Пример #1
0
def test_sympy_interaction():
    pytest.importorskip("sympy")

    import sympy as sp

    x, y = sp.symbols("x y")
    f = sp.symbols("f")

    s1_expr = 1/f(x/sp.sqrt(x**2+y**2)).diff(x, 5)

    from pymbolic.sympy_interface import (
            SympyToPymbolicMapper,
            PymbolicToSympyMapper)
    s2p = SympyToPymbolicMapper()
    p2s = PymbolicToSympyMapper()

    p1_expr = s2p(s1_expr)
    s2_expr = p2s(p1_expr)

    assert sp.ratsimp(s1_expr - s2_expr) == 0

    p2_expr = s2p(s2_expr)
    s3_expr = p2s(p2_expr)

    assert sp.ratsimp(s1_expr - s3_expr) == 0
Пример #2
0
def test_sympy_interaction():
    pytest.importorskip("sympy")

    import sympy as sp

    x, y = sp.symbols("x y")
    f = sp.Function("f")

    s1_expr = 1/f(x/sp.sqrt(x**2+y**2)).diff(x, 5)  # pylint:disable=not-callable

    from pymbolic.interop.sympy import (
            SympyToPymbolicMapper,
            PymbolicToSympyMapper)
    s2p = SympyToPymbolicMapper()
    p2s = PymbolicToSympyMapper()

    p1_expr = s2p(s1_expr)
    s2_expr = p2s(p1_expr)

    assert sp.ratsimp(s1_expr - s2_expr) == 0

    p2_expr = s2p(s2_expr)
    s3_expr = p2s(p2_expr)

    assert sp.ratsimp(s1_expr - s3_expr) == 0
Пример #3
0
def test_ratsimp():
    x = Symbol("x")
    y = Symbol("y")
    e = 1/x+1/y
    assert e != (x+y)/(x*y)
    assert ratsimp(e) == (x+y)/(x*y)

    e = 1/(1+1/x)
    assert ratsimp(e) == x/(x+1)
    assert ratsimp(exp(e)) == exp(x/(x+1))
Пример #4
0
def test_ratsimp():
    x = Symbol("x")
    y = Symbol("y")
    e = 1/x+1/y
    assert e != (x+y)/(x*y)
    assert ratsimp(e) == (x+y)/(x*y)

    e = 1/(1+1/x)
    assert ratsimp(e) == x/(x+1)
    assert ratsimp(exp(e)) == exp(x/(x+1))
Пример #5
0
 def print_Div(self, rule):
     with self.new_step():
         f, g = rule.numerator, rule.denominator
         fp, gp = f.diff(rule.symbol), g.diff(rule.symbol)
         x = rule.symbol
         ff = sympy.Function("f")(x)
         gg = sympy.Function("g")(x)
         qrule_left = sympy.Derivative(ff / gg, rule.symbol)
         qrule_right = sympy.ratsimp(
             sympy.diff(sympy.Function("f")(x) / sympy.Function("g")(x)))
         qrule = sympy.Eq(qrule_left, qrule_right)
         self.append("Aplicando la regla del cociente que es:")
         self.append(self.format_math_display(qrule))
         self.append("{} y {}.".format(self.format_math(sympy.Eq(ff, f)),
                                       self.format_math(sympy.Eq(gg, g))))
         self.append("Para hallar {}:".format(
             self.format_math(ff.diff(rule.symbol))))
         with self.new_level():
             self.print_rule(rule.numerstep)
         self.append("Para hallar {}:".format(
             self.format_math(gg.diff(rule.symbol))))
         with self.new_level():
             self.print_rule(rule.denomstep)
         self.append("Sutituyendo en la regla del cociente:")
         self.append(self.format_math(diff(rule)))
Пример #6
0
 def print_Div(self, rule):
     with self.new_step():
         f, g = rule.numerator, rule.denominator
         x = rule.symbol
         ff = sympy.Function("f")(x)
         gg = sympy.Function("g")(x)
         qrule_left = sympy.Derivative(ff / gg, rule.symbol)
         qrule_right = sympy.ratsimp(
             sympy.diff(sympy.Function("f")(x) / sympy.Function("g")(x)))
         qrule = sympy.Eq(qrule_left, qrule_right)
         self.append("Apply the quotient rule, which is:")
         self.append(self.format_math_display(qrule))
         self.append("{} and {}.".format(self.format_math(sympy.Eq(ff, f)),
                                         self.format_math(sympy.Eq(gg, g))))
         self.append("Find {}:".format(
             self.format_math(ff.diff(rule.symbol))))
         with self.new_level():
             self.print_rule(rule.numerstep)
         self.append("Find {}:".format(
             self.format_math(gg.diff(rule.symbol))))
         with self.new_level():
             self.print_rule(rule.denomstep)
         self.append(
             '<div class="collapsible"><h2>open answer</h2><ol class="content">Now plug in to the quotient rule to get:'
         )
         self.append(self.format_math(diff(rule)) + '</ol></div>')
Пример #7
0
def _solsimp(e, t):
    no_t, has_t = powsimp(expand_mul(e)).as_independent(t)

    no_t = ratsimp(no_t)
    has_t = has_t.replace(exp, lambda a: exp(factor_terms(a)))

    return no_t + has_t
Пример #8
0
 def print_Div(self, rule):
     with self.new_step():
         f, g = rule.numerator, rule.denominator
         fp, gp = f.diff(rule.symbol), g.diff(rule.symbol)
         x = rule.symbol
         ff = sympy.Function("f")(x)
         gg = sympy.Function("g")(x)
         qrule_left = sympy.Derivative(ff / gg, rule.symbol)
         qrule_right = sympy.ratsimp(
             sympy.diff(sympy.Function("f")(x) / sympy.Function("g")(x)))
         qrule = sympy.Eq(qrule_left, qrule_right)
         self.append("Apply the quotient rule, which is:")
         self.append(self.format_math_display(qrule))
         self.append("{} and {}.".format(self.format_math(sympy.Eq(ff, f)),
                                         self.format_math(sympy.Eq(gg, g))))
         self.append("To find {}:".format(
             self.format_math(ff.diff(rule.symbol))))
         with self.new_level():
             self.print_rule(rule.numerstep)
         self.append("To find {}:".format(
             self.format_math(gg.diff(rule.symbol))))
         with self.new_level():
             self.print_rule(rule.denomstep)
         self.append("Now plug in to the quotient rule:")
         self.append(self.format_math(diff(rule)))
Пример #9
0
def test_pmint_logexp():
    f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x
    g = log(x**2 + 2*x*exp(x) + 2*x*log(x) + exp(2*x) + 2*exp(x)*log(x) + log(x)**2)/2 + 1/(x + exp(x) + log(x))

