def test_erf(): assert erf(nan) == nan assert erf(oo) == 1 assert erf(-oo) == -1 assert erf(0) == 0 assert erf(I * oo) == oo * I assert erf(-I * oo) == -oo * I assert erf(-2) == -erf(2) assert erf(-x * y) == -erf(x * y) assert erf(-x - y) == -erf(x + y) assert erf(erfinv(x)) == x assert erf(erfcinv(x)) == 1 - x assert erf(erf2inv(0, x)) == x assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x assert erf(I).is_real is False assert erf(0).is_real is True assert conjugate(erf(z)) == erf(conjugate(z)) assert erf(x).as_leading_term(x) == 2 * x / sqrt(pi) assert erf(1 / x).as_leading_term(x) == erf(1 / x) assert erf(z).rewrite('uppergamma') == sqrt(z** 2) * (1 - erfc(sqrt(z**2))) / z assert erf(z).rewrite('erfc') == S.One - erfc(z) assert erf(z).rewrite('erfi') == -I * erfi(I * z) assert erf(z).rewrite('fresnels') == (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erf(z).rewrite('fresnelc') == (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erf(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half], -z**2) / sqrt(pi) assert erf(z).rewrite('meijerg') == z * meijerg([S.Half], [], [0], [-S.Half], z**2) / sqrt(pi) assert erf(z).rewrite( 'expint') == sqrt(z**2) / z - z * expint(S.Half, z**2) / sqrt(S.Pi) assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \ 2/sqrt(pi) assert limit((1 - erf(z)) * exp(z**2) * z, z, oo) == 1 / sqrt(pi) assert limit((1 - erf(x)) * exp(x**2) * sqrt(pi) * x, x, oo) == 1 assert limit(((1 - erf(x)) * exp(x**2) * sqrt(pi) * x - 1) * 2 * x**2, x, oo) == -1 assert erf(x).as_real_imag() == \ ((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) raises(ArgumentIndexError, lambda: erf(x).fdiff(2))
def test_errorinverses(): assert solveset_real(erf(x) - S.One/2, x) == \ FiniteSet(erfinv(S.One/2)) assert solveset_real(erfinv(x) - 2, x) == \ FiniteSet(erf(2)) assert solveset_real(erfc(x) - S.One, x) == \ FiniteSet(erfcinv(S.One)) assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))
def test_erf(): assert erf(nan) == nan assert erf(oo) == 1 assert erf(-oo) == -1 assert erf(0) == 0 assert erf(I*oo) == oo*I assert erf(-I*oo) == -oo*I assert erf(-2) == -erf(2) assert erf(-x*y) == -erf(x*y) assert erf(-x - y) == -erf(x + y) assert erf(erfinv(x)) == x assert erf(erfcinv(x)) == 1 - x assert erf(erf2inv(0, x)) == x assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x assert erf(I).is_real is False assert erf(0).is_real is True assert conjugate(erf(z)) == erf(conjugate(z)) assert erf(x).as_leading_term(x) == 2*x/sqrt(pi) assert erf(1/x).as_leading_term(x) == erf(1/x) assert erf(z).rewrite('uppergamma') == sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z assert erf(z).rewrite('erfc') == S.One - erfc(z) assert erf(z).rewrite('erfi') == -I*erfi(I*z) assert erf(z).rewrite('fresnels') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erf(z).rewrite('fresnelc') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erf(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi) assert erf(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [-S.Half], z**2)/sqrt(pi) assert erf(z).rewrite('expint') == sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi) assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \ 2/sqrt(pi) assert limit((1 - erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi) assert limit((1 - erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1 assert limit(((1 - erf(x))*exp(x**2)*sqrt(pi)*x - 1)*2*x**2, x, oo) == -1 assert erf(x).as_real_imag() == \ ((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) raises(ArgumentIndexError, lambda: erf(x).fdiff(2))
