y = symbols('x,y')
    assert sign(sign(x)) == sign(x)
    assert sign(x*y).func is sign
    assert Abs(0) == 0
    assert Abs(1) == 1
    assert Abs(-1)== 1
    assert Abs(nan) == nan
    assert Abs(I * pi) == pi

    x = Symbol('x',real=True)
    n = Symbol('n',integer=True)
    assert x**(2*n) == Abs(x)**(2*n)
    assert Abs(x).diff(x) == sign(x)
    assert abs(x) == Abs(x) # Python built-in
    assert Abs(x)**3 == x**2*Abs(x)
    assert (Abs(x)**(3*n)).args == (Abs(x), 3*n) # leave symbolic odd unchanged
    assert (1/Abs(x)).args == (Abs(x), -1)
    assert 1/Abs(x)**3 == 1/(x**2*Abs(x))
    assert Abs(x).diff(x) == sign(x)
    assert conjugate(Abs(x)) == Abs(x)
    assert Abs(-2*x) == 2*Abs(x)
    assert Abs(-2.0*x) == 2.0*Abs(x)
    assert Abs(2*pi*x*y) == 2*pi*Abs(x*y)
    a = Symbol('a', positive=True)
    assert Abs(2*pi*x*a) == 2*pi*a*Abs(x)
Пример #31
0
def _Conjugate(a):
    return conjugate(a, evaluate=False)
Пример #32
0
def test_erf():
    assert erf(nan) is nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) == 0

    assert erf(I * oo) == oo * I
    assert erf(-I * oo) == -oo * I

    assert erf(-2) == -erf(2)
    assert erf(-x * y) == -erf(x * y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(erfinv(x)) == x
    assert erf(erfcinv(x)) == 1 - x
    assert erf(erf2inv(0, x)) == x
    assert erf(erf2inv(0, x, evaluate=False)) == x  # To cover code in erf
    assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x

    assert erf(I).is_real is False
    assert erf(0).is_real is True

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == 2 * x / sqrt(pi)
    assert erf(1 / x).as_leading_term(x) == erf(1 / x)

    assert erf(z).rewrite('uppergamma') == sqrt(z**
                                                2) * (1 - erfc(sqrt(z**2))) / z
    assert erf(z).rewrite('erfc') == S.One - erfc(z)
    assert erf(z).rewrite('erfi') == -I * erfi(I * z)
    assert erf(z).rewrite('fresnels') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('fresnelc') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half],
                                                    -z**2) / sqrt(pi)
    assert erf(z).rewrite('meijerg') == z * meijerg(
        [S.Half], [], [0], [Rational(-1, 2)], z**2) / sqrt(pi)
    assert erf(z).rewrite(
        'expint') == sqrt(z**2) / z - z * expint(S.Half, z**2) / sqrt(S.Pi)

    assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
        2/sqrt(pi)
    assert limit((1 - erf(z)) * exp(z**2) * z, z, oo) == 1 / sqrt(pi)
    assert limit((1 - erf(x)) * exp(x**2) * sqrt(pi) * x, x, oo) == 1
    assert limit(((1 - erf(x)) * exp(x**2) * sqrt(pi) * x - 1) * 2 * x**2, x,
                 oo) == -1

    assert erf(x).as_real_imag() == \
        (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2,
         -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2)

    assert erf(x).as_real_imag(deep=False) == \
        (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2,
         -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2)

    assert erf(w).as_real_imag() == (erf(w), 0)
    assert erf(w).as_real_imag(deep=False) == (erf(w), 0)
    # issue 13575
    assert erf(I).as_real_imag() == (0, -I * erf(I))

    raises(ArgumentIndexError, lambda: erf(x).fdiff(2))

    assert erf(x).inverse() == erfinv
Пример #33
0
 def _eval_innerproduct_BosonCoherentBra(self, bra, **hints):
     if self.alpha == bra.alpha:
         return Integer(1)
     else:
         return exp(-(abs(self.alpha)**2 + abs(bra.alpha)**2 -
                      2 * conjugate(bra.alpha) * self.alpha) / 2)
Пример #34
0
 def _eval_dagger(self):
     return conjugate(self)
Пример #35
0
def test_gamma():
    assert gamma(nan) is nan
    assert gamma(oo) is oo

    assert gamma(-100) is zoo
    assert gamma(0) is zoo
    assert gamma(-100.0) is zoo

    assert gamma(1) == 1
    assert gamma(2) == 1
    assert gamma(3) == 2

    assert gamma(102) == factorial(101)

    assert gamma(S.Half) == sqrt(pi)

    assert gamma(Rational(3, 2)) == sqrt(pi) * S.Half
    assert gamma(Rational(5, 2)) == sqrt(pi) * Rational(3, 4)
    assert gamma(Rational(7, 2)) == sqrt(pi) * Rational(15, 8)

    assert gamma(Rational(-1, 2)) == -2 * sqrt(pi)
    assert gamma(Rational(-3, 2)) == sqrt(pi) * Rational(4, 3)
    assert gamma(Rational(-5, 2)) == sqrt(pi) * Rational(-8, 15)

    assert gamma(Rational(-15, 2)) == sqrt(pi) * Rational(256, 2027025)

    assert gamma(Rational(
        -11, 8)).expand(func=True) == Rational(64, 33) * gamma(Rational(5, 8))
    assert gamma(Rational(
        -10, 3)).expand(func=True) == Rational(81, 280) * gamma(Rational(2, 3))
    assert gamma(Rational(
        14, 3)).expand(func=True) == Rational(880, 81) * gamma(Rational(2, 3))
    assert gamma(Rational(
        17, 7)).expand(func=True) == Rational(30, 49) * gamma(Rational(3, 7))
    assert gamma(Rational(
        19, 8)).expand(func=True) == Rational(33, 64) * gamma(Rational(3, 8))

    assert gamma(x).diff(x) == gamma(x) * polygamma(0, x)

    assert gamma(x - 1).expand(func=True) == gamma(x) / (x - 1)
    assert gamma(x + 2).expand(func=True, mul=False) == x * (x + 1) * gamma(x)

    assert conjugate(gamma(x)) == gamma(conjugate(x))

    assert expand_func(gamma(x + Rational(3, 2))) == \
        (x + S.Half)*gamma(x + S.Half)

    assert expand_func(gamma(x - S.Half)) == \
        gamma(S.Half + x)/(x - S.Half)

    # Test a bug:
    assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4))

    # XXX: Not sure about these tests. I can fix them by defining e.g.
    # exp_polar.is_integer but I'm not sure if that makes sense.
    assert gamma(3 * exp_polar(I * pi) / 4).is_nonnegative is False
    assert gamma(3 * exp_polar(I * pi) / 4).is_extended_nonpositive is True

    y = Symbol('y', nonpositive=True, integer=True)
    assert gamma(y).is_real == False
    y = Symbol('y', positive=True, noninteger=True)
    assert gamma(y).is_real == True

    assert gamma(-1.0, evaluate=False).is_real == False
    assert gamma(0, evaluate=False).is_real == False
    assert gamma(-2, evaluate=False).is_real == False
Пример #36
0
def test_conjugate():
    assert conjugate(A).is_commutative == False
    assert (A * A).conjugate() == conjugate(A)**2
    assert (A * B).conjugate() == conjugate(A) * conjugate(B)
    assert (A * B**2).conjugate() == conjugate(A) * conjugate(B)**2
    assert (A*B - B*A).conjugate() == \
        conjugate(A)*conjugate(B) - conjugate(B)*conjugate(A)
    assert (A*B).conjugate() - (B*A).conjugate() == \
        conjugate(A)*conjugate(B) - conjugate(B)*conjugate(A)
    assert (A + I * B).conjugate() == conjugate(A) - I * conjugate(B)
Пример #37
0
def test_quaternion_functions():
    q = Quaternion(w, x, y, z)
    q1 = Quaternion(1, 2, 3, 4)
    q0 = Quaternion(0, 0, 0, 0)