    # TODO: Optimal solution is g = 1/(x + log(x) + exp(x)) + log(x + log(x) + exp(x)),
    # but SymPy requires a lot of guidance to properly simplify heurisch() output.

    assert ratsimp(heurisch(f, x)) == g
Пример #10
0
def test_pmint_logexp():
    if ON_TRAVIS:
        # See https://github.com/sympy/sympy/pull/12795
        skip("Too slow for travis.")

    f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x
    g = log(x + exp(x) + log(x)) + 1/(x + exp(x) + log(x))

    assert ratsimp(heurisch(f, x)) == g
def test_pmint_logexp():
    if ON_TRAVIS:
        # See https://github.com/sympy/sympy/pull/12795
        skip("Too slow for travis.")

    f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x
    g = log(x + exp(x) + log(x)) + 1/(x + exp(x) + log(x))

    assert ratsimp(heurisch(f, x)) == g
Пример #12
0
def test_pmint_erf():
    f = exp(-(x ** 2)) * erf(x) / (erf(x) ** 3 - erf(x) ** 2 - erf(x) + 1)
    g = (
        sqrt(pi) * log(erf(x) - 1) / 8
        - sqrt(pi) * log(erf(x) + 1) / 8
        - sqrt(pi) / (4 * erf(x) - 4)
    )

    assert ratsimp(heurisch(f, x)) == g
Пример #13
0
def test_pmint_logexp():
    f = (1 + x + x * exp(x)) * (x + log(x) + exp(x) - 1) / (x + log(x) +
                                                            exp(x))**2 / x
    g = log(x**2 + 2 * x * exp(x) + 2 * x * log(x) + exp(2 * x) +
            2 * exp(x) * log(x) + log(x)**2) / 2 + 1 / (x + exp(x) + log(x))

    # TODO: Optimal solution is g = 1/(x + log(x) + exp(x)) + log(x + log(x) + exp(x)),
    # but SymPy requires a lot of guidance to properly simplify heurisch() output.

    assert ratsimp(heurisch(f, x)) == g
Пример #14
0
 def capacitance_matrix_variables(self, symbolic=False):
     """
     Calculates the capacitance matrix for the energy term of the qubit Lagrangian in the variable respresentation.
     """                        
     
     if symbolic:
         C = self.linear_coordinate_transform.T*self.capacitance_matrix(symbolic)*self.linear_coordinate_transform
         C = sympy.Matrix([sympy.nsimplify(sympy.ratsimp(x)) for x in C]).reshape(*(C.shape))
     else:
         C = np.einsum('ji,jk,kl->il', self.linear_coordinate_transform,self.capacitance_matrix(symbolic),self.linear_coordinate_transform)
     return C
Пример #15
0
def lagrange():
    polynom = 0  # Polynomial
    for i in range(n):
        element = Ys[i]  # Element of one sum
        for k in range(n):
            if i != k:
                element *= (x - Xs[k]) / (Xs[i] - Xs[k])
        polynom += element

    polynom = ratsimp(polynom)  # Simplify the function
    print(polynom)
    return polynom
Пример #16
0
def find_riccati_ode(ratfunc, x, yf):
    y = ratfunc
    yp = y.diff(x)
    q1 = rand_rational_function(x, 1, 3)
    q2 = rand_rational_function(x, 1, 3)
    while q2 == 0:
        q2 = rand_rational_function(x, 1, 3)
    q0 = ratsimp(yp - q1 * y - q2 * y**2)
    eq = Eq(yf.diff(), q0 + q1 * yf + q2 * yf**2)
    sol = Eq(yf, y)
    assert checkodesol(eq, sol) == (True, 0)
    return eq, q0, q1, q2
Пример #17
0
def _simpsol(soleq):
    lhs = soleq.lhs
    sol = soleq.rhs
    sol = powsimp(sol)
    gens = list(sol.atoms(exp))
    p = Poly(sol, *gens, expand=False)
    gens = [factor_terms(g) for g in gens]
    if not gens:
        gens = p.gens
    syms = [Symbol('C1'), Symbol('C2')]
    terms = []
    for coeff, monom in zip(p.coeffs(), p.monoms()):
        coeff = piecewise_fold(coeff)
        if type(coeff) is Piecewise:
            coeff = Piecewise(*((ratsimp(coef).collect(syms), cond)
                                for coef, cond in coeff.args))
        else:
            coeff = ratsimp(coeff).collect(syms)
        monom = Mul(*(g**i for g, i in zip(gens, monom)))
        terms.append(coeff * monom)
    return Eq(lhs, Add(*terms))
Пример #18
0
def test_trigsimp1():
    x, y = symbols('x,y')

    assert trigsimp(1 - sin(x)**2) == cos(x)**2
    assert trigsimp(1 - cos(x)**2) == sin(x)**2
    assert trigsimp(sin(x)**2 + cos(x)**2) == 1
    assert trigsimp(1 + tan(x)**2) == 1/cos(x)**2
    assert trigsimp(1/cos(x)**2 - 1) == tan(x)**2
    assert trigsimp(1/cos(x)**2 - tan(x)**2) == 1
    assert trigsimp(1 + cot(x)**2) == 1/sin(x)**2
    assert trigsimp(1/sin(x)**2 - 1) == cot(x)**2
    assert trigsimp(1/sin(x)**2 - cot(x)**2) == 1

    assert trigsimp(5*cos(x)**2 + 5*sin(x)**2) == 5
    assert trigsimp(5*cos(x/2)**2 + 2*sin(x/2)**2) in \
                [2 + 3*cos(x/2)**2, 5 - 3*sin(x/2)**2]

    assert trigsimp(sin(x)/cos(x)) == tan(x)
    assert trigsimp(2*tan(x)*cos(x)) == 2*sin(x)
    assert trigsimp(cot(x)**3*sin(x)**3) == cos(x)**3
    assert trigsimp(y*tan(x)**2/sin(x)**2) == y/cos(x)**2
    assert trigsimp(cot(x)/cos(x)) == 1/sin(x)