def test_erfi(): assert erfi(nan) is nan assert erfi(oo) is S.Infinity assert erfi(-oo) is S.NegativeInfinity assert erfi(0) is S.Zero assert erfi(I * oo) == I assert erfi(-I * oo) == -I assert erfi(-x) == -erfi(x) assert erfi(I * erfinv(x)) == I * x assert erfi(I * erfcinv(x)) == I * (1 - x) assert erfi(I * erf2inv(0, x)) == I * x assert erfi( I * erf2inv(0, x, evaluate=False)) == I * x # To cover code in erfi assert erfi(I).is_real is False assert erfi(0).is_real is True assert conjugate(erfi(z)) == erfi(conjugate(z)) assert erfi(x).as_leading_term(x) == 2 * x / sqrt(pi) assert erfi(x * y).as_leading_term(y) == 2 * x * y / sqrt(pi) assert (erfi(x * y) / erfi(y)).as_leading_term(y) == x assert erfi(1 / x).as_leading_term(x) == erfi(1 / x) assert erfi(z).rewrite('erf') == -I * erf(I * z) assert erfi(z).rewrite('erfc') == I * erfc(I * z) - I assert erfi(z).rewrite('fresnels') == (1 - I) * ( fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z * (1 + I) / sqrt(pi))) assert erfi(z).rewrite('fresnelc') == (1 - I) * ( fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z * (1 + I) / sqrt(pi))) assert erfi(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half], z **2) / sqrt(pi) assert erfi(z).rewrite('meijerg') == z * meijerg( [S.Half], [], [0], [Rational(-1, 2)], -z**2) / sqrt(pi) assert erfi(z).rewrite('uppergamma') == ( sqrt(-z**2) / z * (uppergamma(S.Half, -z**2) / sqrt(S.Pi) - S.One)) assert erfi(z).rewrite( 'expint') == sqrt(-z**2) / z - z * expint(S.Half, -z**2) / sqrt(S.Pi) assert erfi(z).rewrite('tractable') == -I * (-_erfs(I * z) * exp(z**2) + 1) assert expand_func(erfi(I * z)) == I * erf(z) assert erfi(x).as_real_imag() == \ (erfi(re(x) - I*im(x))/2 + erfi(re(x) + I*im(x))/2, -I*(-erfi(re(x) - I*im(x)) + erfi(re(x) + I*im(x)))/2) assert erfi(x).as_real_imag(deep=False) == \ (erfi(re(x) - I*im(x))/2 + erfi(re(x) + I*im(x))/2, -I*(-erfi(re(x) - I*im(x)) + erfi(re(x) + I*im(x)))/2) assert erfi(w).as_real_imag() == (erfi(w), 0) assert erfi(w).as_real_imag(deep=False) == (erfi(w), 0) raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
def test_erfc(): assert erfc(nan) is nan assert erfc(oo) == 0 assert erfc(-oo) == 2 assert erfc(0) == 1 assert erfc(I * oo) == -oo * I assert erfc(-I * oo) == oo * I assert erfc(-x) == S(2) - erfc(x) assert erfc(erfcinv(x)) == x assert erfc(I).is_real is False assert erfc(0).is_real is True assert erfc(erfinv(x)) == 1 - x assert conjugate(erfc(z)) == erfc(conjugate(z)) assert erfc(x).as_leading_term(x) is S.One assert erfc(1 / x).as_leading_term(x) == erfc(1 / x) assert erfc(z).rewrite("erf") == 1 - erf(z) assert erfc(z).rewrite("erfi") == 1 + I * erfi(I * z) assert erfc(z).rewrite("fresnels") == 1 - (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erfc(z).rewrite("fresnelc") == 1 - (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erfc(z).rewrite("hyper") == 1 - 2 * z * hyper( [S.Half], [3 * S.Half], -(z**2)) / sqrt(pi) assert erfc(z).rewrite("meijerg") == 1 - z * meijerg( [S.Half], [], [0], [Rational(-1, 2)], z**2) / sqrt(pi) assert (erfc(z).rewrite("uppergamma") == 1 - sqrt(z**2) * (1 - erfc(sqrt(z**2))) / z) assert erfc(z).rewrite("expint") == S.One - sqrt(z**2) / z + z * expint( S.Half, z**2) / sqrt(S.Pi) assert