    assert conjugate(q) == Quaternion(w, -x, -y, -z)
    assert q.norm() == sqrt(w ** 2 + x ** 2 + y ** 2 + z ** 2)
    assert q.normalize() == Quaternion(w, x, y, z) / sqrt(
        w ** 2 + x ** 2 + y ** 2 + z ** 2
    )
    assert q.inverse() == Quaternion(w, -x, -y, -z) / (
        w ** 2 + x ** 2 + y ** 2 + z ** 2
    )
    assert q.inverse() == q.pow(-1)
    raises(ValueError, lambda: q0.inverse())
    assert q.pow(2) == Quaternion(
        w ** 2 - x ** 2 - y ** 2 - z ** 2, 2 * w * x, 2 * w * y, 2 * w * z
    )
    assert q ** (2) == Quaternion(
        w ** 2 - x ** 2 - y ** 2 - z ** 2, 2 * w * x, 2 * w * y, 2 * w * z
    )
    assert q1.pow(-2) == Quaternion(
        Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225)
    )
    assert q1 ** (-2) == Quaternion(
        Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225)
    )
    assert q1.pow(-0.5) == NotImplemented
    raises(TypeError, lambda: q1 ** (-0.5))

    assert q1.exp() == Quaternion(
        E * cos(sqrt(29)),
        2 * sqrt(29) * E * sin(sqrt(29)) / 29,
        3 * sqrt(29) * E * sin(sqrt(29)) / 29,
        4 * sqrt(29) * E * sin(sqrt(29)) / 29,
    )
    assert q1._ln() == Quaternion(
        log(sqrt(30)),
        2 * sqrt(29) * acos(sqrt(30) / 30) / 29,
        3 * sqrt(29) * acos(sqrt(30) / 30) / 29,
        4 * sqrt(29) * acos(sqrt(30) / 30) / 29,
    )

    assert q1.pow_cos_sin(2) == Quaternion(
        30 * cos(2 * acos(sqrt(30) / 30)),
        60 * sqrt(29) * sin(2 * acos(sqrt(30) / 30)) / 29,
        90 * sqrt(29) * sin(2 * acos(sqrt(30) / 30)) / 29,
        120 * sqrt(29) * sin(2 * acos(sqrt(30) / 30)) / 29,
    )

    assert diff(Quaternion(x, x, x, x), x) == Quaternion(1, 1, 1, 1)

    assert integrate(Quaternion(x, x, x, x), x) == Quaternion(
        x ** 2 / 2, x ** 2 / 2, x ** 2 / 2, x ** 2 / 2
    )

    assert Quaternion.rotate_point((1, 1, 1), q1) == (S.One / 5, 1, S(7) / 5)
    n = Symbol("n")
    raises(TypeError, lambda: q1 ** n)
    n = Symbol("n", integer=True)
    raises(TypeError, lambda: q1 ** n)
def test_conjugate():
    a = Symbol('a', real=True)
    b = Symbol('b', imaginary=True)
    assert conjugate(a) == a
    assert conjugate(I*a) == -I*a
    assert conjugate(b) == -b
    assert conjugate(I*b) == I*b
    assert conjugate(a*b) == -a*b
    assert conjugate(I*a*b) == I*a*b

    x, y = symbols('x y')
    assert conjugate(conjugate(x)) == x
    assert conjugate(x + y) == conjugate(x) + conjugate(y)
    assert conjugate(x - y) == conjugate(x) - conjugate(y)
    assert conjugate(x * y) == conjugate(x) * conjugate(y)
    assert conjugate(x / y) == conjugate(x) / conjugate(y)
    assert conjugate(-x) == -conjugate(x)
Пример #39
0
def WeylScalars():
    # Step 1:
    bssn.BSSN_RHSs()

    # Step 2b: Set spatial dimension (must be 3 for BSSN)
    DIM = 3
    par.set_parval_from_str("grid::DIM",DIM)

    x = rfm.xxCart[0]
    y = rfm.xxCart[1]
    z = rfm.xxCart[2]

    if TetradChoice == "Approx_QuasiKinnersley":
        # Eqs 5.6 in https://arxiv.org/pdf/gr-qc/0104063.pdf
        xmoved = x - xorig  # Make sure I'm handling coordinates correctly
        ymoved = y - yorig
        zmoved = z - zorig

        # Eqs 5.7
        vbU = ixp.zerorank1("vbU")
        vaU = ixp.zerorank1("vaU")
        vcU = ixp.zerorank1("vcU")
        vaU[0] = -ymoved
        vaU[1] = xmoved + offset
        vaU[2] = 0
        vbU[0] = xmoved + offset
        vbU[1] = ymoved
        vbU[2] = zmoved
        LeviCivitaSymbol = define_LeviCivitaSymbol()
        for a in range(DIM):
            for b in range(DIM):
                for c in range(DIM):
                    for d in range(DIM):
                        vcU[a] += sp.sqrt(bssn.detgammabar) * bssn.gammabarUU[a][d] * LeviCivitaSymbol[d][b][c] * vaU[b] *vbU[c]

        # Graham-Schmidt orthonormalization of the tetrad
        waU = ixp.zerorank1("waU")
        wbU = ixp.zerorank1("wbU")
        wcU = ixp.zerorank1("wcU")
        eaU = ixp.zerorank1("eaU")
        ebU = ixp.zerorank1("ebU")
        ecU = ixp.zerorank1("ecU")

        waU[a] = vaU[a]
        omega11 = 0
        for a in range(DIM):
            for b in range(DIM):
                omega11 += waU[a] * waU[b] * bssn.gammabarDD[a][b]
        eaU = waU / sp.sqrt(omega11)

        omega12 = 0
        for a in range(DIM):
            for b in range(DIM):
                omega12 += eaU[a] * vaU[b] * bssn.gammabarDD[a][b]
        wbU = vbU - omega12*eaU
        omega22 = 0
        for a in range(DIM):
            for b in range(DIM):
                omega22 += wbU[a] * wbU[b] *bssn.gammabarDD[a][b]
        ebU = wbU / sqrt(omega22)

        omega13 = 0
        for a in range(DIM):
            for b in range(DIM):
                omega13 += eaU[a] * vcU[b] * bssn.gammabarDD[a][b]
        omega23 = 0
        for a in range(DIM):
            for b in range(DIM):
                omega23 += ebU[a] * vcU[b] * bssn.gammabarDD[a][b]
        wcU = vcU - omega13*eaU - omega23*ebU

        # Construct the tetrad
        isqrt2 = 1/sp.sqrt(2)
        ltetU = isqrt2 * ebU
        ntetU = -isqrt2 * ebU
        mtetU = isqrt2 * (ecU + I*eaU)
        mtetbarU = sp.conjugate(mtetU)
def test_sign():
    assert sign(1.2) == 1
    assert sign(-1.2) == -1
    assert sign(3*I) == I
    assert sign(-3*I) == -I
    assert sign(0) == 0
    assert sign(nan) == nan
    assert sign(2 + 2*I).doit() == sqrt(2)*(2 + 2*I)/4
    assert sign(2 + 3*I).simplify() == sign(2 + 3*I)
    assert sign(2 + 2*I).simplify() == sign(1 + I)

    x = Symbol('x')
    assert sign(x).is_bounded is True
    assert sign(x).is_complex is True
    assert sign(x).is_imaginary is None
    assert sign(x).is_integer is None
    assert sign(x).is_real is None
    assert sign(x).is_zero is None
    assert sign(x).doit() == sign(x)
    assert sign(1.2*x) == sign(x)
    assert sign(2*x) == sign(x)
    assert sign(I*x) == I*sign(x)
    assert sign(-2*I*x) == -I*sign(x)
    assert sign(conjugate(x)) == conjugate(sign(x))

