Пример #1
0
def test_Float():
    def eq(a, b):
        t = Float("1.0E-15")
        return (-t < a-b < t)

    a = Float(2) ** Float(3)
    assert eq(a.evalf(), Float(8))
    assert eq((pi ** -1).evalf(), Float("0.31830988618379067"))
    a = Float(2) ** Float(4)
    assert eq(a.evalf(), Float(16))
    assert (S(.3) == S(.5)) is False
    x_str = Float((0, '13333333333333', -52, 53))
    x2_str = Float((0, '26666666666666', -53, 53))
    x_hex = Float((0, 0x13333333333333L, -52, 53))
    x_dec = Float((0, 5404319552844595L, -52, 53))
    x2_hex = Float((0, 0x13333333333333L*2, -53, 53))
    assert x_str == x_hex == x_dec == x2_hex == Float(1.2)
    # x2_str and 1.2 are superficially the same
    assert str(x2_str) == str(Float(1.2))
    # but are different at the mpf level
    assert Float(1.2)._mpf_ == (0, 5404319552844595L, -52, 53)
    assert x2_str._mpf_ == (0, 10808639105689190L, -53, 53)

    # do not automatically evalf
    def teq(a):
        assert (a.evalf () == a) is False
        assert (a.evalf () != a) is True
        assert (a == a.evalf()) is False
        assert (a != a.evalf()) is True

    teq(pi)
    teq(2*pi)
    teq(cos(0.1, evaluate=False))

    assert Float(0) is S.Zero
    assert Float(1) is S.One

    assert Float(S.Zero) is S.Zero
    assert Float(S.One) is S.One
Пример #2
0
def _initial_evalf(w,n):
    """ 
    Convert every number to float with precision n
    If number ends in 5, convert to high precision Float
    and multiply by 1+epsilon so that it will round up correctly.
    
    """

    if w.is_Number:
        wstr=str(w)
        if "." in wstr:
            wstr = wstr.rstrip('0')
            if wstr[-1]=="5":
                # include extra call to str because bug
                # in sympy where this doesn't work with unicode
                w=Float(str(wstr), n+1)
                one_plus_epsilon = S.One.evalf(n)\
                                   +pow(10,1-n)
                w *= one_plus_epsilon
    try:
        return w.evalf(n)
    except:
        return w
Пример #3
0
 def eq(a, b):
     t = Float("1.0E-15")
     return (-t < a - b < t)
Пример #4
0
def test_mpf_norm():
    assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_
    assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_
Пример #5
0
def test_Float_eq():
    assert Float(.12, 3) != Float(.12, 4)
    assert Float(.12, 3) == .12
    assert 0.12 == Float(.12, 3)
    assert Float('.12', 22) != .12
Пример #6
0
def test_divmod():
    assert divmod(S(12), S(8)) == Tuple(1, 4)
    assert divmod(-S(12), S(8)) == Tuple(-2, 4)
    assert divmod(S(0), S(1)) == Tuple(0, 0)
    raises(ZeroDivisionError, lambda: divmod(S(0), S(0)))
    raises(ZeroDivisionError, lambda: divmod(S(1), S(0)))
    assert divmod(S(12), 8) == Tuple(1, 4)
    assert divmod(12, S(8)) == Tuple(1, 4)

    assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2"))
    assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2"))
    assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2"))
    assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5"))
    assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0"))
    assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3"))
    assert divmod(S("2"), S("0.1")) == Tuple(S("20"), S("0"))
    assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1"))
    assert divmod(S("2"), 2) == Tuple(S("1"), S("0"))
    assert divmod(2, S("2")) == Tuple(S("1"), S("0"))
    assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5"))
    assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5"))
    assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3"))
    assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2"))
    assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5"))
    assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), Float("1/6"))
    assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3"))
    assert divmod(S("3/2"), S("0.1")) == Tuple(S("15"), S("0"))
    assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1"))
    assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2"))
    assert divmod(2, S("3/2")) == Tuple(S("1"), S("0.5"))
    assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0"))
    assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0"))
    assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0"))
    assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3"))
    assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3"))
    assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0"))
    assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1"))
    assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5"))
    assert divmod(2, S("3.5")) == Tuple(S("0"), S("2"))
    assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5"))
    assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5"))
    assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3"))
    assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1"))
    assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3"))
    assert divmod(2, S("1/3")) == Tuple(S("6"), S("0"))
    assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3"))
    assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3"))
    assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1"))
    assert divmod(2, S("0.1")) == Tuple(S("20"), S("0"))
    assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1"))
    assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0"))
    assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1"))

    assert str(divmod(S("2"), 0.3)) == '(6, 0.2)'
    assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)'
    assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)'
    assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)'
    assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)'
    assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)'
    assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)'

    assert divmod(-3, S(2)) == (-2, 1)
    assert divmod(S(-3), S(2)) == (-2, 1)
    assert divmod(S(-3), 2) == (-2, 1)
Пример #7
0
def test_polygon():
    a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
    t = Triangle(a, b, c)
    assert Polygon(a, Point(1, 0), b, c) == t
    assert Polygon(Point(1, 0), b, c, a) == t
    assert Polygon(b, c, a, Point(1, 0)) == t
    # 2 "remove folded" tests
    assert Polygon(a, Point(3, 0), b, c) == t
    assert Polygon(a, b, Point(3, -1), b, c) == t
    raises(GeometryError, lambda: Polygon((0, 0), (1, 0), (0, 1), (1, 1)))
    # remove multiple collinear points
    assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
        Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
        Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
        Point(15, -3), Point(15, 10), Point(15, 15)) == \
        Polygon(Point(-15,-15), Point(15,-15), Point(15,15), Point(-15,15))