    assert trigsimp(sin(x + y) + sin(x - y)) == 2*sin(x)*cos(y)
    assert trigsimp(sin(x + y) - sin(x - y)) == 2*sin(y)*cos(x)
    assert trigsimp(cos(x + y) + cos(x - y)) == 2*cos(x)*cos(y)
    assert trigsimp(cos(x + y) - cos(x - y)) == -2*sin(x)*sin(y)
    assert ratsimp(trigsimp(tan(x + y) - tan(x)/(1 - tan(x)*tan(y)))) == \
        -tan(y)/(tan(x)*tan(y) -1)

    assert trigsimp(sinh(x + y) + sinh(x - y)) == 2*sinh(x)*cosh(y)
    assert trigsimp(sinh(x + y) - sinh(x - y)) == 2*sinh(y)*cosh(x)
    assert trigsimp(cosh(x + y) + cosh(x - y)) == 2*cosh(x)*cosh(y)
    assert trigsimp(cosh(x + y) - cosh(x - y)) == 2*sinh(x)*sinh(y)
    assert ratsimp(trigsimp(tanh(x + y) - tanh(x)/(1 + tanh(x)*tanh(y)))) == \
        tanh(y)/(tanh(x)*tanh(y) + 1)

    assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2) == 1
    e = 2*sin(x)**2 + 2*cos(x)**2
    assert trigsimp(log(e), deep=True) == log(2)
Пример #19
0
def test_trigsimp1():
    x, y = symbols('x,y')

    assert trigsimp(1 - sin(x)**2) == cos(x)**2
    assert trigsimp(1 - cos(x)**2) == sin(x)**2
    assert trigsimp(sin(x)**2 + cos(x)**2) == 1
    assert trigsimp(1 + tan(x)**2) == 1/cos(x)**2
    assert trigsimp(1/cos(x)**2 - 1) == tan(x)**2
    assert trigsimp(1/cos(x)**2 - tan(x)**2) == 1
    assert trigsimp(1 + cot(x)**2) == 1/sin(x)**2
    assert trigsimp(1/sin(x)**2 - 1) == cot(x)**2
    assert trigsimp(1/sin(x)**2 - cot(x)**2) == 1

    assert trigsimp(5*cos(x)**2 + 5*sin(x)**2) == 5
    assert trigsimp(5*cos(x/2)**2 + 2*sin(x/2)**2) in \
                [2 + 3*cos(x/2)**2, 5 - 3*sin(x/2)**2]

    assert trigsimp(sin(x)/cos(x)) == tan(x)
    assert trigsimp(2*tan(x)*cos(x)) == 2*sin(x)
    assert trigsimp(cot(x)**3*sin(x)**3) == cos(x)**3
    assert trigsimp(y*tan(x)**2/sin(x)**2) == y/cos(x)**2
    assert trigsimp(cot(x)/cos(x)) == 1/sin(x)

    assert trigsimp(sin(x + y) + sin(x - y)) == 2*sin(x)*cos(y)
    assert trigsimp(sin(x + y) - sin(x - y)) == 2*sin(y)*cos(x)
    assert trigsimp(cos(x + y) + cos(x - y)) == 2*cos(x)*cos(y)
    assert trigsimp(cos(x + y) - cos(x - y)) == -2*sin(x)*sin(y)
    assert ratsimp(trigsimp(tan(x + y) - tan(x)/(1 - tan(x)*tan(y)))) == \
        -tan(y)/(tan(x)*tan(y) -1)

    assert trigsimp(sinh(x + y) + sinh(x - y)) == 2*sinh(x)*cosh(y)
    assert trigsimp(sinh(x + y) - sinh(x - y)) == 2*sinh(y)*cosh(x)
    assert trigsimp(cosh(x + y) + cosh(x - y)) == 2*cosh(x)*cosh(y)
    assert trigsimp(cosh(x + y) - cosh(x - y)) == 2*sinh(x)*sinh(y)
    assert ratsimp(trigsimp(tanh(x + y) - tanh(x)/(1 + tanh(x)*tanh(y)))) == \
        tanh(y)/(tanh(x)*tanh(y) + 1)

    assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2) == 1
    e = 2*sin(x)**2 + 2*cos(x)**2
    assert trigsimp(log(e), deep=True) == log(2)
Пример #20
0
def test_ratsimp():
    f, g = 1/x + 1/y, (x + y)/(x*y)

    assert f != g and ratsimp(f) == g

    f, g = 1/(1 + 1/x), 1 - 1/(x + 1)

    assert f != g and ratsimp(f) == g

    f, g = x/(x + y) + y/(x + y), 1

    assert f != g and ratsimp(f) == g

    f, g = -x - y - y**2/(x + y) + x**2/(x + y), -2*y

    assert f != g and ratsimp(f) == g

    f = (a*c*x*y + a*c*z - b*d*x*y - b*d*z - b*t*x*y - b*t*x - b*t*z + e*x)/(x*y + z)
    G = [a*c - b*d - b*t + (-b*t*x + e*x)/(x*y + z),
         a*c - b*d - b*t - ( b*t*x - e*x)/(x*y + z)]

    assert f != g and ratsimp(f) in G

    A = sqrt(pi)

    B = log(erf(x) - 1)
    C = log(erf(x) + 1)

    D = 8 - 8*erf(x)

    f = A*B/D - A*C/D + A*C*erf(x)/D - A*B*erf(x)/D + 2*A/D

    assert ratsimp(f) == A*B/8 - A*C/8 - A/(4*erf(x) - 4)
Пример #21
0
def test_ratsimp():
    f, g = 1/x + 1/y, (x + y)/(x*y)

    assert f != g and ratsimp(f) == g

    f, g = 1/(1 + 1/x), 1 - 1/(x + 1)

    assert f != g and ratsimp(f) == g

    f, g = x/(x + y) + y/(x + y), 1

    assert f != g and ratsimp(f) == g

    f, g = -x - y - y**2/(x + y) + x**2/(x + y), -2*y

    assert f != g and ratsimp(f) == g

    f = (a*c*x*y + a*c*z - b*d*x*y - b*d*z - b*t*x*y - b*t*x - b*t*z + e*x)/(x*y + z)
    G = [a*c - b*d - b*t + (-b*t*x + e*x)/(x*y + z),
         a*c - b*d - b*t - ( b*t*x - e*x)/(x*y + z)]

    assert f != g and ratsimp(f) in G

    A = sqrt(pi)

    B = log(erf(x) - 1)
    C = log(erf(x) + 1)