    p = Symbol('p', positive=True)
    n = Symbol('n', negative=True)
    m = Symbol('m', negative=True)
    assert sign(2*p*x) == sign(x)
    assert sign(n*x) == -sign(x)
    assert sign(n*m*x) == sign(x)

    x = Symbol('x', imaginary=True)
    assert sign(x).is_imaginary is True
    assert sign(x).is_integer is False
    assert sign(x).is_real is False
    assert sign(x).is_zero is False
    assert sign(x).diff(x) == 2*DiracDelta(-I*x)
    assert sign(x).doit() == x / Abs(x)
    assert conjugate(sign(x)) == -sign(x)

    x = Symbol('x', real=True)
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is None
    assert sign(x).diff(x) == 2*DiracDelta(x)
    assert sign(x).doit() == sign(x)
    assert conjugate(sign(x)) == sign(x)

    x = Symbol('x', nonzero=True)
    assert sign(x).is_imaginary is None
    assert sign(x).is_integer is None
    assert sign(x).is_real is None
    assert sign(x).is_zero is False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = Symbol('x', positive=True)
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = 0
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is True
    assert sign(x).doit() == 0
    assert sign(Abs(x)) == 0
    assert Abs(sign(x)) == 0

    nz = Symbol('nz', nonzero=True, integer=True)
    assert sign(nz).is_imaginary is False
    assert sign(nz).is_integer is True
    assert sign(nz).is_real is True
    assert sign(nz).is_zero is False
    assert sign(nz)**2 == 1
    assert (sign(nz)**3).args == (sign(nz), 3)

    x, y = Symbol('x', real=True), Symbol('y')
    assert sign(x).rewrite(Piecewise) == \
        Piecewise((1, x > 0), (-1, x < 0), (0, True))
    assert sign(y).rewrite(Piecewise) == sign(y)

    # evaluate what can be evaluated
    assert sign(exp_polar(I*pi)*pi) is S.NegativeOne

    eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
    # if there is a fast way to know when and when you cannot prove an
    # expression like this is zero then the equality to zero is ok
    assert sign(eq).func is sign or sign(eq) == 0
    # but sometimes it's hard to do this so it's better not to load
    # abs down with tests that will be very slow
    q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
    p = expand(q**3)**Rational(1, 3)
    d = p - q
    assert sign(d).func is sign or sign(d) == 0
Пример #41
0
def test_exp_conjugate():
    x = Symbol('x')
    assert conjugate(exp(x)) == exp(conjugate(x))
Пример #42
0
def test_conjugate():
    a = Symbol('a', real=True)
    assert conjugate(a) == a
    assert conjugate(I * a) == -I * a

    x, y = symbols('xy')
    assert conjugate(conjugate(x)) == x
    assert conjugate(x + y) == conjugate(x) + conjugate(y)
    assert conjugate(x - y) == conjugate(x) - conjugate(y)
    assert conjugate(x * y) == conjugate(x) * conjugate(y)
    assert conjugate(x / y) == conjugate(x) / conjugate(y)
    assert conjugate(-x) == -conjugate(x)
Пример #43
0
def test_re():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert re(nan) == nan

    assert re(oo) == oo
    assert re(-oo) == -oo

    assert re(0) == 0

    assert re(1) == 1
    assert re(-1) == -1

    assert re(E) == E
    assert re(-E) == -E

    assert re(x) == re(x)
    assert re(x*I) == -im(x)
    assert re(r*I) == 0
    assert re(r) == r
    assert re(i*I) == I * i
    assert re(i) == 0

    assert re(x + y) == re(x + y)
    assert re(x + r) == re(x) + r

    assert re(re(x)) == re(x)

    assert re(2 + I) == 2
    assert re(x + I) == re(x)

    assert re(x + y*I) == re(x) - im(y)
    assert re(x + r*I) == re(x)

    assert re(log(2*I)) == log(2)

    assert re((2 + I)**2).expand(complex=True) == 3

    assert re(conjugate(x)) == re(x)
    assert conjugate(re(x)) == re(x)

    assert re(x).as_real_imag() == (re(x), 0)

    assert re(i*r*x).diff(r) == re(i*x)
    assert re(i*r*x).diff(i) == I*r*im(x)

    assert re(
        sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)
    assert re(a * (2 + b*I)) == 2*a

    assert re((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + Rational(1, 2)

    assert re(x).rewrite(im) == x - S.ImaginaryUnit*im(x)
    assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit*im(y)

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False

    assert re(S.ComplexInfinity) == S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A',n,m)
    assert re(A) == (S(1)/2) * (A + conjugate(A))

    A = Matrix([[1 + 4*I,2],[0, -3*I]])
    assert re(A) == Matrix([[1, 2],[0, 0]])

    A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
    assert re(A) == ImmutableMatrix([[1, 3],[0, 0]])

    X = SparseMatrix([[2*j + i*I for i in range(5)] for j in range(5)])
    assert re(X) - Matrix([[0, 0, 0, 0, 0],
                           [2, 2, 2, 2, 2],
                           [4, 4, 4, 4, 4],
                           [6, 6, 6, 6, 6],
                           [8, 8, 8, 8, 8]]) == Matrix.zeros(5)

    assert im(X) - Matrix([[0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4]]) == Matrix.zeros(5)

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
    assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
Пример #44
0
def test_sec():
    x = symbols('x', real=True)
    z = symbols('z')

    assert sec.nargs == FiniteSet(1)

    assert sec(0) == 1
    assert sec(pi) == -1
    assert sec(pi / 2) == zoo
    assert sec(-pi / 2) == zoo
    assert sec(pi / 6) == 2 * sqrt(3) / 3
    assert sec(pi / 3) == 2
    assert sec(5 * pi / 2) == zoo
    assert sec(9 * pi / 7) == -sec(2 * pi / 7)
    assert sec(3 * pi / 4) == -sqrt(2)  # issue 8421
    assert sec(I) == 1 / cosh(1)
    assert sec(x * I) == 1 / cosh(x)
    assert sec(-x) == sec(x)

    assert sec(asec(x)) == x

    assert sec(x).rewrite(exp) == 1 / (exp(I * x) / 2 + exp(-I * x) / 2)
    assert sec(x).rewrite(sin) == sec(x)
    assert sec(x).rewrite(cos) == 1 / cos(x)
    assert sec(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (-tan(x / 2)**2 + 1)
    assert sec(x).rewrite(pow) == sec(x)
    assert sec(x).rewrite(sqrt) == sec(x)
    assert sec(z).rewrite(cot) == (cot(z / 2)**2 + 1) / (cot(z / 2)**2 - 1)

    assert sec(z).conjugate() == sec(conjugate(z))

    assert (sec(z).as_real_imag() == (
        cos(re(z)) * cosh(im(z)) /
        (sin(re(z))**2 * sinh(im(z))**2 + cos(re(z))**2 * cosh(im(z))**2),
        sin(re(z)) * sinh(im(z)) /
        (sin(re(z))**2 * sinh(im(z))**2 + cos(re(z))**2 * cosh(im(z))**2)))

    assert sec(x).expand(trig=True) == 1 / cos(x)
    assert sec(2 * x).expand(trig=True) == 1 / (2 * cos(x)**2 - 1)

    assert sec(x).is_real == True
    assert sec(z).is_real == None

    assert sec(a).is_algebraic is None
    assert sec(na).is_algebraic is False

    assert sec(x).as_leading_term() == sec(x)

    assert sec(0).is_finite == True
    assert sec(x).is_finite == None
    assert sec(pi / 2).is_finite == False

    assert series(sec(x), x, x0=0,
                  n=6) == 1 + x**2 / 2 + 5 * x**4 / 24 + O(x**6)