    p1 = Polygon(
        Point(0, 0), Point(3, -1),
        Point(6, 0), Point(4, 5),
        Point(2, 3), Point(0, 3))
    p2 = Polygon(
        Point(6, 0), Point(3, -1),
        Point(0, 0), Point(0, 3),
        Point(2, 3), Point(4, 5))
    p3 = Polygon(
        Point(0, 0), Point(3, 0),
        Point(5, 2), Point(4, 4))
    p4 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(5, 2), Point(3, 0))
    p5 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(0, 4))
    p6 = Polygon(
        Point(-11, 1), Point(-9, 6.6),
        Point(-4, -3), Point(-8.4, -8.7))
    r = Ray(Point(-9,6.6), Point(-9,5.5))
    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    # ensure convex for both CW and CCW point specification
    assert p3.is_convex()
    assert p4.is_convex()
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) is None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) is False
    assert p5.encloses_point(Point(4, 0)) is False
    p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(
        Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(
        Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    warnings.filterwarnings(
        "error", message="Polygons may intersect producing erroneous output")
    raises(UserWarning,
           lambda: Polygon(Point(0, 0), Point(1, 0),
           Point(1, 1)).distance(
           Polygon(Point(0, 0), Point(0, 1), Point(1, 1))))
    warnings.filterwarnings(
        "ignore", message="Polygons may intersect producing erroneous output")
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
        Point(0, 0)
    raises(ValueError, lambda: Polygon(
        Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
    assert p6.intersection(r) == [Point(-9, 33/5), Point(-9, -84/13)]
    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
           1), Point(1, 1)))
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
    raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))

    assert p1 != p2
    assert p1.interior_angle == 3*pi/5
    assert p1.exterior_angle == 2*pi/5
    assert p2.apothem == 5*cos(pi/5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) is False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi/3)
    assert p1.rotation == pi/3
    assert p1.vertices[0] == Point(5, 5*sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var == 5 or var == 10 or var == pi / 3
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, 2*pi/3)
    assert p1 == p1_old

    assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
    assert p1.length == 20*sqrt(-sqrt(5)/8 + 5/8)
    assert p1.scale(2, 2) == \
        RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
        Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))

    assert repr(p1) == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, lambda: Triangle(Point(0, 0)))

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() is False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf()/2)

    assert t1.is_equilateral() is False
    assert t2.is_equilateral()
    assert t3.is_equilateral() is False
    assert are_similar(t1, t2) is False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) is False
    assert t1.is_similar(Point(0, 0)) is False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125*sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
    assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
    assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1
    t = S('''Triangle(
    Point(100080156402737/5000000000000, 79782624633431/500000000000),
    Point(39223884078253/2000000000000, 156345163124289/1000000000000),
    Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
    assert t.orthocenter == S('''Point(-780660869050599840216997'''
    '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
    '''20151573611150265741278060334545897615974257/16073686192120448448157'''
    '''8148466200000000000)''')

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(
        Point(0, 0), Point(1, 0),
        Point(1, 1), Point(0, 1))
    p2 = Polygon(
        Point(0, Rational(5)/4), Point(1, Rational(5)/4),
        Point(1, Rational(9)/4), Point(0, Rational(9)/4))
    p3 = Polygon(
        Point(1, 2), Point(2, 2),
        Point(2, 1))
    p4 = Polygon(
        Point(1, 1), Point(Rational(6)/5, 1),
        Point(1, Rational(6)/5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)

    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3)/4
    assert p3.distance(pt2) == sqrt(2)/2

    '''Polygon to Polygon'''
    # p1.distance(p2) emits a warning
    # First, test the warning
    warnings.filterwarnings("error",
        message="Polygons may intersect producing erroneous output")
    raises(UserWarning, lambda: p1.distance(p2))
    # now test the actual output
    warnings.filterwarnings("ignore",
        message="Polygons may intersect producing erroneous output")
    assert p1.distance(p2) == half/2

    assert p1.distance(p3) == sqrt(2)/2
    assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
Пример #8
0
def test_issue_4788():
    assert srepr(S(1.0 + 0J)) == srepr(S(1.0)) == srepr(Float(1.0))
Пример #9
0
def test_Float():
    def eq(a, b):
        t = Float("1.0E-15")
        return (-t < a - b < t)

    a = Float(2) ** Float(3)
    assert eq(a.evalf(), Float(8))
    assert eq((pi ** -1).evalf(), Float("0.31830988618379067"))
    a = Float(2) ** Float(4)
    assert eq(a.evalf(), Float(16))
    assert (S(.3) == S(.5)) is False
    x_str = Float((0, '13333333333333', -52, 53))
    x2_str = Float((0, '26666666666666', -53, 53))
    x_hex = Float((0, long(0x13333333333333), -52, 53))
    x_dec = Float((0, 5404319552844595, -52, 53))
    x2_hex = Float((0, long(0x13333333333333)*2, -53, 53))
    assert x_str == x_hex == x_dec == x2_hex == Float(1.2)
    # x2_str and 1.2 are superficially the same
    assert str(x2_str) == str(Float(1.2))
    # but are different at the mpf level
    assert Float(1.2)._mpf_ == (0, long(5404319552844595), -52, 53)
    assert x2_str._mpf_ == (0, long(10808639105689190), -53, 53)

    assert Float((0, long(0), -123, -1)) == Float('nan')
    assert Float((0, long(0), -456, -2)) == Float('inf') == Float('+inf')
    assert Float((1, long(0), -789, -3)) == Float('-inf')

    raises(ValueError, lambda: Float((0, 7, 1, 3), ''))

    assert Float('+inf').is_bounded is False
    assert Float('+inf').is_negative is False
    assert Float('+inf').is_positive is True
    assert Float('+inf').is_unbounded is True
    assert Float('+inf').is_zero is False

    assert Float('-inf').is_bounded is False
    assert Float('-inf').is_negative is True
    assert Float('-inf').is_positive is False
    assert Float('-inf').is_unbounded is True
    assert Float('-inf').is_zero is False

    assert Float('0.0').is_bounded is True
    assert Float('0.0').is_negative is False
    assert Float('0.0').is_positive is False
    assert Float('0.0').is_unbounded is False
    assert Float('0.0').is_zero is True

    # rationality properties
    assert Float(1).is_rational is None
    assert Float(1).is_irrational is None
    assert sqrt(2).n(15).is_rational is None
    assert sqrt(2).n(15).is_irrational is None

    # do not automatically evalf
    def teq(a):
        assert (a.evalf() == a) is False
        assert (a.evalf() != a) is True
        assert (a == a.evalf()) is False
        assert (a != a.evalf()) is True

    teq(pi)
    teq(2*pi)
    teq(cos(0.1, evaluate=False))

    i = 12345678901234567890
    assert _aresame(Float(12, ''), Float('12', ''))
    assert _aresame(Float(Integer(i), ''), Float(i, ''))
    assert _aresame(Float(i, ''), Float(str(i), 20))
    assert not _aresame(Float(str(i)), Float(i, ''))

    # inexact floats (repeating binary = denom not multiple of 2)
    # cannot have precision greater than 15
    assert Float(.125, 22) == .125
    assert Float(2.0, 22) == 2
    assert float(Float('.12500000000000001', '')) == .125
    raises(ValueError, lambda: Float(.12500000000000001, ''))