erfc(z).rewrite("tractable") == _erfs(z) * exp(-(z**2)) assert expand_func(erf(x) + erfc(x)) is S.One assert erfc(x).as_real_imag() == ( erfc(re(x) - I * im(x)) / 2 + erfc(re(x) + I * im(x)) / 2, -I * (-erfc(re(x) - I * im(x)) + erfc(re(x) + I * im(x))) / 2, ) assert erfc(x).as_real_imag(deep=False) == ( erfc(re(x) - I * im(x)) / 2 + erfc(re(x) + I * im(x)) / 2, -I * (-erfc(re(x) - I * im(x)) + erfc(re(x) + I * im(x))) / 2, ) assert erfc(w).as_real_imag() == (erfc(w), 0) assert erfc(w).as_real_imag(deep=False) == (erfc(w), 0) raises(ArgumentIndexError, lambda: erfc(x).fdiff(2)) assert erfc(x).inverse() == erfcinv
def test_erfcinv(): assert erfcinv(1) == 0 assert erfcinv(0) == S.Infinity assert erfcinv(nan) == S.NaN assert erfcinv(x).diff() == -sqrt(pi) * exp(erfcinv(x)**2) / 2 raises(ArgumentIndexError, lambda: erfcinv(x).fdiff(2)) assert erfcinv(z).rewrite('erfinv') == erfinv(1 - z) assert erfcinv(z).inverse() == erfc
def test_erf2inv(): assert erf2inv(0, 0) == S.Zero assert erf2inv(0, 1) == S.Infinity assert erf2inv(1, 0) == S.One assert erf2inv(0, y) == erfinv(y) assert erf2inv(oo,y) == erfcinv(-y) assert erf2inv(x, y).diff(x) == exp(-x**2 + erf2inv(x, y)**2) assert erf2inv(x, y).diff(y) == sqrt(pi)*exp(erf2inv(x, y)**2)/2
def test_erfc(): assert erfc(nan) == nan assert erfc(oo) == 0 assert erfc(-oo) == 2 assert erfc(0) == 1 assert erfc(I * oo) == -oo * I assert erfc(-I * oo) == oo * I assert erfc(-x) == S(2) - erfc(x) assert erfc(erfcinv(x)) == x assert erfc(I).is_real is False assert erfc(0).is_real is True assert erfc(erfinv(x)) == 1 - x assert conjugate(erfc(z)) == erfc(conjugate(z)) assert erfc(x).as_leading_term(x) == S.One assert erfc(1 / x).as_leading_term(x) == erfc(1 / x) assert erfc(z).rewrite('erf') == 1 - erf(z) assert erfc(z).rewrite('erfi') == 1 + I * erfi(I * z) assert erfc(z).rewrite('fresnels') == 1 - (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erfc(z).rewrite('fresnelc') == 1 - (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erfc(z).rewrite( 'hyper') == 1 - 2 * z * hyper([S.Half], [3 * S.Half], -z**2) / sqrt(pi) assert erfc(z).rewrite('meijerg') == 1 - z * meijerg( [S.Half], [], [0], [-S.Half], z**2) / sqrt(pi) assert erfc(z).rewrite( 'uppergamma') == 1 - sqrt(z**2) * (1 - erfc(sqrt(z**2))) / z assert erfc(z).rewrite('expint') == S.One - sqrt(z**2) / z + z * expint( S.Half, z**2) / sqrt(S.Pi) assert erfc(z).rewrite('tractable') == _erfs(z) * exp(-z**2) assert expand_func(erf(x) + erfc(x)) == S.One assert erfc(x).as_real_imag() == \ (erfc(re(x) - I*im(x))/2 + erfc(re(x) + I*im(x))/2, -I*(-erfc(re(x) - I*im(x)) + erfc(re(x) + I*im(x)))/2) assert erfc(x).as_real_imag(deep=False) == \ (erfc(re(x) - I*im(x))/2 + erfc(re(x) + I*im(x))/2, -I*(-erfc(re(x) - I*im(x)) + erfc(re(x) + I*im(x)))/2) assert erfc(w).as_real_imag() == (erfc(w), 0) assert erfc(w).as_real_imag(deep=False) == (erfc(w), 0) raises(ArgumentIndexError, lambda: erfc(x).fdiff(2)) assert erfc(x).inverse() == erfcinv
def test_erfinv(): assert erfinv(0) == 0 assert erfinv(1) == S.Infinity assert erfinv(nan) == S.NaN assert erfinv(erf(w)) == w assert erfinv(erf(-w)) == -w assert erfinv(x).diff() == sqrt(pi)*exp(erfinv(x)**2)/2 assert erfinv(z).rewrite('erfcinv') == erfcinv(1-z)