    # https://github.com/sympy/sympy/issues/7166
    assert series(sqrt(sec(x))) == 1 + x**2 / 4 + 7 * x**4 / 96 + O(x**6)

    # https://github.com/sympy/sympy/issues/7167
    assert (series(sqrt(sec(x)), x, x0=pi * 3 / 2,
                   n=4) == 1 / sqrt(x - 3 * pi / 2) +
            (x - 3 * pi / 2)**(S(3) / 2) / 12 +
            (x - 3 * pi / 2)**(S(7) / 2) / 160 + O((x - 3 * pi / 2)**4,
                                                   (x, 3 * pi / 2)))

    assert sec(x).diff(x) == tan(x) * sec(x)

    # Taylor Term checks
    assert sec(z).taylor_term(4, z) == 5 * z**4 / 24
    assert sec(z).taylor_term(6, z) == 61 * z**6 / 720
    assert sec(z).taylor_term(5, z) == 0
Пример #45
0
def test_exp_conjugate():
    assert conjugate(exp(x)) == exp(conjugate(x))
Пример #46
0
def test_csc():
    x = symbols('x', real=True)
    z = symbols('z')

    # https://github.com/sympy/sympy/issues/6707
    cosecant = csc('x')
    alternate = 1 / sin('x')
    assert cosecant.equals(alternate) == True
    assert alternate.equals(cosecant) == True

    assert csc.nargs == FiniteSet(1)

    assert csc(0) == zoo
    assert csc(pi) == zoo

    assert csc(pi / 2) == 1
    assert csc(-pi / 2) == -1
    assert csc(pi / 6) == 2
    assert csc(pi / 3) == 2 * sqrt(3) / 3
    assert csc(5 * pi / 2) == 1
    assert csc(9 * pi / 7) == -csc(2 * pi / 7)
    assert csc(3 * pi / 4) == sqrt(2)  # issue 8421
    assert csc(I) == -I / sinh(1)
    assert csc(x * I) == -I / sinh(x)
    assert csc(-x) == -csc(x)

    assert csc(acsc(x)) == x

    assert csc(x).rewrite(exp) == 2 * I / (exp(I * x) - exp(-I * x))
    assert csc(x).rewrite(sin) == 1 / sin(x)
    assert csc(x).rewrite(cos) == csc(x)
    assert csc(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (2 * tan(x / 2))
    assert csc(x).rewrite(cot) == (cot(x / 2)**2 + 1) / (2 * cot(x / 2))

    assert csc(z).conjugate() == csc(conjugate(z))

    assert (csc(z).as_real_imag() == (
        sin(re(z)) * cosh(im(z)) /
        (sin(re(z))**2 * cosh(im(z))**2 + cos(re(z))**2 * sinh(im(z))**2),
        -cos(re(z)) * sinh(im(z)) /
        (sin(re(z))**2 * cosh(im(z))**2 + cos(re(z))**2 * sinh(im(z))**2)))

    assert csc(x).expand(trig=True) == 1 / sin(x)
    assert csc(2 * x).expand(trig=True) == 1 / (2 * sin(x) * cos(x))

    assert csc(x).is_real == True
    assert csc(z).is_real == None

    assert csc(a).is_algebraic is None
    assert csc(na).is_algebraic is False

    assert csc(x).as_leading_term() == csc(x)

    assert csc(0).is_finite == False
    assert csc(x).is_finite == None
    assert csc(pi / 2).is_finite == True

    assert series(csc(x), x, x0=pi/2, n=6) == \
        1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2))
    assert series(csc(x), x, x0=0, n=6) == \
            1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6)

    assert csc(x).diff(x) == -cot(x) * csc(x)

    assert csc(x).taylor_term(2, x) == 0
    assert csc(x).taylor_term(3, x) == 7 * x**3 / 360
    assert csc(x).taylor_term(5, x) == 31 * x**5 / 15120
Пример #47
0
 def _eval_adjoint(self):
     if self.shape == (1, 1) or self.is_symmetric:
         return conjugate(self)
     return super()._eval_adjoint()
Пример #48
0
def test_atan2():
    assert atan2.nargs == FiniteSet(2)
    assert atan2(0, 0) == S.NaN
    assert atan2(0, 1) == 0
    assert atan2(1, 1) == pi / 4
    assert atan2(1, 0) == pi / 2
    assert atan2(1, -1) == 3 * pi / 4
    assert atan2(0, -1) == pi
    assert atan2(-1, -1) == -3 * pi / 4
    assert atan2(-1, 0) == -pi / 2
    assert atan2(-1, 1) == -pi / 4
    i = symbols('i', imaginary=True)
    r = symbols('r', real=True)
    eq = atan2(r, i)
    ans = -I * log((i + I * r) / sqrt(i**2 + r**2))
    reps = ((r, 2), (i, I))
    assert eq.subs(reps) == ans.subs(reps)

    x = Symbol('x', negative=True)
    y = Symbol('y', negative=True)
    assert atan2(y, x) == atan(y / x) - pi
    y = Symbol('y', nonnegative=True)
    assert atan2(y, x) == atan(y / x) + pi
    y = Symbol('y')
    assert atan2(y, x) == atan2(y, x, evaluate=False)

    u = Symbol("u", positive=True)
    assert atan2(0, u) == 0
    u = Symbol("u", negative=True)
    assert atan2(0, u) == pi

    assert atan2(y, oo) == 0
    assert atan2(y, -oo) == 2 * pi * Heaviside(re(y)) - pi

    assert atan2(y, x).rewrite(log) == -I * log(
        (x + I * y) / sqrt(x**2 + y**2))
    assert atan2(y, x).rewrite(atan) == 2 * atan(y / (x + sqrt(x**2 + y**2)))

    ex = atan2(y, x) - arg(x + I * y)
    assert ex.subs({x: 2, y: 3}).rewrite(arg) == 0
    assert ex.subs({
        x: 2,
        y: 3 * I
    }).rewrite(arg) == -pi - I * log(sqrt(5) * I / 5)
    assert ex.subs({
        x: 2 * I,
        y: 3
    }).rewrite(arg) == -pi / 2 - I * log(sqrt(5) * I)
    assert ex.subs({
        x: 2 * I,
        y: 3 * I
    }).rewrite(arg) == -pi + atan(2 / S(3)) + atan(3 / S(2))
    i = symbols('i', imaginary=True)
    r = symbols('r', real=True)
    e = atan2(i, r)
    rewrite = e.rewrite(arg)
    reps = {i: I, r: -2}
    assert rewrite == -I * log(abs(I * i + r) / sqrt(abs(i**2 + r**2))) + arg(
        (I * i + r) / sqrt(i**2 + r**2))
    assert (e - rewrite).subs(reps).equals(0)

    assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y))

    assert diff(atan2(y, x), x) == -y / (x**2 + y**2)
    assert diff(atan2(y, x), y) == x / (x**2 + y**2)

    assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y / (x**2 + y**2)
    assert simplify(diff(atan2(y, x).rewrite(log), y)) == x / (x**2 + y**2)
Пример #49
0
def test_loggamma():
    raises(TypeError, lambda: loggamma(2, 3))
    raises(ArgumentIndexError, lambda: loggamma(x).fdiff(2))

    assert loggamma(-1) is oo
    assert loggamma(-2) is oo
    assert loggamma(0) is oo
    assert loggamma(1) == 0
    assert loggamma(2) == 0
    assert loggamma(3) == log(2)
    assert loggamma(4) == log(6)

    n = Symbol("n", integer=True, positive=True)
    assert loggamma(n) == log(gamma(n))
    assert loggamma(-n) is oo
    assert loggamma(n / 2) == log(2**(-n + 1) * sqrt(pi) * gamma(n) /
                                  gamma(n / 2 + S.Half))

    from sympy import I

    assert loggamma(oo) is oo
    assert loggamma(-oo) is zoo
    assert loggamma(I * oo) is zoo
    assert loggamma(-I * oo) is zoo
    assert loggamma(zoo) is zoo
    assert loggamma(nan) is nan