    # allow spaces
    Float('123 456.123 456') == Float('123456.123456')
    Integer('123 456') == Integer('123456')
    Rational('123 456.123 456') == Rational('123456.123456')
    assert Float(' .3e2') == Float('0.3e2')

    # allow auto precision detection
    assert Float('.1', '') == Float(.1, 1)
    assert Float('.125', '') == Float(.125, 3)
    assert Float('.100', '') == Float(.1, 3)
    assert Float('2.0', '') == Float('2', 2)

    raises(ValueError, lambda: Float("12.3d-4", ""))
    raises(ValueError, lambda: Float(12.3, ""))
    raises(ValueError, lambda: Float('.'))
    raises(ValueError, lambda: Float('-.'))

    zero = Float('0.0')
    assert Float('-0') == zero
    assert Float('.0') == zero
    assert Float('-.0') == zero
    assert Float('-0.0') == zero
    assert Float(0.0) == zero
    assert Float(0) == zero
    assert Float(0, '') == Float('0', '')
    assert Float(1) == Float(1.0)
    assert Float(S.Zero) == zero
    assert Float(S.One) == Float(1.0)

    assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3)

    assert '{0:.3f}'.format(Float(4.236622)) == '4.237'
    assert '{0:.35f}'.format(Float(pi.n(40), 40)) == '3.14159265358979323846264338327950288'
Пример #10
0
def test_DiscreteMarkovChain():

    # pass only the name
    X = DiscreteMarkovChain("X")
    assert X.state_space == S.Reals
    assert X.index_set == S.Naturals0
    assert X.transition_probabilities == None
    t = symbols('t', positive=True, integer=True)
    assert isinstance(X[t], RandomIndexedSymbol)
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain(1))
    raises(NotImplementedError, lambda: X(t))

    raises(ValueError, lambda: sample_stochastic_process(t))
    raises(ValueError, lambda: next(sample_stochastic_process(X)))
    # pass name and state_space
    Y = DiscreteMarkovChain("Y", [1, 2, 3])
    assert Y.transition_probabilities == None
    assert Y.state_space == FiniteSet(1, 2, 3)
    assert P(Eq(Y[2], 1), Eq(Y[0], 2)) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))
    raises(ValueError, lambda: next(sample_stochastic_process(Y)))

    # pass name, state_space and transition_probabilities
    T = Matrix([[0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]])
    TS = MatrixSymbol('T', 3, 3)
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    YS = DiscreteMarkovChain("Y", [0, 1, 2], TS)
    assert YS._transient2transient() == None
    assert YS._transient2absorbing() == None
    assert Y.joint_distribution(1, Y[2],
                                3) == JointDistribution(Y[1], Y[2], Y[3])
    raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
    assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
    assert str(P(Eq(YS[3], 2), Eq(YS[1], 1))) == \
        "T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2]"
    assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
    assert P(Eq(YS[3], 3), Eq(YS[1], 1)) is S.Zero
    TO = Matrix([[0.25, 0.75, 0], [0, 0.25, 0.75], [0.75, 0, 0.25]])
    assert P(Eq(Y[3], 2),
             Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(
                 0.375, 3)
    assert E(Y[3], evaluate=False) == Expectation(Y[3])
    assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
    TSO = MatrixSymbol('T', 4, 4)
    raises(
        ValueError,
        lambda: str(P(Eq(YS[3], 2),
                      Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
    raises(TypeError,
           lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
    raises(
        ValueError,
        lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
    raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
    raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))

    # extended tests for probability queries
    TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    assert P(
        And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
        Eq(Probability(Eq(Y[0], 0)), Rational(1, 4))
        & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
            Probability(Eq(Y[0], 0))/4
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
             Eq(Y[1], 1)) == 0.1 * Probability(Eq(Y[0], 0))

    # testing properties of Markov chain
    TO2 = Matrix([[S.One, 0, 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
    Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
    assert Y3._transient2absorbing() == None
    raises(ValueError, lambda: Y3.fundamental_matrix())
    assert Y2.is_absorbing_chain() == True
    assert Y3.is_absorbing_chain() == False
    TO4 = Matrix([[Rational(1, 5),
                   Rational(2, 5),
                   Rational(2, 5)], [Rational(1, 10), S.Half,
                                     Rational(2, 5)],
                  [Rational(3, 5),
                   Rational(3, 10),
                   Rational(1, 10)]])
    Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
    w = ImmutableMatrix([[Rational(11, 39),
                          Rational(16, 39),
                          Rational(4, 13)]])
    assert Y4.limiting_distribution == w
    assert Y4.is_regular() == True
    TS1 = MatrixSymbol('T', 3, 3)
    Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
    assert Y5.limiting_distribution(w, TO4).doit() == True
    TO6 = Matrix([[S.One, 0, 0, 0, 0], [S.Half, 0, S.Half, 0, 0],
                  [0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half],
                  [0, 0, 0, 0, 1]])
    Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
    assert Y6._transient2absorbing() == ImmutableMatrix([[S.Half, 0], [0, 0],
                                                         [0, S.Half]])
    assert Y6._transient2transient() == ImmutableMatrix([[0, S.Half, 0],
                                                         [S.Half, 0, S.Half],
                                                         [0, S.Half, 0]])
    assert Y6.fundamental_matrix() == ImmutableMatrix(
        [[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One],
         [S.Half, S.One, Rational(3, 2)]])
    assert Y6.absorbing_probabilites() == ImmutableMatrix(
        [[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half],
         [Rational(1, 4), Rational(3, 4)]])