    D = 8 - 8*erf(x)

    f = A*B/D - A*C/D + A*C*erf(x)/D - A*B*erf(x)/D + 2*A/D

    assert ratsimp(f) == A*B/8 - A*C/8 - A/(4*erf(x) - 4)
Пример #22
0
def test_pmint_rat():
    # TODO: heurisch() is off by a constant: -3/4. Possibly different permutation
    # would give the optimal result?

    def drop_const(expr, x):
        if expr.is_Add:
            return Add(*[ arg for arg in expr.args if arg.has(x) ])
        else:
            return expr

    f = (x**7 - 24*x**4 - 4*x**2 + 8*x - 8)/(x**8 + 6*x**6 + 12*x**4 + 8*x**2)
    g = (4 + 8*x**2 + 6*x + 3*x**3)/(x**5 + 4*x**3 + 4*x) + log(x)

    assert drop_const(ratsimp(heurisch(f, x)), x) == g
def test_pmint_rat():
    # TODO: heurisch() is off by a constant: -3/4. Possibly different permutation
    # would give the optimal result?

    def drop_const(expr, x):
        if expr.is_Add:
            return Add(*[ arg for arg in expr.args if arg.has(x) ])
        else:
            return expr

    f = (x**7 - 24*x**4 - 4*x**2 + 8*x - 8)/(x**8 + 6*x**6 + 12*x**4 + 8*x**2)
    g = (4 + 8*x**2 + 6*x + 3*x**3)/(x**5 + 4*x**3 + 4*x) + log(x)

    assert drop_const(ratsimp(heurisch(f, x)), x) == g
Пример #24
0
def spline():
    # Define Xs and Ys as numpy array and assign 'n' a local value
    xn = np.asarray(Xs)
    yn = np.asarray(Ys)
    n = len(xn) - 1
    # Define h
    hn = np.array([xn[i + 1] - xn[i] for i in range(n)])
    # Create matrix (A) and a vector (b) to solve the system
    A = np.zeros((n, n))
    b = np.zeros(n)

    # Calculate the matrix
    A[0, 0] = 2 * (hn[0] + hn[n - 1])
    A[0, 1] = hn[0]
    A[0, -1] = hn[n - 1]
    b[0] = 6 * ((yn[1] - yn[0]) / hn[0] - (yn[n] - yn[n - 1]) / hn[n - 1])
    for i in range(1, n):
        A[i, i] = 2 * (hn[i - 1] + hn[i])
        A[i, i - 1] = hn[i - 1]
        if i < n - 1:
            A[i, i + 1] = hn[i]
        b[i] = 6 * ((yn[i + 1] - yn[i]) / hn[i] -
                    (yn[i] - yn[i - 1]) / hn[i - 1])
    A[-1, 0] = hn[n - 1]

    # Solve the system that we got (it's not the original that we've got as final result)
    solv = np.linalg.solve(A, b)
    solv = np.append(solv, solv[0])

    # Calculate a, b, c, d
    a = yn
    b = np.array([
        (yn[i + 1] - yn[i]) / hn[i] - (2. * solv[i] + solv[i + 1]) * hn[i] / 6
        for i in range(len(hn))
    ])
    c = solv * 0.5
    d = np.array([(solv[i + 1] - solv[i]) / hn[i] / 6 for i in range(len(hn))])

    print(' Polynomials: ')
    sx = []
    for i in range(n):
        # Create a polynomial and print it
        sx.append(
            ratsimp(a[i] + b[i] * (x - xn[i]) + c[i] * (x - xn[i])**2 + d[i] *
                    (x - xn[i])**3))
        print('[{}, {}]: {}'.format(Xs[i], Xs[i + 1], sx[i]))

    # Show a plot of all calculations
    plot(sx)
Пример #25
0
    def capacitance_matrix_variables(self, symbolic=False):
        """
        Calculates the capacitance matrix for the energy term of the qubit Lagrangian in the variable representation.
        """

        if symbolic:
            C = self.linear_coordinate_transform.T * self.capacitance_matrix(
                symbolic) * self.linear_coordinate_transform
            C = sympy.Matrix([sympy.nsimplify(sympy.ratsimp(x))
                              for x in C]).reshape(*(C.shape))
        else:
            C = np.einsum('ji,jk,kl->il', self.linear_coordinate_transform,
                          self.capacitance_matrix(symbolic),
                          self.linear_coordinate_transform)
        return C
Пример #26
0
def test_action_verbs():
    assert nsimplify((1/(exp(3*pi*x/5)+1))) == (1/(exp(3*pi*x/5)+1)).nsimplify()
    assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp()
    assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep = True)
    assert radsimp(1/(2+sqrt(2))) == (1/(2+sqrt(2))).radsimp()
    assert powsimp(x**y*x**z*y**z, combine='all') == (x**y*x**z*y**z).powsimp(combine='all')
    assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify()
    assert together(1/x + 1/y) == (1/x + 1/y).together()
    assert separate((x*(y*z)**3)**2) == ((x*(y*z)**3)**2).separate()
    assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == (a*x**2 + b*x**2 + a*x - b*x + c).collect(x)
    assert apart(y/(y+2)/(y+1), y) == (y/(y+2)/(y+1)).apart(y)
    assert combsimp(y/(x+2)/(x+1)) == (y/(x+2)/(x+1)).combsimp()
    assert factor(x**2+5*x+6) == (x**2+5*x+6).factor()
    assert refine(sqrt(x**2)) == sqrt(x**2).refine()
    assert cancel((x**2+5*x+6)/(x+2)) == ((x**2+5*x+6)/(x+2)).cancel()
Пример #27
0
def test_action_verbs():
    assert nsimplify((1/(exp(3*pi*x/5)+1))) == (1/(exp(3*pi*x/5)+1)).nsimplify()
    assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp()
    assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep = True)
    assert radsimp(1/(2+sqrt(2))) == (1/(2+sqrt(2))).radsimp()
    assert powsimp(x**y*x**z*y**z, combine='all') == (x**y*x**z*y**z).powsimp(combine='all')
    assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify()
    assert together(1/x + 1/y) == (1/x + 1/y).together()
    assert separate((x*(y*z)**3)**2) == ((x*(y*z)**3)**2).separate()
    assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == (a*x**2 + b*x**2 + a*x - b*x + c).collect(x)
    assert apart(y/(y+2)/(y+1), y) == (y/(y+2)/(y+1)).apart(y)
    assert combsimp(y/(x+2)/(x+1)) == (y/(x+2)/(x+1)).combsimp()
    assert factor(x**2+5*x+6) == (x**2+5*x+6).factor()
    assert refine(sqrt(x**2)) == sqrt(x**2).refine()
    assert cancel((x**2+5*x+6)/(x+2)) == ((x**2+5*x+6)/(x+2)).cancel()
Пример #28
0
def newton():
    polynom = 0  # Polynomial
    for i in range(n):
        if i == 0:
            element = f.subs(
                x, Xs[0]
            )  # If it's the first element, which can't be multiplied like others
        else:
            asd = [Xs[j] for j in range(i + 1)]
            element = findmult(asd)
            for k in range(i):
                element *= (x - Xs[k])
        polynom += element