    L = loggamma(Rational(16, 3))
    E = -5 * log(3) + loggamma(Rational(
        1, 3)) + log(4) + log(7) + log(10) + log(13)
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    L = loggamma(Rational(19, 4))
    E = -4 * log(4) + loggamma(Rational(
        3, 4)) + log(3) + log(7) + log(11) + log(15)
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    L = loggamma(Rational(23, 7))
    E = -3 * log(7) + log(2) + loggamma(Rational(2, 7)) + log(9) + log(16)
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    L = loggamma(Rational(19, 4) - 7)
    E = -log(9) - log(5) + loggamma(Rational(3, 4)) + 3 * log(4) - 3 * I * pi
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    L = loggamma(Rational(23, 7) - 6)
    E = -log(19) - log(12) - log(5) + loggamma(Rational(
        2, 7)) + 3 * log(7) - 3 * I * pi
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    assert loggamma(x).diff(x) == polygamma(0, x)
    s1 = loggamma(1 / (x + sin(x)) + cos(x)).nseries(x, n=4)
    s2 = (-log(2*x) - 1)/(2*x) - log(x/pi)/2 + (4 - log(2*x))*x/24 + O(x**2) + \
        log(x)*x**2/2
    assert (s1 - s2).expand(force=True).removeO() == 0
    s1 = loggamma(1 / x).series(x)
    s2 = (1/x - S.Half)*log(1/x) - 1/x + log(2*pi)/2 + \
        x/12 - x**3/360 + x**5/1260 + O(x**7)
    assert ((s1 - s2).expand(force=True)).removeO() == 0

    assert loggamma(x).rewrite('intractable') == log(gamma(x))

    s1 = loggamma(x).series(x)
    assert s1 == -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + \
        pi**4*x**4/360 + x**5*polygamma(4, 1)/120 + O(x**6)
    assert s1 == loggamma(x).rewrite('intractable').series(x)

    assert conjugate(loggamma(x)) == loggamma(conjugate(x))
    assert conjugate(loggamma(0)) is oo
    assert conjugate(loggamma(1)) == loggamma(conjugate(1))
    assert conjugate(loggamma(-oo)) == conjugate(zoo)

    assert loggamma(Symbol('v', positive=True)).is_real is True
    assert loggamma(Symbol('v', zero=True)).is_real is False
    assert loggamma(Symbol('v', negative=True)).is_real is False
    assert loggamma(Symbol('v', nonpositive=True)).is_real is False
    assert loggamma(Symbol('v', nonnegative=True)).is_real is None
    assert loggamma(Symbol('v', imaginary=True)).is_real is None
    assert loggamma(Symbol('v', real=True)).is_real is None
    assert loggamma(Symbol('v')).is_real is None

    assert loggamma(S.Half).is_real is True
    assert loggamma(0).is_real is False
    assert loggamma(Rational(-1, 2)).is_real is False
    assert loggamma(I).is_real is None
    assert loggamma(2 + 3 * I).is_real is None

    def tN(N, M):
        assert loggamma(1 / x)._eval_nseries(x, n=N).getn() == M

    tN(0, 0)
    tN(1, 1)
    tN(2, 3)
    tN(3, 3)
    tN(4, 5)
    tN(5, 5)
Пример #50
0
def test_im():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert im(nan) == nan

    assert im(oo*I) == oo
    assert im(-oo*I) == -oo

    assert im(0) == 0

    assert im(1) == 0
    assert im(-1) == 0

    assert im(E*I) == E
    assert im(-E*I) == -E

    assert im(x) == im(x)
    assert im(x*I) == re(x)
    assert im(r*I) == r
    assert im(r) == 0
    assert im(i*I) == 0
    assert im(i) == -I * i

    assert im(x + y) == im(x + y)
    assert im(x + r) == im(x)
    assert im(x + r*I) == im(x) + r

    assert im(im(x)*I) == im(x)

    assert im(2 + I) == 1
    assert im(x + I) == im(x) + 1

    assert im(x + y*I) == im(x) + re(y)
    assert im(x + r*I) == im(x) + r

    assert im(log(2*I)) == pi/2

    assert im((2 + I)**2).expand(complex=True) == 4

    assert im(conjugate(x)) == -im(x)
    assert conjugate(im(x)) == im(x)

    assert im(x).as_real_imag() == (im(x), 0)

    assert im(i*r*x).diff(r) == im(i*x)
    assert im(i*r*x).diff(i) == -I * re(r*x)

    assert im(
        sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)
    assert im(a * (2 + b*I)) == a*b

    assert im((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2

    assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x))
    assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y))

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False

    assert im(S.ComplexInfinity) == S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A',n,m)

    assert im(A) == (S(1)/(2*I)) * (A - conjugate(A))

    A = Matrix([[1 + 4*I, 2],[0, -3*I]])
    assert im(A) == Matrix([[4, 0],[0, -3]])

    A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
    assert im(A) == ImmutableMatrix([[3, -2],[0, 2]])

    X = ImmutableSparseMatrix(
            [[i*I + i for i in range(5)] for i in range(5)])
    Y = SparseMatrix([[i for i in range(5)] for i in range(5)])
    assert im(X).as_immutable() == Y

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
    assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]])
Пример #51
0
def test_fresnel():
    assert fresnels(0) == 0
    assert fresnels(oo) == S.Half
    assert fresnels(-oo) == -S.Half

    assert fresnels(z) == fresnels(z)
    assert fresnels(-z) == -fresnels(z)
    assert fresnels(I * z) == -I * fresnels(z)
    assert fresnels(-I * z) == I * fresnels(z)

    assert conjugate(fresnels(z)) == fresnels(conjugate(z))

    assert fresnels(z).diff(z) == sin(pi * z**2 / 2)

    assert fresnels(z).rewrite(erf) == (S.One + I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) - I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnels(z).rewrite(hyper) == \
        pi*z**3/6 * hyper([S(3)/4], [S(3)/2, S(7)/4], -pi**2*z**4/16)

    assert fresnels(z).series(z, n=15) == \
        pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)

    assert fresnels(w).is_extended_real is True

    assert fresnels(z).as_real_imag() == \
        ((fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
          fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
          I*(fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
          fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
          re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))

    assert fresnels(2 + 3 * I).as_real_imag() == (
        fresnels(2 + 3 * I) / 2 + fresnels(2 - 3 * I) / 2,
        I * (fresnels(2 - 3 * I) - fresnels(2 + 3 * I)) / 2)

    assert expand_func(integrate(fresnels(z), z)) == \
        z*fresnels(z) + cos(pi*z**2/2)/pi

    assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(9)/4) * \
        meijerg(((), (1,)), ((S(3)/4,),
        (S(1)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(3)/4)*(z**2)**(S(3)/4))

    assert fresnelc(0) == 0
    assert fresnelc(oo) == S.Half
    assert fresnelc(-oo) == -S.Half

    assert fresnelc(z) == fresnelc(z)
    assert fresnelc(-z) == -fresnelc(z)
    assert fresnelc(I * z) == I * fresnelc(z)
    assert fresnelc(-I * z) == -I * fresnelc(z)

    assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))

    assert fresnelc(z).diff(z) == cos(pi * z**2 / 2)

    assert fresnelc(z).rewrite(erf) == (S.One - I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) + I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnelc(z).rewrite(hyper) == \
        z * hyper([S.One/4], [S.One/2, S(5)/4], -pi**2*z**4/16)

    assert fresnelc(z).series(z, n=15) == \
        z - pi**2*z**5/40 + pi**4*z**9/3456 - pi**6*z**13/599040 + O(z**15)