    # testing miscellaneous queries
    T = Matrix([[S.Half, Rational(1, 4),
                 Rational(1, 4)], [Rational(1, 3), 0,
                                   Rational(2, 3)], [S.Half, S.Half, 0]])
    X = DiscreteMarkovChain('X', [0, 1, 2], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
    assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
Пример #11
0
def test_Interval_is_right_unbounded():
    assert Interval(3, 4).is_right_unbounded is False
    assert Interval(3, oo).is_right_unbounded is True
    assert Interval(3, Float("+inf")).is_right_unbounded is True
Пример #12
0
def test_Interval_is_left_unbounded():
    assert Interval(3, 4).is_left_unbounded is False
    assert Interval(-oo, 3).is_left_unbounded is True
    assert Interval(Float("-inf"), 3).is_left_unbounded is True
Пример #13
0
def test_real_mul():
    assert Float(0) * pi * x == Float(0)
    assert set((Float(1) * pi * x).args) == set([Float(1), pi, x])
Пример #14
0
def test_float_int():
    assert int(float(sqrt(10))) == int(sqrt(10))
    assert int(pi**1000) % 10 == 2
    assert int(Float('1.123456789012345678901234567890e20', '')) == \
        112345678901234567890L
    assert int(Float('1.123456789012345678901234567890e25', '')) == \
        11234567890123456789012345L
    # decimal forces float so it's not an exact integer ending in 000000
    assert int(Float('1.123456789012345678901234567890e35', '')) == \
        112345678901234567890123456789000192
    assert int(Float('123456789012345678901234567890e5', '')) == \
        12345678901234567890123456789000000
    assert Integer(Float('1.123456789012345678901234567890e20', '')) == \
        112345678901234567890
    assert Integer(Float('1.123456789012345678901234567890e25', '')) == \
        11234567890123456789012345
    # decimal forces float so it's not an exact integer ending in 000000
    assert Integer(Float('1.123456789012345678901234567890e35', '')) == \
        112345678901234567890123456789000192
    assert Integer(Float('123456789012345678901234567890e5', '')) == \
        12345678901234567890123456789000000
    assert Float('123000e-2', '') == Float('1230.00', '')
    assert Float('123000e2', '') == Float('12300000', '')

    assert int(1 + Rational('.9999999999999999999999999')) == 1
    assert int(pi / 1e20) == 0
    assert int(1 + pi / 1e20) == 1
    assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2)
    assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2)
    assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1
    raises(TypeError, lambda: float(x))
    raises(TypeError, lambda: float(sqrt(-1)))

    assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \
        12345678901234567891
Пример #15
0
def test_Mod():
    assert Mod(x, 1).func is Mod
    assert pi % pi == S.Zero
    assert Mod(5, 3) == 2
    assert Mod(-5, 3) == 1
    assert Mod(5, -3) == -1
    assert Mod(-5, -3) == -2
    assert type(Mod(3.2, 2, evaluate=False)) == Mod
    assert 5 % x == Mod(5, x)
    assert x % 5 == Mod(x, 5)
    assert x % y == Mod(x, y)
    assert (x % y).subs({x: 5, y: 3}) == 2

    # Float handling
    point3 = Float(3.3) % 1
    assert (x - 3.3) % 1 == Mod(1. * x + 1 - point3, 1)
    assert Mod(-3.3, 1) == 1 - point3
    assert Mod(0.7, 1) == Float(0.7)
    e = Mod(1.3, 1)
    point3 = Float._new(Float(.3)._mpf_, 51)
    assert e == point3 and e.is_Float
    e = Mod(1.3, .7)
    point6 = Float._new(Float(.6)._mpf_, 51)
    assert e == point6 and e.is_Float
    e = Mod(1.3, Rational(7, 10))
    assert e == point6 and e.is_Float
    e = Mod(Rational(13, 10), 0.7)
    assert e == point6 and e.is_Float
    e = Mod(Rational(13, 10), Rational(7, 10))
    assert e == .6 and e.is_Rational

    # check that sign is right
    r2 = sqrt(2)
    r3 = sqrt(3)
    for i in [-r3, -r2, r2, r3]:
        for j in [-r3, -r2, r2, r3]:
            assert test_numerically(i % j, i.n() % j.n())
    for _x in range(4):
        for _y in range(9):
            reps = [(x, _x), (y, _y)]
            assert Mod(3 * x + y, 9).subs(reps) == (3 * _x + _y) % 9

    # denesting
    #   easy case
    assert Mod(Mod(x, y), y) == Mod(x, y)
    #   in case someone attempts more denesting
    for i in [-3, -2, 2, 3]:
        for j in [-3, -2, 2, 3]:
            for k in range(3):
                # print i, j, k
                assert Mod(Mod(k, i), j) == (k % i) % j

    # known difference
    assert Mod(5 * sqrt(2), sqrt(5)) == 5 * sqrt(2) - 3 * sqrt(5)
    p = symbols('p', positive=True)
    assert Mod(p + 1, p + 3) == p + 1
    n = symbols('n', negative=True)
    assert Mod(n - 3, n - 1) == -2
    assert Mod(n - 2 * p, n - p) == -p
    assert Mod(p - 2 * n, p - n) == -n

    # handling sums
    assert (x + 3) % 1 == Mod(x, 1)
    assert (x + 3.0) % 1 == Mod(1. * x, 1)
    assert (x - S(33) / 10) % 1 == Mod(x + S(7) / 10, 1)
    assert str(Mod(.6 * x + y, .3 * y)) == str(Mod(0.1 * y + 0.6 * x, 0.3 * y))
    assert (x + 1) % x == 1 % x
    assert (x + y) % x == y % x
    assert (x + y + 2) % x == (y + 2) % x
    assert (a + 3 * x + 1) % (2 * x) == Mod(a + x + 1, 2 * x)
    assert (12 * x + 18 * y) % (3 * x) == 3 * Mod(6 * y, x)

    # gcd extraction
    assert (-3 * x) % (-2 * y) == -Mod(3 * x, 2 * y)
    assert (.6 * pi) % (.3 * x * pi) == 0.3 * pi * Mod(2, x)
    assert (.6 * pi) % (.31 * x * pi) == pi * Mod(0.6, 0.31 * x)
    assert (6 * pi) % (.3 * x * pi) == pi * Mod(6, 0.3 * x)
    assert (6 * pi) % (.31 * x * pi) == pi * Mod(6, 0.31 * x)
    assert (6 * pi) % (.42 * x * pi) == pi * Mod(6, 0.42 * x)
    assert (12 * x) % (2 * y) == 2 * Mod(6 * x, y)
    assert (12 * x) % (3 * 5 * y) == 3 * Mod(4 * x, 5 * y)
    assert (12 * x) % (15 * x * y) == 3 * x * Mod(4, 5 * y)
    assert (-2 * pi) % (3 * pi) == pi
    assert (2 * x + 2) % (x + 1) == 0
    assert (x * (x + 1)) % (x + 1) == (x + 1) * Mod(x, 1)
    assert Mod(5.0 * x, 0.1 * y) == 0.1 * Mod(50 * x, y)
    i = Symbol('i', integer=True)
    assert (3 * i * x) % (2 * i * y) == i * Mod(3 * x, 2 * y)
Пример #16
0
def test_Mod():
    assert Mod(x, 1).func is Mod
    assert pi % pi == S.Zero
    assert Mod(5, 3) == 2
    assert Mod(-5, 3) == 1
    assert Mod(5, -3) == -1
    assert Mod(-5, -3) == -2
    assert type(Mod(3.2, 2, evaluate=False)) == Mod
    assert 5 % x == Mod(5, x)
    assert x % 5 == Mod(x, 5)
    assert x % y == Mod(x, y)
    assert (x % y).subs({x: 5, y: 3}) == 2