    polynom = ratsimp(polynom)  # Simplify the function
    print(polynom)
    return polynom
Пример #29
0
 def print_Div(self, rule):
     with self.new_step():
         f, g = rule.numerator, rule.denominator
         fp, gp = f.diff(rule.symbol), g.diff(rule.symbol)
         x = rule.symbol
         ff = sympy.Function("f")(x)
         gg = sympy.Function("g")(x)
         qrule_left = sympy.Derivative(ff / gg, rule.symbol)
         qrule_right = sympy.ratsimp(sympy.diff(sympy.Function("f")(x) /
                                                sympy.Function("g")(x)))
         qrule = sympy.Eq(qrule_left, qrule_right)
         self.append("Apply the quotient rule, which is:")
         self.append(self.format_math_display(qrule))
         self.append("{} and {}.".format(self.format_math(sympy.Eq(ff, f)),
                                         self.format_math(sympy.Eq(gg, g))))
         self.append("To find {}:".format(self.format_math(ff.diff(rule.symbol))))
         with self.new_level():
             self.print_rule(rule.numerstep)
         self.append("To find {}:".format(self.format_math(gg.diff(rule.symbol))))
         with self.new_level():
             self.print_rule(rule.denomstep)
         self.append("Now plug in to the quotient rule:")
         self.append(self.format_math(diff(rule)))
Пример #30
0
def test_pmint_logexp():
    f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x
    g = log(x + exp(x) + log(x)) + 1/(x + exp(x) + log(x))

    assert ratsimp(heurisch(f, x)) == g
Пример #31
0
             formula = recursion(m,n,base)
             formula = (formula.subs([(alpha,1/a),(beta,1/b)]))
             functions.append(("%s_%d_%d"%(name,m,n), formula))
             # Analytical expressions are singular for alpha=beta.
             # When alpha \approx beta, we therefore compute the expression
             # by writing beta=alpha+epsilon and writing a Taylor expansion
             # in epsilon.
             if m==0 and n==0:
                 # The Taylor expansion in epsilon is computed only for the
                 # base integral...
                 form = base.subs(beta,alpha+epsilon)
                 series_exp = 1
                 for itaylor in xrange(1,4*mmax+2):
                     series_exp += (-epsilon*R)**itaylor/factorial(itaylor)
                 form = form.subs(exp(-R*(alpha+epsilon)),exp(-R*alpha)*series_exp)
                 form = ratsimp(form)
                 taylor_expansion = simplify(form.subs(epsilon,0))
                 for itaylor in xrange(4*mmax+1):
                     form = ratsimp(diff(form,epsilon))
                     taylor_expansion += simplify(form.subs(epsilon, 0)*epsilon**(itaylor+1)/factorial(itaylor+1))
                 #print taylor_expansion
             # ...other Taylor expansions are derived using a modified recursion scheme.
             formula_taylor = simplify(recursiontaylor(m,n,taylor_expansion))
             functions.append(("%s_taylor_%d_%d"%(name,m,n), formula_taylor.subs([(alpha,1/a),(epsilon,b)])))
 # Write routines in Fortran source code
 print "Writing source code..."
 codegen(functions, "F95", "../src/libslater",to_files=True,
      argument_sequence=(a,b,R), project='libslater')
 # Write python wrapper
 with open('../src/libslater.py','w') as f:
     f.write('''#!/usr/bin/env python\n\n''')
n=500
x0,x1,y0,y1=sp.symbols('x0 x1 y0 y1',real=True)
sx=[x0,x1]
sy=[y0,y1]
#Kx=1
#Py=1
Kx=x1**2
Py=x1**2
#Phi1NL=-0.25/sp.pi*sp.log((x0-y0)**2+(x1-y1)**2)
Phi1NL = sp.log(((x0-y0)**2+(x1+y1)**2)/((x0-y0)**2+(x1-y1)**2)) / (sp.pi*2*x1*y1)
omgNL=[ Py*sp.diff(Phi1NL,sy[j]) for j in range(2) ]
#Phi2NL=-0.5/sp.pi*sp.atan((x1-y1)/(x0-y0))
Phi2NL = sp.log(((x0-y0)**2+(x1+y1)**2)/((x0-y0)**2+(x1-y1)**2)) * (x0-y0)/(2*sp.pi*x1)
+ (sp.atan((x1-y1)/(x0-y0)) - sp.atan((x1+y1)/(x0-y0))) / (2*sp.pi)

V2NL=[sp.ratsimp(Kx*sp.diff(Phi2NL,sx[j])) for j in range(2)]
VSNL=[sp.ratsimp(Kx*sp.diff(Phi1NL,sx[j])) for j in range(2)]

def Normal(x):
    n=x[0].shape[0]-1
    return np.array([-x[1,1:]+x[1,:n],x[0,1:]-x[0,:n]])

def normal(x):
    nr=Normal(x)
    return nr/np.sqrt(nr[0]**2+nr[1]**2)

def withoutZero(sFunct):
    def wrapped(sExpress,M,minDist=myeps):
        gd=np.sum([(M[i,1]-M[i,0])**2 for i in range(2)],axis=0)>minDist**2
        AA=M[0,0].copy()
        AA[np.logical_not(gd)]+=1
Пример #33
0
def integral_basis(f,x,y):
    """
    Compute the integral basis {b1, ..., bg} of the algebraic function
    field C[x,y] / (f).
    """
    # If the curve is not monic then map y |-> y/lc(x) where lc(x)
    # is the leading coefficient of f
    T  = sympy.Dummy('T')
    d  = sympy.degree(f,y)
    lc = sympy.LC(f,y)
    if x in lc:
        f = sympy.ratsimp( f.subs(y,y/lc)*lc**(d-1) )
    else:
        f = f/lc
        lc = 1