    # issues 6510, 10102
    fs = (S.Half - sin(pi * z**2 / 2) / (pi**2 * z**3) +
          (-1 / (pi * z) + 3 / (pi**3 * z**5)) * cos(pi * z**2 / 2))
    fc = (S.Half - cos(pi * z**2 / 2) / (pi**2 * z**3) +
          (1 / (pi * z) - 3 / (pi**3 * z**5)) * sin(pi * z**2 / 2))
    assert fresnels(z).series(z, oo) == fs + O(z**(-6), (z, oo))
    assert fresnelc(z).series(z, oo) == fc + O(z**(-6), (z, oo))
    assert (fresnels(z).series(z, -oo) + fs.subs(z, -z)).expand().is_Order
    assert (fresnelc(z).series(z, -oo) + fc.subs(z, -z)).expand().is_Order
    assert (fresnels(1 / z).series(z) - fs.subs(z, 1 / z)).expand().is_Order
    assert (fresnelc(1 / z).series(z) - fc.subs(z, 1 / z)).expand().is_Order
    assert ((2 * fresnels(3 * z)).series(z, oo) -
            2 * fs.subs(z, 3 * z)).expand().is_Order
    assert ((3 * fresnelc(2 * z)).series(z, oo) -
            3 * fc.subs(z, 2 * z)).expand().is_Order

    assert fresnelc(w).is_extended_real is True

    assert fresnelc(z).as_real_imag() == \
        ((fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
          fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
          I*(fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
          fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
          re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))

    assert fresnelc(2 + 3 * I).as_real_imag() == (
        fresnelc(2 - 3 * I) / 2 + fresnelc(2 + 3 * I) / 2,
        I * (fresnelc(2 - 3 * I) - fresnelc(2 + 3 * I)) / 2)

    assert expand_func(integrate(fresnelc(z), z)) == \
        z*fresnelc(z) - sin(pi*z**2/2)/pi

    assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(3)/4) * \
        meijerg(((), (1,)), ((S(1)/4,),
        (S(3)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(1)/4)*(z**2)**(S(1)/4))

    from sympy.utilities.randtest import verify_numerically

    verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z)
    verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z)

    verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z)
    verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)
Пример #52
0
def test_conjugate():
    from sympy import conjugate, I, Symbol
    n = Symbol('n')
    z = Symbol('z', extended_real=False)
    x = Symbol('x', extended_real=True)
    y = Symbol('y', real=True, positive=True)
    t = Symbol('t', negative=True)

    for f in [besseli, besselj, besselk, bessely, hankel1, hankel2]:
        assert f(n, -1).conjugate() != f(conjugate(n), -1)
        assert f(n, x).conjugate() != f(conjugate(n), x)
        assert f(n, t).conjugate() != f(conjugate(n), t)

    rz = randcplx(b=0.5)

    for f in [besseli, besselj, besselk, bessely]:
        assert f(n, 1 + I).conjugate() == f(conjugate(n), 1 - I)
        assert f(n, 0).conjugate() == f(conjugate(n), 0)
        assert f(n, 1).conjugate() == f(conjugate(n), 1)
        assert f(n, z).conjugate() == f(conjugate(n), conjugate(z))
        assert f(n, y).conjugate() == f(conjugate(n), y)
        assert tn(f(n, rz).conjugate(), f(conjugate(n), conjugate(rz)))

    assert hankel1(n, 1 + I).conjugate() == hankel2(conjugate(n), 1 - I)
    assert hankel1(n, 0).conjugate() == hankel2(conjugate(n), 0)
    assert hankel1(n, 1).conjugate() == hankel2(conjugate(n), 1)
    assert hankel1(n, y).conjugate() == hankel2(conjugate(n), y)
    assert hankel1(n, z).conjugate() == hankel2(conjugate(n), conjugate(z))
    assert tn(hankel1(n, rz).conjugate(), hankel2(conjugate(n), conjugate(rz)))

    assert hankel2(n, 1 + I).conjugate() == hankel1(conjugate(n), 1 - I)
    assert hankel2(n, 0).conjugate() == hankel1(conjugate(n), 0)
    assert hankel2(n, 1).conjugate() == hankel1(conjugate(n), 1)
    assert hankel2(n, y).conjugate() == hankel1(conjugate(n), y)
    assert hankel2(n, z).conjugate() == hankel1(conjugate(n), conjugate(z))
    assert tn(hankel2(n, rz).conjugate(), hankel1(conjugate(n), conjugate(rz)))
Пример #53
0
def l2_inner_product(a, b, lim):
    """
    Calculates the L2 inner product (a, b) over the domain lim.
    """
    return integrate(conjugate(a) * b, lim)
Пример #54
0
def test_implicit():
    x, y = symbols('x,y')
    assert fcode(sin(x)) == "      sin(x)"
    assert fcode(atan2(x, y)) == "      atan2(x, y)"
    assert fcode(conjugate(x)) == "      conjg(x)"
Пример #55
0
def test_fresnel():
    assert fresnels(0) == 0
    assert fresnels(oo) == S.Half
    assert fresnels(-oo) == Rational(-1, 2)
    assert fresnels(I * oo) == -I * S.Half

    assert unchanged(fresnels, z)
    assert fresnels(-z) == -fresnels(z)
    assert fresnels(I * z) == -I * fresnels(z)
    assert fresnels(-I * z) == I * fresnels(z)

    assert conjugate(fresnels(z)) == fresnels(conjugate(z))

    assert fresnels(z).diff(z) == sin(pi * z**2 / 2)

    assert fresnels(z).rewrite(erf) == (S.One + I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) - I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnels(z).rewrite(hyper) == \
        pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16)

    assert fresnels(z).series(z, n=15) == \
        pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)

    assert fresnels(w).is_extended_real is True
    assert fresnels(w).is_finite is True

    assert fresnels(z).is_extended_real is None
    assert fresnels(z).is_finite is None

    assert fresnels(z).as_real_imag() == (
        fresnels(re(z) - I * im(z)) / 2 + fresnels(re(z) + I * im(z)) / 2,
        -I * (-fresnels(re(z) - I * im(z)) + fresnels(re(z) + I * im(z))) / 2)

    assert fresnels(z).as_real_imag(deep=False) == (
        fresnels(re(z) - I * im(z)) / 2 + fresnels(re(z) + I * im(z)) / 2,
        -I * (-fresnels(re(z) - I * im(z)) + fresnels(re(z) + I * im(z))) / 2)

    assert fresnels(w).as_real_imag() == (fresnels(w), 0)
    assert fresnels(w).as_real_imag(deep=True) == (fresnels(w), 0)

    assert fresnels(2 + 3 * I).as_real_imag() == (
        fresnels(2 + 3 * I) / 2 + fresnels(2 - 3 * I) / 2,
        -I * (fresnels(2 + 3 * I) - fresnels(2 - 3 * I)) / 2)

    assert expand_func(integrate(fresnels(z), z)) == \
        z*fresnels(z) + cos(pi*z**2/2)/pi

    assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(9, 4) * \
        meijerg(((), (1,)), ((Rational(3, 4),),
        (Rational(1, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(3, 4)*(z**2)**Rational(3, 4))

    assert fresnelc(0) == 0
    assert fresnelc(oo) == S.Half
    assert fresnelc(-oo) == Rational(-1, 2)
    assert fresnelc(I * oo) == I * S.Half

    assert unchanged(fresnelc, z)
    assert fresnelc(-z) == -fresnelc(z)
    assert fresnelc(I * z) == I * fresnelc(z)
    assert fresnelc(-I * z) == -I * fresnelc(z)

    assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))

    assert fresnelc(z).diff(z) == cos(pi * z**2 / 2)

    assert fresnelc(z).rewrite(erf) == (S.One - I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) + I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnelc(z).rewrite(hyper) == \
        z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16)

    assert fresnelc(w).is_extended_real is True

    assert fresnelc(z).as_real_imag() == \
        (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
         -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)

    assert fresnelc(z).as_real_imag(deep=False) == \
        (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
         -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)

    assert fresnelc(2 + 3 * I).as_real_imag() == (
        fresnelc(2 - 3 * I) / 2 + fresnelc(2 + 3 * I) / 2,
        -I * (fresnelc(2 + 3 * I) - fresnelc(2 - 3 * I)) / 2)