    # Float handling
    point3 = Float(3.3) % 1
    assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1)
    assert Mod(-3.3, 1) == 1 - point3
    assert Mod(0.7, 1) == Float(0.7)
    e = Mod(1.3, 1)
    point3 = Float._new(Float(.3)._mpf_, 51)
    assert e == point3 and e.is_Float
    e = Mod(1.3, .7)
    point6 = Float._new(Float(.6)._mpf_, 51)
    assert e == point6 and e.is_Float
    e = Mod(1.3, Rational(7, 10))
    assert e == point6 and e.is_Float
    e = Mod(Rational(13, 10), 0.7)
    assert e == point6 and e.is_Float
    e = Mod(Rational(13, 10), Rational(7, 10))
    assert e == .6 and e.is_Rational

    # check that sign is right
    r2 = sqrt(2)
    r3 = sqrt(3)
    for i in [-r3, -r2, r2, r3]:
        for j in [-r3, -r2, r2, r3]:
            assert test_numerically(i % j, i.n() % j.n())
    for _x in range(4):
        for _y in range(9):
            reps = [(x, _x), (y, _y)]
            assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9

    # denesting
    #   easy case
    assert Mod(Mod(x, y), y) == Mod(x, y)
    #   in case someone attempts more denesting
    for i in [-3, -2, 2, 3]:
        for j in [-3, -2, 2, 3]:
            for k in range(3):
                # print i, j, k
                assert Mod(Mod(k, i), j) == (k % i) % j

    # known difference
    assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5)
    p = symbols('p', positive=True)
    assert Mod(p + 1, p + 3) == p + 1
    n = symbols('n', negative=True)
    assert Mod(n - 3, n - 1) == -2
    assert Mod(n - 2*p, n - p) == -p
    assert Mod(p - 2*n, p - n) == -n

    # handling sums
    assert (x + 3) % 1 == Mod(x, 1)
    assert (x + 3.0) % 1 == Mod(1.*x, 1)
    assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1)
    assert str(Mod(.6*x + y, .3*y)) == str(Mod(0.1*y + 0.6*x, 0.3*y))
    assert (x + 1) % x == 1 % x
    assert (x + y) % x == y % x
    assert (x + y + 2) % x == (y + 2) % x
    assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x)
    assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x)

    # gcd extraction
    assert (-3*x) % (-2*y) == -Mod(3*x, 2*y)
    assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x)
    assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x)
    assert (6*pi) % (.3*x*pi) == pi*Mod(6, 0.3*x)
    assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x)
    assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x)
    assert (12*x) % (2*y) == 2*Mod(6*x, y)
    assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y)
    assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y)
    assert (-2*pi) % (3*pi) == pi
    assert (2*x + 2) % (x + 1) == 0
    assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1)
    assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y)
    i = Symbol('i', integer=True)
    assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y)
    assert Mod(4*i, 4) == 0
Пример #17
0
def test_BernoulliProcess():

    B = BernoulliProcess("B", p=0.6, success=1, failure=0)
    assert B.state_space == FiniteSet(0, 1)
    assert B.index_set == S.Naturals0
    assert B.success == 1
    assert B.failure == 0

    X = BernoulliProcess("X", p=Rational(1, 3), success='H', failure='T')
    assert X.state_space == FiniteSet('H', 'T')
    H, T = symbols("H,T")
    assert E(X[1] + X[2] * X[3]
             ) == H**2 / 9 + 4 * H * T / 9 + H / 3 + 4 * T**2 / 9 + 2 * T / 3

    t, x = symbols('t, x', positive=True, integer=True)
    assert isinstance(B[t], RandomIndexedSymbol)

    raises(ValueError,
           lambda: BernoulliProcess("X", p=1.1, success=1, failure=0))
    raises(NotImplementedError, lambda: B(t))

    raises(IndexError, lambda: B[-3])
    assert B.joint_distribution(B[3], B[9]) == JointDistributionHandmade(
        Lambda(
            (B[3], B[9]),
            Piecewise((0.6, Eq(B[3], 1)), (0.4, Eq(B[3], 0)),
                      (0, True)) * Piecewise((0.6, Eq(B[9], 1)),
                                             (0.4, Eq(B[9], 0)), (0, True))))

    assert B.joint_distribution(2, B[4]) == JointDistributionHandmade(
        Lambda(
            (B[2], B[4]),
            Piecewise((0.6, Eq(B[2], 1)), (0.4, Eq(B[2], 0)),
                      (0, True)) * Piecewise((0.6, Eq(B[4], 1)),
                                             (0.4, Eq(B[4], 0)), (0, True))))

    # Test for the sum distribution of Bernoulli Process RVs
    Y = B[1] + B[2] + B[3]
    assert P(Eq(Y, 0)).round(2) == Float(0.06, 1)
    assert P(Eq(Y, 2)).round(2) == Float(0.43, 2)
    assert P(Eq(Y, 4)).round(2) == 0
    assert P(Gt(Y, 1)).round(2) == Float(0.65, 2)
    # Test for independency of each Random Indexed variable
    assert P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0)
             & Eq(B[4], 1)).round(2) == Float(0.06, 1)

    assert E(2 * B[1] + B[2]).round(2) == Float(1.80, 3)
    assert E(2 * B[1] + B[2] + 5).round(2) == Float(6.80, 3)
    assert E(B[2] * B[4] + B[10]).round(2) == Float(0.96, 2)
    assert E(B[2] > 0, Eq(B[1], 1) & Eq(B[2], 1)).round(2) == Float(0.60, 2)
    assert E(B[1]) == 0.6
    assert P(B[1] > 0).round(2) == Float(0.60, 2)
    assert P(B[1] < 1).round(2) == Float(0.40, 2)
    assert P(B[1] > 0, B[2] <= 1).round(2) == Float(0.60, 2)
    assert P(B[12] * B[5] > 0).round(2) == Float(0.36, 2)
    assert P(B[12] * B[5] > 0, B[4] < 1).round(2) == Float(0.36, 2)
    assert P(Eq(B[2], 1), B[2] > 0) == 1
    assert P(Eq(B[5], 3)) == 0
    assert P(Eq(B[1], 1), B[1] < 0) == 0
    assert P(B[2] > 0, Eq(B[2], 1)) == 1
    assert P(B[2] < 0, Eq(B[2], 1)) == 0
    assert P(B[2] > 0, B[2] == 7) == 0
    assert P(B[5] > 0, B[5]) == BernoulliDistribution(0.6, 0, 1)
    raises(ValueError, lambda: P(3))
    raises(ValueError, lambda: P(B[3] > 0, 3))