def test_erfinv(): assert erfinv(0) == 0 assert erfinv(1) is S.Infinity assert erfinv(nan) is S.NaN assert erfinv(-1) is S.NegativeInfinity assert erfinv(erf(w)) == w assert erfinv(erf(-w)) == -w assert erfinv(x).diff() == sqrt(pi) * exp(erfinv(x)**2) / 2 raises(ArgumentIndexError, lambda: erfinv(x).fdiff(2)) assert erfinv(z).rewrite("erfcinv") == erfcinv(1 - z) assert erfinv(z).inverse() == erf
def test_erf2inv(): assert erf2inv(0, 0) == S.Zero assert erf2inv(0, 1) == S.Infinity assert erf2inv(1, 0) == S.One assert erf2inv(0, y) == erfinv(y) assert erf2inv(oo, y) == erfcinv(-y) assert erf2inv(x, 0) == x assert erf2inv(x, oo) == erfinv(x) assert erf2inv(nan, 0) == nan assert erf2inv(0, nan) == nan assert erf2inv(x, y).diff(x) == exp(-x**2 + erf2inv(x, y)**2) assert erf2inv(x, y).diff(y) == sqrt(pi) * exp(erf2inv(x, y)**2) / 2 raises(ArgumentIndexError, lambda: erf2inv(x, y).fdiff(3))
def test_erfi(): assert erfi(nan) == nan assert erfi(oo) == S.Infinity assert erfi(-oo) == S.NegativeInfinity assert erfi(0) == S.Zero assert erfi(I * oo) == I assert erfi(-I * oo) == -I assert erfi(-x) == -erfi(x) assert erfi(I * erfinv(x)) == I * x assert erfi(I * erfcinv(x)) == I * (1 - x) assert erfi(I * erf2inv(0, x)) == I * x assert erfi(I).is_real is False assert erfi(0).is_real is True assert conjugate(erfi(z)) == erfi(conjugate(z)) assert erfi(z).rewrite('erf') == -I * erf(I * z) assert erfi(z).rewrite('erfc') == I * erfc(I * z) - I assert erfi(z).rewrite('fresnels') == (1 - I) * ( fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z * (1 + I) / sqrt(pi))) assert erfi(z).rewrite('fresnelc') == (1 - I) * ( fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z * (1 + I) / sqrt(pi))) assert erfi(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half], z **2) / sqrt(pi) assert erfi(z).rewrite('meijerg') == z * meijerg( [S.Half], [], [0], [-S.Half], -z**2) / sqrt(pi) assert erfi(z).rewrite('uppergamma') == ( sqrt(-z**2) / z * (uppergamma(S.Half, -z**2) / sqrt(S.Pi) - S.One)) assert erfi(z).rewrite( 'expint') == sqrt(-z**2) / z - z * expint(S.Half, -z**2) / sqrt(S.Pi) assert expand_func(erfi(I * z)) == I * erf(z) assert erfi(x).as_real_imag() == \ ((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
def test_erfi(): assert erfi(nan) == nan assert erfi(oo) == S.Infinity assert erfi(-oo) == S.NegativeInfinity assert erfi(0) == S.Zero assert erfi(I*oo) == I assert erfi(-I*oo) == -I assert erfi(-x) == -erfi(x) assert erfi(I*erfinv(x)) == I*x assert erfi(I*erfcinv(x)) == I*(1 - x) assert erfi(I*erf2inv(0, x)) == I*x assert erfi(I).is_real is False assert erfi(0).is_real is True assert conjugate(erfi(z)) == erfi(conjugate(z)) assert erfi(z).rewrite('erf') == -I*erf(I*z) assert erfi(z).rewrite('erfc') == I*erfc(I*z) - I assert erfi(z).rewrite('fresnels') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) - I*fresnels(z*(1 + I)/sqrt(pi))) assert erfi(z).rewrite('fresnelc') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) - I*fresnels(z*(1 + I)/sqrt(pi))) assert erfi(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], z**2)/sqrt(pi) assert erfi(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [-S.Half], -z**2)/sqrt(pi) assert erfi(z).rewrite('uppergamma') == (sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(S.Pi) - S.One)) assert erfi(z).rewrite('expint') == sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi) assert expand_func(erfi(I*z)) == I*erf(z) assert erfi(x).as_real_imag() == \ ((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