    #
    # Compute df
    #
    p = sympy.Poly(f,[x,y])
    n = p.degree(y)
    res = sympy.resultant(p,p.diff(y),y)
    factors = sympy.factor_list(res)[1]
    df = [k for k,deg in factors if (deg > 1) and (sympy.LC(k) == 1)]

    #
    # Compute series truncations at appropriate x points
    #
    alpha = []
    r = []
    for l in range(len(df)):
        k = df[l]
        alphak = sympy.roots(k).keys()[0]
        rk = compute_series_truncations(f,x,y,alphak,T)
        alpha.append(alphak)
        r.append(rk)

        
    #
    # Main Loop
    #
    a = [sympy.Dummy('a%d'%k) for k in xrange(n)]
    b = [1]
    for d in range(1,n):
        bd = y*b[-1]

        for l in range(len(df)):
            k = df[l]
            alphak = alpha[l]
            rk = r[l]

            found_something = True            
            while found_something:
                # construct system of equations consisting of the coefficients
                # of negative powers of (x-alphak) in the substitutions
                # A(r_{k,1}),...,A(r_{k,n})
                A  = (sum(ak*bk for ak,bk in zip(a,b)) + bd) / (x - alphak)

                coeffs = []
                for rki in rk:
                    # substitute and extract coefficients
                    A_rki  = A.subs(y,rki)
                    coeffs.extend(_negative_power_coeffs(A_rki, x, alphak))
               
                # solve the coefficient equations for a0,...,a_{d-1}
                coeffs = [coeff.as_numer_denom()[0] for coeff in coeffs]
                sols = sympy.solve_poly_system(coeffs, a[:d])
                if sols is None or sols == []:
                    found_something = False
                else:
                    sol  = sols[0]
                    bdm1 = sum( sol[i]*bk for i,bk in zip(range(d),b) )
                    bd   = (bdm1 + bd) / k
                        
        # bd found. Append to list of basis elements
        b.append( bd )

    # finally, convert back to singularized curve if necessary
    for i in xrange(1,len(b)):
        b[i] = b[i].subs(y,y*lc).ratsimp()

    return b
Пример #34
0
def test_ratsimp2():
    x = Symbol("x")
    e = 1/(1+1/x)
    assert (x+1)*ratsimp(e)/x == 1
Пример #35
0
def test_ratsimp_X1():
    e = -x-y-(x+y)**(-1)*y**2+(x+y)**(-1)*x**2
    assert e != -2*y
    assert ratsimp(e) == -2*y
Пример #36
0
def test_pmint_erf():
    f = exp(-x**2)*erf(x)/(erf(x)**3 - erf(x)**2 - erf(x) + 1)
    g = sqrt(pi)*log(erf(x) - 1)/8 - sqrt(pi)*log(erf(x) + 1)/8 - sqrt(pi)/(4*erf(x) - 4)

    assert ratsimp(heurisch(f, x)) == g
Пример #37
0
def getCumulants(model, chords, param=[], simp=[], unsimp=[]):

    doSimplify=not(simp==[] and unsimp == [])
    start_time = time.time()

    if( not isConsistent(model,chords) ):
        print(" ERROR:  Model and chords are not correct or inconsistent.  ")
        return( False )

    ### number of states
    N = len(getStateSpace(model))

    ### The first Betti number (cyclomatic number) of the model, equals the number of chords
    B = len(chords)
    
    ### Generate transition matrix W from model
    W = zeros(N) 
    for edge in model:
        W[edge] = (model[edge])
    for j in range(N):
        W[j,j] = -sum(W[j,i] for i in range(N)) 
        
    #display(W)
        
    ### Generate tilted matrix, from copy of W
    Wq = W[:,:]
    q=zeros(B,1)
    for i in range(B):
        name = 'q_{{{0}}}'.format(i)
        q[i] = symbols(name)
        Wq[chords[i]] =  W[chords[i]]*exp(q[i])
        Wq[chords[i][::-1]] =  W[chords[i][::-1]]*exp(-q[i])
        
    #display(Wq)
    
    ### Find coefficients of characteristic polynomial
    print("--- %s seconds ---" % (time.time() - start_time))
    print("Start calculating characteristic polynomial")
    a = simplify(Wq.berkowitz()[-1][::-1])  # symbolic simplification is *crucial* here!
        
    ### Initialize current vector and covariance matrix
    c = zeros(B,1)
    C = zeros(B,B)
    
    ### Calculate current vector
    print("--- %s seconds ---" % (time.time() - start_time))
    print("Start calculating current vector")
    for i in range(B):
        c[i] = -(diff(a[0],q[i])/a[1]).ratsimp() ## populate current vector
        
    for i in range(B):
        c=c.subs(q[i],0) ## subsitute q=0
    
    if(doSimplify):
        c = c.subs(param)
        
        print("--- %s seconds ---" % (time.time() - start_time))
        print("Start simplifying current vector")
        c = simplify(c.subs(simp)) #simplify cancel
    
    ### Calculate co-variance matrix
    print("--- %s seconds ---" % (time.time() - start_time))
    print("Start calculating covariance matrix")
    
    ### Do in-place parametrization, before simplification, if latter is demanded
    if(doSimplify):
        for i in range(B):
            for j in range(i+1):
                t1 = ratsimp(  diff(a[0],q[i],q[j]).subs(param).subs(simp) )
                t2 = ratsimp( (diff(a[1],q[i])*c[j]).subs(param).subs(simp) )
                t3 = ratsimp( (diff(a[1],q[j])*c[i]).subs(param).subs(simp) )
                t4 = ratsimp( (2*a[2]*c[i]*c[j]).subs(param).subs(simp) )
                t5 = ratsimp( a[1].subs(param).subs(simp) )
                C[i,j] = -(t1 + t2 + t3 + t4)/t5
    else:
        for i in range(B):
            for j in range(i+1):
                t1 = (  diff(a[0],q[i],q[j]) )#.ratsimp()
                t2 = ( (diff(a[1],q[i])*c[j]) )#.ratsimp()
                t3 = ( (diff(a[1],q[j])*c[i]) )#.ratsimp()
                t4 = ( (2*a[2]*c[i]*c[j]) )#.ratsimp()
                t5 = ( a[1] )#.ratsimp()
                C[i,j] = -(t1 + t2 + t3 + t4)/t5