    # test issue 19456
    expr = Sum(B[t], (t, 0, 4))
    expr2 = Sum(B[t], (t, 1, 3))
    expr3 = Sum(B[t]**2, (t, 1, 3))
    assert expr.doit() == B[0] + B[1] + B[2] + B[3] + B[4]
    assert expr2.doit() == Y
    assert expr3.doit() == B[1]**2 + B[2]**2 + B[3]**2
    assert B[2 * t].free_symbols == {B[2 * t], t}
    assert B[4].free_symbols == {B[4]}
    assert B[x * t].free_symbols == {B[x * t], x, t}
Пример #18
0
def test_erf_evalf():
    assert abs(erf(Float(2.0)) - 0.995322265) < 1E-8  # XXX
Пример #19
0
def test_issue_12092():
    f = implemented_function('f', lambda x: x**2)
    assert f(f(2)).evalf() == Float(16)
Пример #20
0
def test_limit_with_Float():
    k = symbols("k")
    assert limit(1.0**k, k, oo) == 1
    assert limit(0.3 * 1.0**k, k, oo) == Float(0.3)
Пример #21
0
def test_log_apply_evalf():
    value = (log(3)/log(2) - 1).evalf()
    assert value.epsilon_eq(Float("0.58496250072115618145373"))
Пример #22
0
def feq(a, b):
    """Test if two floating point values are 'equal'."""
    t = Float("1.0E-10")
    return -t < a - b < t
Пример #23
0
def test_function_evalf():
    def eq(a, b, eps):
        return abs(a - b) < eps

    assert eq(sin(1).evalf(15), Float("0.841470984807897"), 1e-13)
    assert eq(
        sin(2).evalf(25), Float("0.9092974268256816953960199", 25), 1e-23)
    assert eq(
        sin(1 + I).evalf(15),
        Float("1.29845758141598") + Float("0.634963914784736") * I, 1e-13)
    assert eq(
        exp(1 + I).evalf(15),
        Float("1.46869393991588") + Float("2.28735528717884239") * I, 1e-13)
    assert eq(
        exp(-0.5 + 1.5 * I).evalf(15),
        Float("0.0429042815937374") + Float("0.605011292285002") * I, 1e-13)
    assert eq(
        log(pi + sqrt(2) * I).evalf(15),
        Float("1.23699044022052") + Float("0.422985442737893") * I, 1e-13)
    assert eq(cos(100).evalf(15), Float("0.86231887228768"), 1e-13)
Пример #24
0
def test_conversion_to_mpmath():
    assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1)
    assert mpmath.mpmathify(Rational(1, 2)) == mpmath.mpf(0.5)
    assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23')
Пример #25
0
def test_nsimplify():
    x = Symbol("x")
    assert nsimplify(0) == 0
    assert nsimplify(-1) == -1
    assert nsimplify(1) == 1
    assert nsimplify(1 + x) == 1 + x
    assert nsimplify(2.7) == Rational(27, 10)
    assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5)) / 2
    assert nsimplify((1 + sqrt(5)) / 4, [GoldenRatio]) == GoldenRatio / 2
    assert nsimplify(2 / GoldenRatio, [GoldenRatio]) == 2 * GoldenRatio - 2
    assert nsimplify(exp(5*pi*I/3, evaluate=False)) == \
        sympify('1/2 - sqrt(3)*I/2')
    assert nsimplify(sin(3*pi/5, evaluate=False)) == \
        sympify('sqrt(sqrt(5)/8 + 5/8)')
    assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \
        sqrt(pi) + sqrt(pi)/2*I
    assert nsimplify(2 + exp(2 * atan('1/4') * I)) == sympify('49/17 + 8*I/17')
    assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
    assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
    assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
    assert nsimplify(2.0**(1 / 3.), tolerance=0.001) == Rational(635, 504)
    assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \
        2**Rational(1, 3)
    assert nsimplify(x + .5, rational=True) == Rational(1, 2) + x
    assert nsimplify(1 / .3 + x, rational=True) == Rational(10, 3) + x
    assert nsimplify(log(3).n(), rational=True) == \
        sympify('109861228866811/100000000000000')
    assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi * log(2) / 8
    assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \
        -pi/4 - log(2) + S(7)/4
    assert nsimplify(x / 7.0) == x / 7
    assert nsimplify(pi / 1e2) == pi / 100
    assert nsimplify(pi / 1e2, rational=False) == pi / 100.0
    assert nsimplify(pi / 1e-7) == 10000000 * pi
    assert not nsimplify(
        factor(-3.0 * z**2 * (z**2)**(-2.5) + 3 * (z**2)**(-1.5))).atoms(Float)
    e = x**0.0
    assert e.is_Pow and nsimplify(x**0.0) == 1
    assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
    assert nsimplify(3.333333, tolerance=0.01,
                     rational=True) == Rational(10, 3)
    assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
    assert nsimplify(3.666666, tolerance=0.01,
                     rational=True) == Rational(11, 3)
    assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
    assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
    assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
    assert nsimplify(-203.1) == -S(2031) / 10
    assert nsimplify(.2, tolerance=0) == S.One / 5
    assert nsimplify(-.2, tolerance=0) == -S.One / 5
    assert nsimplify(.2222, tolerance=0) == S(1111) / 5000
    assert nsimplify(-.2222, tolerance=0) == -S(1111) / 5000
    # issue 7211, PR 4112
    assert nsimplify(S(2e-8)) == S(1) / 50000000
    # issue 7322 direct test
    assert nsimplify(1e-42, rational=True) != 0
    # issue 10336
    inf = Float('inf')
    infs = (-oo, oo, inf, -inf)
    for i in infs:
        ans = sign(i) * oo
        assert nsimplify(i) == ans
        assert nsimplify(i + x) == x + ans

    assert nsimplify(0.33333333, rational=True,
                     rational_conversion='exact') == Rational(0.33333333)