def test_erfc(): assert erfc(nan) == nan assert erfc(oo) == 0 assert erfc(-oo) == 2 assert erfc(0) == 1 assert erfc(I*oo) == -oo*I assert erfc(-I*oo) == oo*I assert erfc(-x) == S(2) - erfc(x) assert erfc(erfcinv(x)) == x assert erfc(I).is_real is False assert erfc(0).is_real is True assert conjugate(erfc(z)) == erfc(conjugate(z)) assert erfc(x).as_leading_term(x) == S.One assert erfc(1/x).as_leading_term(x) == erfc(1/x) assert erfc(z).rewrite('erf') == 1 - erf(z) assert erfc(z).rewrite('erfi') == 1 + I*erfi(I*z) assert erfc(z).rewrite('fresnels') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erfc(z).rewrite('fresnelc') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erfc(z).rewrite('hyper') == 1 - 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi) assert erfc(z).rewrite('meijerg') == 1 - z*meijerg([S.Half], [], [0], [-S.Half], z**2)/sqrt(pi) assert erfc(z).rewrite('uppergamma') == 1 - sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z assert erfc(z).rewrite('expint') == S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi) assert expand_func(erf(x) + erfc(x)) == S.One assert erfc(x).as_real_imag() == \ ((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))
def _construct_symbolic_bu(q, sigma, m): return (m - 1) / 2 * sp.erfc(sp.erfcinv(2 * q / (m - 1)) - 1 / sigma)
def test_erf(): assert erf(nan) is nan assert erf(oo) == 1 assert erf(-oo) == -1 assert erf(0) == 0 assert erf(I * oo) == oo * I assert erf(-I * oo) == -oo * I assert erf(-2) == -erf(2) assert erf(-x * y) == -erf(x * y) assert erf(-x - y) == -erf(x + y) assert erf(erfinv(x)) == x assert erf(erfcinv(x)) == 1 - x assert erf(erf2inv(0, x)) == x assert erf(erf2inv(0, x, evaluate=False)) == x # To cover code in erf assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x assert erf(I).is_real is False assert erf(0).is_real is True assert conjugate(erf(z)) == erf(conjugate(z)) assert erf(x).as_leading_term(x) == 2 * x / sqrt(pi) assert erf(1 / x).as_leading_term(x) == erf(1 / x) assert erf(z).rewrite('uppergamma') == sqrt(z** 2) * (1 - erfc(sqrt(z**2))) / z assert erf(z).rewrite('erfc') == S.One - erfc(z) assert erf(z).rewrite('erfi') == -I * erfi(I * z) assert erf(z).rewrite('fresnels') == (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erf(z).rewrite('fresnelc') == (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erf(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half], -z**2) / sqrt(pi) assert erf(z).rewrite('meijerg') == z * meijerg( [S.Half], [], [0], [Rational(-1, 2)], z**2) / sqrt(pi) assert erf(z).rewrite( 'expint') == sqrt(z**2) / z - z * expint(S.Half, z**2) / sqrt(S.Pi) assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \ 2/sqrt(pi) assert limit((1 - erf(z)) * exp(z**2) * z, z, oo) == 1 / sqrt(pi) assert limit((1 - erf(x)) * exp(x**2) * sqrt(pi) * x, x, oo) == 1 assert limit(((1 - erf(x)) * exp(x**2) * sqrt(pi) * x - 1) * 2 * x**2, x, oo) == -1 assert erf(x).as_real_imag() == \ (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2, -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2) assert erf(x).as_real_imag(deep=False) == \ (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2, -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2) assert erf(w).as_real_imag() == (erf(w), 0) assert erf(w).as_real_imag(deep=False) == (erf(w), 0) # issue 13575 assert erf(I).as_real_imag() == (0, -I * erf(I)) raises(ArgumentIndexError, lambda: erf(x).fdiff(2)) assert erf(x).inverse() == erfinv