    ### Populate Covariance Matrix
    
    ## If no simplification, perform parametrization now
    if(not doSimplify):
        c = c.subs(param)

    ### simplification of the expectation should be safe to do, in any case
    c = simplify(c)

    ### simplification of covariance is possibly very time consuming
    C = C.subs(param)
    if(doSimplify):
        print("--- %s seconds ---" % (time.time() - start_time))
        print("Start simplifying covariance matrix")
        C = simplify(C)
    
    ### subsitute q=0 into covariance
    for i in range(B):
        C = C.subs(q[i],0)    

    
    print("--- %s seconds ---" % (time.time() - start_time))
    print("All Done")
    
    ### Symmetrize covariance matrix:
    for i in range(B):
        for j in range(i):
            C[j,i] = C[i,j]
    
    ### return unsimplified expecation and covariance
    return( [c.subs(unsimp),C.subs(unsimp)]) 
Пример #38
0
def test_ratsimp_X2():
    e = x/(x+y)+y/(x+y)
    assert e != 1
    assert ratsimp(e) == 1
Пример #39
0
def getCumulants(model, chords, param=[], simp=[], unsimp=[]):

    doSimplify = not (simp == [] and unsimp == [])
    start_time = time.time()

    if (not isConsistent(model, chords)):
        print(" ERROR:  Model and chords are not correct or inconsistent.  ")
        return (False)

    ### number of states
    N = len(getStateSpace(model))

    ### The first Betti number (cyclomatic number) of the model, equals the number of chords
    B = len(chords)

    ### Generate transition matrix W from model
    W = zeros(N)
    for edge in model:
        W[edge] = (model[edge])
    for j in range(N):
        W[j, j] = -sum(W[j, i] for i in range(N))

    #display(W)

    ### Generate tilted matrix, from copy of W
    Wq = W[:, :]
    q = zeros(B, 1)
    for i in range(B):
        name = 'q_{{{0}}}'.format(i)
        q[i] = symbols(name)
        Wq[chords[i]] = W[chords[i]] * exp(q[i])
        Wq[chords[i][::-1]] = W[chords[i][::-1]] * exp(-q[i])

    #display(Wq)

    ### Find coefficients of characteristic polynomial
    print("--- %s seconds ---" % (time.time() - start_time))
    print("Start calculating characteristic polynomial")
    a = simplify(
        Wq.berkowitz()[-1][::-1])  # symbolic simplification is *crucial* here!

    ### Initialize current vector and covariance matrix
    c = zeros(B, 1)
    C = zeros(B, B)

    ### Calculate current vector
    print("--- %s seconds ---" % (time.time() - start_time))
    print("Start calculating current vector")
    for i in range(B):
        c[i] = -(diff(a[0], q[i]) / a[1]).ratsimp()  ## populate current vector

    for i in range(B):
        c = c.subs(q[i], 0)  ## subsitute q=0

    if (doSimplify):
        c = c.subs(param)

        print("--- %s seconds ---" % (time.time() - start_time))
        print("Start simplifying current vector")
        c = simplify(c.subs(simp))  #simplify cancel

    ### Calculate co-variance matrix
    print("--- %s seconds ---" % (time.time() - start_time))
    print("Start calculating covariance matrix")

    ### Do in-place parametrization, before simplification, if latter is demanded
    if (doSimplify):
        for i in range(B):
            for j in range(i + 1):
                t1 = ratsimp(diff(a[0], q[i], q[j]).subs(param).subs(simp))
                t2 = ratsimp((diff(a[1], q[i]) * c[j]).subs(param).subs(simp))
                t3 = ratsimp((diff(a[1], q[j]) * c[i]).subs(param).subs(simp))
                t4 = ratsimp((2 * a[2] * c[i] * c[j]).subs(param).subs(simp))
                t5 = ratsimp(a[1].subs(param).subs(simp))
                C[i, j] = -(t1 + t2 + t3 + t4) / t5
    else:
        for i in range(B):
            for j in range(i + 1):
                t1 = (diff(a[0], q[i], q[j]))  #.ratsimp()
                t2 = ((diff(a[1], q[i]) * c[j]))  #.ratsimp()
                t3 = ((diff(a[1], q[j]) * c[i]))  #.ratsimp()
                t4 = ((2 * a[2] * c[i] * c[j]))  #.ratsimp()
                t5 = (a[1])  #.ratsimp()
                C[i, j] = -(t1 + t2 + t3 + t4) / t5

    ### Populate Covariance Matrix

    ## If no simplification, perform parametrization now
    if (not doSimplify):
        c = c.subs(param)

    ### simplification of the expectation should be safe to do, in any case
    c = simplify(c)

    ### simplification of covariance is possibly very time consuming
    C = C.subs(param)
    if (doSimplify):
        print("--- %s seconds ---" % (time.time() - start_time))
        print("Start simplifying covariance matrix")
        C = simplify(C)

    ### subsitute q=0 into covariance
    for i in range(B):
        C = C.subs(q[i], 0)

    print("--- %s seconds ---" % (time.time() - start_time))
    print("All Done")

    ### Symmetrize covariance matrix:
    for i in range(B):
        for j in range(i):
            C[j, i] = C[i, j]

    ### return unsimplified expecation and covariance
    return ([c.subs(unsimp), C.subs(unsimp)])
Пример #40
0
 def emit(name, func):
     for x in sorted(exparg):
         test(name,
              x,
              sp.ratsimp(sp.radsimp(func(x).rewrite(sp.exp))),
              no_trigh=True)
Пример #41
0
def test_ratsimp_X2():
    e = x/(x+y)+y/(x+y)
    assert e != 1
    assert ratsimp(e) == 1
Пример #42
0
def test_pmint_logexp():
    f = (1 + x + x * exp(x)) * (x + log(x) + exp(x) - 1) / (x + log(x) +
                                                            exp(x))**2 / x
    g = log(x + exp(x) + log(x)) + 1 / (x + exp(x) + log(x))

    assert ratsimp(heurisch(f, x)) == g
Пример #43
0
from sympy import Symbol, simplify, ratsimp, sympify, factor, limit
from numpy import array, zeros
from copy import copy
from pycircuit.circuit.symbolicapprox import *
    