    # Make sure nsimplify on expressions uses full precision
    assert nsimplify(
        pi.evalf(100) * x,
        rational_conversion='exact').evalf(100) == pi.evalf(100) * x
Пример #26
0
def test_issue_6349():
    assert Float('23.e3', '')._prec == 10
    assert Float('23e3', '')._prec == 20
    assert Float('23000', '')._prec == 20
    assert Float('-23000', '')._prec == 20
Пример #27
0
def test_bug():
    x1 = Symbol('x1')
    x2 = Symbol('x2')
    y = x1*x2
    assert y.subs(x1, Float(3.0)) == Float(3.0)*x2
Пример #28
0
def test_Float():
    def eq(a, b):
        t = Float("1.0E-15")
        return (-t < a - b < t)

    a = Float(2)**Float(3)
    assert eq(a.evalf(), Float(8))
    assert eq((pi**-1).evalf(), Float("0.31830988618379067"))
    a = Float(2)**Float(4)
    assert eq(a.evalf(), Float(16))
    assert (S(.3) == S(.5)) is False
    x_str = Float((0, '13333333333333', -52, 53))
    x2_str = Float((0, '26666666666666', -53, 53))
    x_hex = Float((0, long(0x13333333333333), -52, 53))
    x_dec = Float((0, 5404319552844595, -52, 53))
    x2_hex = Float((0, long(0x13333333333333) * 2, -53, 53))
    assert x_str == x_hex == x_dec == x2_hex == Float(1.2)
    # x2_str and 1.2 are superficially the same
    assert str(x2_str) == str(Float(1.2))
    # but are different at the mpf level
    assert Float(1.2)._mpf_ == (0, long(5404319552844595), -52, 53)
    assert x2_str._mpf_ == (0, long(10808639105689190), -53, 53)

    assert Float((0, long(0), -123, -1)) == Float('nan')
    assert Float((0, long(0), -456, -2)) == Float('inf') == Float('+inf')
    assert Float((1, long(0), -789, -3)) == Float('-inf')

    raises(ValueError, lambda: Float((0, 7, 1, 3), ''))

    assert Float('+inf').is_bounded is False
    assert Float('+inf').is_finite is False
    assert Float('+inf').is_negative is False
    assert Float('+inf').is_positive is True
    assert Float('+inf').is_unbounded is True
    assert Float('+inf').is_zero is False

    assert Float('-inf').is_bounded is False
    assert Float('-inf').is_finite is False
    assert Float('-inf').is_negative is True
    assert Float('-inf').is_positive is False
    assert Float('-inf').is_unbounded is True
    assert Float('-inf').is_zero is False

    assert Float('0.0').is_bounded is True
    assert Float('0.0').is_finite is False
    assert Float('0.0').is_negative is False
    assert Float('0.0').is_positive is False
    assert Float('0.0').is_unbounded is False
    assert Float('0.0').is_zero is True

    # rationality properties
    assert Float(1).is_rational is None
    assert Float(1).is_irrational is None
    assert sqrt(2).n(15).is_rational is None
    assert sqrt(2).n(15).is_irrational is None

    # do not automatically evalf
    def teq(a):
        assert (a.evalf() == a) is False
        assert (a.evalf() != a) is True
        assert (a == a.evalf()) is False
        assert (a != a.evalf()) is True

    teq(pi)
    teq(2 * pi)
    teq(cos(0.1, evaluate=False))

    i = 12345678901234567890
    assert _aresame(Float(12, ''), Float('12', ''))
    assert _aresame(Float(Integer(i), ''), Float(i, ''))
    assert _aresame(Float(i, ''), Float(str(i), 20))
    assert not _aresame(Float(str(i)), Float(i, ''))

    # inexact floats (repeating binary = denom not multiple of 2)
    # cannot have precision greater than 15
    assert Float(.125, 22) == .125
    assert Float(2.0, 22) == 2
    assert float(Float('.12500000000000001', '')) == .125
    raises(ValueError, lambda: Float(.12500000000000001, ''))

    # allow spaces
    Float('123 456.123 456') == Float('123456.123456')
    Integer('123 456') == Integer('123456')
    Rational('123 456.123 456') == Rational('123456.123456')
    assert Float(' .3e2') == Float('0.3e2')

    # allow auto precision detection
    assert Float('.1', '') == Float(.1, 1)
    assert Float('.125', '') == Float(.125, 3)
    assert Float('.100', '') == Float(.1, 3)
    assert Float('2.0', '') == Float('2', 2)

    raises(ValueError, lambda: Float("12.3d-4", ""))
    raises(ValueError, lambda: Float(12.3, ""))
    raises(ValueError, lambda: Float('.'))
    raises(ValueError, lambda: Float('-.'))

    zero = Float('0.0')
    assert Float('-0') == zero
    assert Float('.0') == zero
    assert Float('-.0') == zero
    assert Float('-0.0') == zero
    assert Float(0.0) == zero
    assert Float(0) == zero
    assert Float(0, '') == Float('0', '')
    assert Float(1) == Float(1.0)
    assert Float(S.Zero) == zero
    assert Float(S.One) == Float(1.0)

    assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3)

    assert '{0:.3f}'.format(Float(4.236622)) == '4.237'
    assert '{0:.35f}'.format(Float(
        pi.n(40), 40)) == '3.14159265358979323846264338327950288'
Пример #29
0
def test_subbug2():
    # Ensure this does not cause infinite recursion
    assert Float(7.7).epsilon_eq(abs(x).subs(x, -7.7))
Пример #30
0
def test_Float():
    def eq(a, b):
        t = Float("1.0E-15")
        return -t < a - b < t

    a = Float(2) ** Float(3)
    assert eq(a.evalf(), Float(8))
    assert eq((pi ** -1).evalf(), Float("0.31830988618379067"))
    a = Float(2) ** Float(4)
    assert eq(a.evalf(), Float(16))
    assert (S(0.3) == S(0.5)) is False
    x_str = Float((0, "13333333333333", -52, 53))
    x2_str = Float((0, "26666666666666", -53, 53))
    x_hex = Float((0, 0x13333333333333L, -52, 53))
    x_dec = Float((0, 5404319552844595L, -52, 53))
    x2_hex = Float((0, 0x13333333333333L * 2, -53, 53))
    assert x_str == x_hex == x_dec == x2_hex == Float(1.2)
    # x2_str and 1.2 are superficially the same
    assert str(x2_str) == str(Float(1.2))
    # but are different at the mpf level
    assert Float(1.2)._mpf_ == (0, 5404319552844595L, -52, 53)
    assert x2_str._mpf_ == (0, 10808639105689190L, -53, 53)