    assert expand_func(integrate(fresnelc(z), z)) == \
        z*fresnelc(z) - sin(pi*z**2/2)/pi

    assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(3, 4) * \
        meijerg(((), (1,)), ((Rational(1, 4),),
        (Rational(3, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(1, 4)*(z**2)**Rational(1, 4))

    from sympy.testing.randtest import verify_numerically

    verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z)
    verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z)

    verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z)
    verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)

    raises(ArgumentIndexError, lambda: fresnels(z).fdiff(2))
    raises(ArgumentIndexError, lambda: fresnelc(z).fdiff(2))

    assert fresnels(x).taylor_term(-1, x) is S.Zero
    assert fresnelc(x).taylor_term(-1, x) is S.Zero
    assert fresnelc(x).taylor_term(1, x) == -pi**2 * x**5 / 40
Пример #56
0
 def _eval_conjugate(self):
     return Wavefunction(conjugate(self.expr), *self.args[1:])
Пример #57
0
def test_sign():
    assert sign(1.2) == 1
    assert sign(-1.2) == -1
    assert sign(3 * I) == I
    assert sign(-3 * I) == -I
    assert sign(0) == 0
    assert sign(nan) == nan

    x = Symbol('x')
    assert sign(x).is_bounded is True
    assert sign(x).is_complex is True
    assert sign(x).is_imaginary is None
    assert sign(x).is_integer is None
    assert sign(x).is_real is None
    assert sign(x).is_zero is None
    assert sign(x).doit() == sign(x)
    assert sign(1.2 * x) == sign(x)
    assert sign(2 * x) == sign(x)
    assert sign(I * x) == I * sign(x)
    assert sign(-2 * I * x) == -I * sign(x)
    assert sign(conjugate(x)) == conjugate(sign(x))

    p = Symbol('p', positive=True)
    n = Symbol('n', negative=True)
    m = Symbol('m', negative=True)
    assert sign(2 * p * x) == sign(x)
    assert sign(n * x) == -sign(x)
    assert sign(n * m * x) == sign(x)

    x = Symbol('x', imaginary=True)
    assert sign(x).is_imaginary is True
    assert sign(x).is_integer is False
    assert sign(x).is_real is False
    assert sign(x).is_zero is False
    assert sign(x).diff(x) == 2 * DiracDelta(-I * x)
    assert sign(x).doit() == x / Abs(x)
    assert conjugate(sign(x)) == -sign(x)

    x = Symbol('x', real=True)
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is None
    assert sign(x).diff(x) == 2 * DiracDelta(x)
    assert sign(x).doit() == sign(x)
    assert conjugate(sign(x)) == sign(x)

    x = Symbol('x', nonzero=True)
    assert sign(x).is_imaginary is None
    assert sign(x).is_integer is None
    assert sign(x).is_real is None
    assert sign(x).is_zero is False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = Symbol('x', positive=True)
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = 0
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is True
    assert sign(x).doit() == 0
    assert sign(Abs(x)) == 0
    assert Abs(sign(x)) == 0

    nz = Symbol('nz', nonzero=True, integer=True)
    assert sign(nz).is_imaginary is False
    assert sign(nz).is_integer is True
    assert sign(nz).is_real is True
    assert sign(nz).is_zero is False
    assert sign(nz)**2 == 1
    assert (sign(nz)**3).args == (sign(nz), 3)
Пример #58
0
def test_pretty_functions():
    """Tests for Abs, conjugate, exp, function braces, and factorial."""
    expr = (2 * x + exp(x))
    ascii_str_1 = \
"""\
       x\n\
2*x + e \
"""
    ascii_str_2 = \
"""\
 x      \n\
e  + 2*x\
"""
    ucode_str_1 = \
u"""\
       x\n\
2⋅x + ℯ \
"""
    ucode_str_2 = \
u"""\
 x     \n\
ℯ + 2⋅x\
"""
    assert pretty(expr) in [ascii_str_1, ascii_str_2]
    assert upretty(expr) in [ucode_str_1, ucode_str_2]

    expr = Abs(x)
    ascii_str = \
"""\
|x|\
"""
    ucode_str = \
u"""\
│x│\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = Abs(x / (x**2 + 1))
    ascii_str_1 = \
"""\
|  x   |\n\
|------|\n\
|     2|\n\
|1 + x |\
"""
    ascii_str_2 = \
"""\
|  x   |\n\
|------|\n\
| 2    |\n\
|x  + 1|\
"""
    ucode_str_1 = \
u"""\
│  x   │\n\
│──────│\n\
│     2│\n\
│1 + x │\
"""
    ucode_str_2 = \
u"""\
│  x   │\n\
│──────│\n\
│ 2    │\n\
│x  + 1│\
"""
    assert pretty(expr) in [ascii_str_1, ascii_str_2]
    assert upretty(expr) in [ucode_str_1, ucode_str_2]

    expr = Abs(1 / (y - Abs(x)))
    ascii_str = \
"""\
|   1   |\n\
|-------|\n\
|y - |x||\
"""
    ucode_str = \
u"""\
│   1   │\n\
│───────│\n\
│y - │x││\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    n = Symbol('n', integer=True)
    expr = factorial(n)
    ascii_str = \
"""\
n!\
"""
    ucode_str = \
u"""\
n!\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = factorial(2 * n)
    ascii_str = \
"""\
(2*n)!\
"""
    ucode_str = \
u"""\
(2⋅n)!\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = factorial(factorial(factorial(n)))
    ascii_str = \
"""\
((n!)!)!\
"""
    ucode_str = \
u"""\
((n!)!)!\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = factorial(n + 1)
    ascii_str_1 = \
"""\
(1 + n)!\
"""
    ascii_str_2 = \
"""\
(n + 1)!\
"""
    ucode_str_1 = \
u"""\
(1 + n)!\
"""
    ucode_str_2 = \
u"""\
(n + 1)!\
"""
    assert pretty(expr) in [ascii_str_1, ascii_str_2]
    assert upretty(expr) in [ucode_str_1, ucode_str_2]

    expr = 2 * binomial(n, k)
    ascii_str = \
"""\
  /n\\\n\
2*| |\n\
  \k/\
"""
    ucode_str = \
u"""\
  ⎛n⎞\n\
2⋅⎜ ⎟\n\
  ⎝k⎠\
"""

    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = 2 * binomial(2 * n, k)
    ascii_str = \
"""\
  /2*n\\\n\
2*|   |\n\
  \ k /\
"""
    ucode_str = \
u"""\
  ⎛2⋅n⎞\n\
2⋅⎜   ⎟\n\
  ⎝ k ⎠\
"""

    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = 2 * binomial(n**2, k)
    ascii_str = \
"""\
  / 2\\\n\
  |n |\n\
2*|  |\n\
  \k /\
"""
    ucode_str = \
u"""\
  ⎛ 2⎞\n\
  ⎜n ⎟\n\
2⋅⎜  ⎟\n\
  ⎝k ⎠\
"""