## Create regulated cascode circuit

c = SubCircuit()

nin, nout, n1 = c.add_nodes('in', 'out', 'n1')

gm1, gm2, gds1, gds2, Cgs1, Cgs2= [Symbol(symname, real=True) for symname in 'gm1,gm2,gds1,gds2,Cgs1,Cgs2'.split(',')]

c['M2'] = MOS(nin, n1, gnd, gnd, gm = gm2, gds = gds2, Cgs=0*Cgs1)
c['M1'] = MOS(n1, nout, nin, nin, gm = gm1, gds = gds1, Cgs=0*Cgs2)
#c['r'] = R(nin, gnd, r = Symbol('Rs', real=True))

## Perform twoport analysis with noise

twoportana = TwoPortAnalysis(c, nin, gnd, nout, gnd, noise=True, noise_outquantity='i', toolkit=symbolic)

res2port = twoportana.solve(Symbol('s'), complexfreq=True)

y11 = res2port['twoport'].Y[0,0]

print 'Input impedance:', 1/y11
#print 'Approx. input impedance', approx(1/y11, ['gds'], n = 1)
print 'Input referred current noise PSD, Sin:', ratsimp(res2port['Sin'])
print 'Approx. input referred current noise PSD, Sin:', approx(res2port['Sin'], ['gds'], n=1)
print 'Input referred voltage noise PSD, Svn:', ratsimp(res2port['Svn'])
Пример #44
0
def test_ratsimp():
    assert ratsimp(A*B - B*A) == A*B - B*A
Пример #45
0
Файл: libm.py Проект: zholos/qml
 def emit(name, func):
     for x in sorted(exparg):
         test(name, x, sp.ratsimp(sp.radsimp(func(x).rewrite(sp.exp))),
              no_trigh=True)
Пример #46
0
print(S.simplify((x**3 + x**2 - x - 1) / (x**2 + 2 * x + 1)))

#分解--表达式进行部分分式分解,它将一个有理函数变为数个分子及分母次数较小的有理函数
print("分解")
print(S.apart(1 / ((x + 2) * (x + 1)), x))

#三角函数
print(S.sin(x + y).expand(trig=True))

#化简-去括号
f = (a - b + c) * (a + b - c)
print(S.expand(f))

#因式分解
print(S.factor(a**2 - b**2 + 2 * b * c - c**2))

#通分运算 ratsimp()对表达式中的分母进行通分运算,即将表达式转换为分子除分母的形式
print(S.ratsimp(x / (x + y) + y / (x - y)))
print(S.ratsimp(x / a + x / b))

#分母有理化
#radsimp()对表达式的分母进行有理化,结果中的分母部分不含无理数.
print(S.ratsimp(1 / (S.sqrt(5))))

#fraction()返回包含表达式的分子与分母的元组, 用它可以获得ratsimp()通分之后的分子或分母
print(S.fraction(S.ratsimp(1 / x + 1 / y)))

#化简三角函数
#trigsimp()化简表达式中的三角函数,通过method参数可以选择化简算法.
print(S.trigsimp(S.sin(x)**2 + S.cos(x)**2 + 2 * S.cos(x)))
Пример #47
0
def matratsimp(mat):
    return sympy.matrices.Matrix(mat.rows, mat.cols, lambda i, j: sympy.ratsimp(mat[i, j]))
Пример #48
0
def test_ratsimp2():
    x = Symbol("x")
    e = 1/(1+1/x)
    assert (x+1)*ratsimp(e)/x == 1
Пример #49
0
def test_ratsimp_X1():
    e = -x-y-(x+y)**(-1)*y**2+(x+y)**(-1)*x**2
    assert e != -2*y
    assert ratsimp(e) == -2*y
Пример #50
0
    Symbol(symname, real=True)
    for symname in 'gm1,gm2,gds1,gds2,Cgs1,Cgs2'.split(',')
]

c['M2'] = MOS(nin, n1, gnd, gnd, gm=gm2, gds=gds2, Cgs=0 * Cgs1)
c['M1'] = MOS(n1, nout, nin, nin, gm=gm1, gds=gds1, Cgs=0 * Cgs2)
#c['r'] = R(nin, gnd, r = Symbol('Rs', real=True))

## Perform twoport analysis with noise

twoportana = TwoPortAnalysis(c,
                             nin,
                             gnd,
                             nout,
                             gnd,
                             noise=True,
                             noise_outquantity='i',
                             toolkit=symbolic)

res2port = twoportana.solve(Symbol('s'), complexfreq=True)

y11 = res2port['twoport'].Y[0, 0]

print 'Input impedance:', 1 / y11
#print 'Approx. input impedance', approx(1/y11, ['gds'], n = 1)
print 'Input referred current noise PSD, Sin:', ratsimp(res2port['Sin'])
print 'Approx. input referred current noise PSD, Sin:', approx(res2port['Sin'],
                                                               ['gds'],
                                                               n=1)
print 'Input referred voltage noise PSD, Svn:', ratsimp(res2port['Svn'])
Пример #51
0
#!/usr/bin/python
import numpy as np
import sympy as sp

myeps=0.000001
x0,x1,y0,y1=sp.symbols('x0 x1 y0 y1',real=True)
sx=[x0,x1]
sy=[y0,y1]
_Kx_=1
_Py_=1
_Phi1_=-0.25/sp.pi*sp.log((x0-y0)**2+(x1-y1)**2)
_sOmega_=[_Py_*sp.diff(_Phi1_,sy[j]) for j in range(2)]
_Phi2_=-0.5/sp.pi*sp.atan((x1-y1)/(x0-y0))
_sV2_=[sp.ratsimp(_Kx_*sp.diff(_Phi2_,sx[j])) for j in range(2)]
_sVS_=[_Kx_*sp.diff(_Phi1_,sx[j]) for j in range(2)]

def Normal(x):
    n=x[0].shape[0]-1
    return np.array([-x[1,1:]+x[1,:n],x[0,1:]-x[0,:n]])

def normal(x):
    nr=Normal(x)
    return nr/np.sqrt(nr[0]**2+nr[1]**2)

def withoutZero(sFunct):
    def wrapped(sExpress,M,minDist=myeps):
        gd=np.sum([(M[i,1]-M[i,0])**2 for i in range(2)],axis=0)>minDist**2
        AA=M[0,0].copy()
        AA[np.logical_not(gd)]+=1
        result=np.zeros_like(M[0,0])
        result[gd]=sFunct(sExpress,np.array([[AA,M[0,1]],[M[1,0],M[1,1]]]),minDist)[gd]