    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = conjugate(x)
    ascii_str = \
"""\
_\n\
x\
"""
    ucode_str = \
u"""\
⎽\n\
x\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    f = Function('f')
    expr = conjugate(f(x + 1))
    ascii_str_1 = \
"""\
________\n\
f(1 + x)\
"""
    ascii_str_2 = \
"""\
________\n\
f(x + 1)\
"""
    ucode_str_1 = \
u"""\
⎽⎽⎽⎽⎽⎽⎽⎽\n\
f(1 + x)\
"""
    ucode_str_2 = \
u"""\
⎽⎽⎽⎽⎽⎽⎽⎽\n\
f(x + 1)\
"""
    assert pretty(expr) in [ascii_str_1, ascii_str_2]
    assert upretty(expr) in [ucode_str_1, ucode_str_2]

    expr = f(x)
    ascii_str = \
"""\
f(x)\
"""
    ucode_str = \
u"""\
f(x)\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = f(x, y)
    ascii_str = \
"""\
f(x, y)\
"""
    ucode_str = \
u"""\
f(x, y)\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = f(x / (y + 1), y)
    ascii_str_1 = \
"""\
 /  x     \\\n\
f|-----, y|\n\
 \\1 + y   /\
"""
    ascii_str_2 = \
"""\
 /  x     \\\n\
f|-----, y|\n\
 \\y + 1   /\
"""
    ucode_str_1 = \
u"""\
 ⎛  x     ⎞\n\
f⎜─────, y⎟\n\
 ⎝1 + y   ⎠\
"""
    ucode_str_2 = \
u"""\
 ⎛  x     ⎞\n\
f⎜─────, y⎟\n\
 ⎝y + 1   ⎠\
"""
    assert pretty(expr) in [ascii_str_1, ascii_str_2]
    assert upretty(expr) in [ucode_str_1, ucode_str_2]

    expr = sin(x)**2
    ascii_str = \
"""\
   2   \n\
sin (x)\
"""
    ucode_str = \
u"""\
   2   \n\
sin (x)\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = conjugate(a + b * I)
    ascii_str = \
"""\
_     _\n\
a - I*b\
"""
    ucode_str = \
u"""\
⎽     ⎽\n\
a - ⅈ⋅b\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = conjugate(exp(a + b * I))
    ascii_str = \
"""\
 _     _\n\
 a - I*b\n\
e       \
"""
    ucode_str = \
u"""\
 ⎽     ⎽\n\
 a - ⅈ⋅b\n\
ℯ       \
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = conjugate(f(1 + conjugate(f(x))))
    ascii_str_1 = \
"""\
___________\n\
 /    ____\\\n\
f\\1 + f(x)/\
"""
    ascii_str_2 = \
"""\
___________\n\
 /____    \\\n\
f\\f(x) + 1/\
"""
    ucode_str_1 = \
u"""\
⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽\n\
 ⎛    ⎽⎽⎽⎽⎞\n\
f⎝1 + f(x)⎠\
"""
    ucode_str_2 = \
u"""\
⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽\n\
 ⎛⎽⎽⎽⎽    ⎞\n\
f⎝f(x) + 1⎠\
"""
    assert pretty(expr) in [ascii_str_1, ascii_str_2]
    assert upretty(expr) in [ucode_str_1, ucode_str_2]

    expr = f(x / (y + 1), y)
    ascii_str_1 = \
"""\
 /  x     \\\n\
f|-----, y|\n\
 \\1 + y   /\
"""
    ascii_str_2 = \
"""\
 /  x     \\\n\
f|-----, y|\n\
 \\y + 1   /\
"""
    ucode_str_1 = \
u"""\
 ⎛  x     ⎞\n\
f⎜─────, y⎟\n\
 ⎝1 + y   ⎠\
"""
    ucode_str_2 = \
u"""\
 ⎛  x     ⎞\n\
f⎜─────, y⎟\n\
 ⎝y + 1   ⎠\
"""
    assert pretty(expr) in [ascii_str_1, ascii_str_2]
    assert upretty(expr) in [ucode_str_1, ucode_str_2]

    expr = floor(1 / (y - floor(x)))
    ascii_str = \
"""\
     /     1      \\\n\
floor|------------|\n\
     \y - floor(x)/\
"""
    ucode_str = \
u"""\
⎢   1   ⎥\n\
⎢───────⎥\n\
⎣y - ⌊x⌋⎦\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str

    expr = ceiling(1 / (y - ceiling(x)))
    ascii_str = \
"""\
       /      1       \\\n\
ceiling|--------------|\n\
       \y - ceiling(x)/\
"""
    ucode_str = \
u"""\
⎡   1   ⎤\n\
⎢───────⎥\n\
⎢y - ⌈x⌉⎥\
"""
    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str
Пример #59
0
def test_conjugate():
    a = Symbol('a', real=True)
    b = Symbol('b', imaginary=True)
    assert conjugate(a) == a
    assert conjugate(I*a) == -I*a
    assert conjugate(b) == -b
    assert conjugate(I*b) == I*b
    assert conjugate(a*b) == -a*b
    assert conjugate(I*a*b) == I*a*b

    x, y = symbols('x y')
    assert conjugate(conjugate(x)) == x
    assert conjugate(x + y) == conjugate(x) + conjugate(y)
    assert conjugate(x - y) == conjugate(x) - conjugate(y)
    assert conjugate(x * y) == conjugate(x) * conjugate(y)
    assert conjugate(x / y) == conjugate(x) / conjugate(y)
    assert conjugate(-x) == -conjugate(x)

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False
Пример #60
0
def test_Abs():
    raises(TypeError, lambda: Abs(Interval(2, 3)))  # issue 8717

    x, y = symbols('x,y')
    assert sign(sign(x)) == sign(x)
    assert sign(x*y).func is sign
    assert Abs(0) == 0
    assert Abs(1) == 1
    assert Abs(-1) == 1
    assert Abs(I) == 1
    assert Abs(-I) == 1
    assert Abs(nan) == nan
    assert Abs(zoo) == oo
    assert Abs(I * pi) == pi
    assert Abs(-I * pi) == pi
    assert Abs(I * x) == Abs(x)
    assert Abs(-I * x) == Abs(x)
    assert Abs(-2*x) == 2*Abs(x)
    assert Abs(-2.0*x) == 2.0*Abs(x)
    assert Abs(2*pi*x*y) == 2*pi*Abs(x*y)
    assert Abs(conjugate(x)) == Abs(x)
    assert conjugate(Abs(x)) == Abs(x)
    assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2)

    a = Symbol('a', positive=True)
    assert Abs(2*pi*x*a) == 2*pi*a*Abs(x)
    assert Abs(2*pi*I*x*a) == 2*pi*a*Abs(x)

    x = Symbol('x', real=True)
    n = Symbol('n', integer=True)
    assert Abs((-1)**n) == 1
    assert x**(2*n) == Abs(x)**(2*n)
    assert Abs(x).diff(x) == sign(x)
    assert abs(x) == Abs(x)  # Python built-in
    assert Abs(x)**3 == x**2*Abs(x)
    assert Abs(x)**4 == x**4
    assert (
        Abs(x)**(3*n)).args == (Abs(x), 3*n)  # leave symbolic odd unchanged
    assert (1/Abs(x)).args == (Abs(x), -1)
    assert 1/Abs(x)**3 == 1/(x**2*Abs(x))
    assert Abs(x)**-3 == Abs(x)/(x**4)
    assert Abs(x**3) == x**2*Abs(x)
    assert Abs(I**I) == exp(-pi/2)
    assert Abs((4 + 5*I)**(6 + 7*I)) == 68921*exp(-7*atan(S(5)/4))
    y = Symbol('y', real=True)
    assert Abs(I**y) == 1
    y = Symbol('y')
    assert Abs(I**y) == exp(-pi*im(y)/2)

    x = Symbol('x', imaginary=True)
    assert Abs(x).diff(x) == -sign(x)

    eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
    # if there is a fast way to know when you can and when you cannot prove an
    # expression like this is zero then the equality to zero is ok
    assert abs(eq).func is Abs or abs(eq) == 0
    # but sometimes it's hard to do this so it's better not to load
    # abs down with tests that will be very slow
    q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
    p = expand(q**3)**Rational(1, 3)
    d = p - q
    assert abs(d).func is Abs or abs(d) == 0

    assert Abs(4*exp(pi*I/4)) == 4
    assert Abs(3**(2 + I)) == 9
    assert Abs((-3)**(1 - I)) == 3*exp(pi)

    assert Abs(oo) is oo
    assert Abs(-oo) is oo
    assert Abs(oo + I) is oo
    assert Abs(oo + I*oo) is oo

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False