    assert Float((0, 0L, -123, -1)) == Float("nan")
    assert Float((0, 0L, -456, -2)) == Float("inf") == Float("+inf")
    assert Float((1, 0L, -789, -3)) == Float("-inf")

    raises(ValueError, lambda: Float((0, 7, 1, 3), ""))

    assert Float("+inf").is_bounded is False
    assert Float("+inf").is_finite is False
    assert Float("+inf").is_negative is False
    assert Float("+inf").is_positive is True
    assert Float("+inf").is_unbounded is True
    assert Float("+inf").is_zero is False

    assert Float("-inf").is_bounded is False
    assert Float("-inf").is_finite is False
    assert Float("-inf").is_negative is True
    assert Float("-inf").is_positive is False
    assert Float("-inf").is_unbounded is True
    assert Float("-inf").is_zero is False

    assert Float("0.0").is_bounded is True
    assert Float("0.0").is_finite is False
    assert Float("0.0").is_negative is False
    assert Float("0.0").is_positive is False
    assert Float("0.0").is_unbounded is False
    assert Float("0.0").is_zero is True

    # do not automatically evalf
    def teq(a):
        assert (a.evalf() == a) is False
        assert (a.evalf() != a) is True
        assert (a == a.evalf()) is False
        assert (a != a.evalf()) is True

    teq(pi)
    teq(2 * pi)
    teq(cos(0.1, evaluate=False))

    i = 12345678901234567890
    assert _aresame(Float(12, ""), Float("12", ""))
    assert _aresame(Float(Integer(i), ""), Float(i, ""))
    assert _aresame(Float(i, ""), Float(str(i), 20))
    assert not _aresame(Float(str(i)), Float(i, ""))

    # inexact floats (repeating binary = denom not multiple of 2)
    # cannot have precision greater than 15
    assert Float(0.125, 22) == 0.125
    assert Float(2.0, 22) == 2
    assert float(Float(".12500000000000001", "")) == 0.125
    raises(ValueError, lambda: Float(0.12500000000000001, ""))

    # allow spaces
    Float("123 456.123 456") == Float("123456.123456")
    Integer("123 456") == Integer("123456")
    Rational("123 456.123 456") == Rational("123456.123456")
    assert Float(" .3e2") == Float("0.3e2")

    # allow auto precision detection
    assert Float(".1", "") == Float(0.1, 1)
    assert Float(".125", "") == Float(0.125, 3)
    assert Float(".100", "") == Float(0.1, 3)
    assert Float("2.0", "") == Float("2", 2)

    raises(ValueError, lambda: Float("12.3d-4", ""))
    raises(ValueError, lambda: Float(12.3, ""))
    raises(ValueError, lambda: Float("."))
    raises(ValueError, lambda: Float("-."))

    zero = Float("0.0")
    assert Float("-0") == zero
    assert Float(".0") == zero
    assert Float("-.0") == zero
    assert Float("-0.0") == zero
    assert Float(0.0) == zero
    assert Float(0) == zero
    assert Float(0, "") == Float("0", "")
    assert Float(1) == Float(1.0)
    assert Float(S.Zero) == zero
    assert Float(S.One) == Float(1.0)

    assert Float(decimal.Decimal("0.1"), 3) == Float(".1", 3)
Пример #31
0
def test_floats():
    a, b = map(Wild, 'ab')

    e = cos(0.12345, evaluate=False)**2
    r = e.match(a*cos(b)**2)
    assert r == {a: 1, b: Float(0.12345)}
Пример #32
0
def test_Float():
    def eq(a, b):
        t = Float("1.0E-15")
        return (-t < a-b < t)

    a = Float(2) ** Float(3)
    assert eq(a.evalf(), Float(8))
    assert eq((pi ** -1).evalf(), Float("0.31830988618379067"))
    a = Float(2) ** Float(4)
    assert eq(a.evalf(), Float(16))
    assert (S(.3) == S(.5)) is False
    x_str = Float((0, '13333333333333', -52, 53))
    x2_str = Float((0, '26666666666666', -53, 53))
    x_hex = Float((0, 0x13333333333333L, -52, 53))
    x_dec = Float((0, 5404319552844595L, -52, 53))
    x2_hex = Float((0, 0x13333333333333L*2, -53, 53))
    assert x_str == x_hex == x_dec == x2_hex == Float(1.2)
    # x2_str and 1.2 are superficially the same
    assert str(x2_str) == str(Float(1.2))
    # but are different at the mpf level
    assert Float(1.2)._mpf_ == (0, 5404319552844595L, -52, 53)
    assert x2_str._mpf_ == (0, 10808639105689190L, -53, 53)

    assert Float((0, 0L, -123, -1)) == Float('nan')
    assert Float((0, 0L, -456, -2)) == Float('inf') == Float('+inf')
    assert Float((1, 0L, -789, -3)) == Float('-inf')

    # do not automatically evalf
    def teq(a):
        assert (a.evalf () == a) is False
        assert (a.evalf () != a) is True
        assert (a == a.evalf()) is False
        assert (a != a.evalf()) is True

    teq(pi)
    teq(2*pi)
    teq(cos(0.1, evaluate=False))

    assert Float(0) is S.Zero
    assert Float(1) is S.One

    assert Float(S.Zero) is S.Zero
    assert Float(S.One) is S.One

    i = 12345678901234567890
    assert _aresame(Float(12), Integer(12))
    assert _aresame(Float(12, ''), Float('12', ''))
    assert _aresame(Float(i), Integer(i))
    assert _aresame(Float(Integer(i), ''), Float(i, ''))
    assert _aresame(Float(i, ''), Float(str(i), 20))
    assert not _aresame(Float(str(i)), Float(i, ''))

    # inexact floats (repeating binary = denom not multiple of 2)
    # cannot have precision greater than 15
    assert Float(.125, 22) == .125
    assert Float(2.0, 22) == 2
    assert float(Float('.12500000000000001', '')) == .125
    raises(ValueError, lambda: Float(.12500000000000001, ''))

    # allow spaces
    Float('123 456.123 456') == Float('123456.123456')
    Integer('123 456') == Integer('123456')
    Rational('123 456.123 456') == Rational('123456.123456')

    # allow auto precision detection
    assert Float('.1', '') == Float(.1, 1)
    assert Float('.125', '') == Float(.125, 3)
    assert Float('.100', '') == Float(.1, 3)
    assert Float('2.0', '') == Float('2', 2)

    raises(ValueError, lambda: Float("12.3d-4", ""))
    raises(ValueError, lambda:Float(12.3, ""))
    raises(ValueError, lambda:Float('.'))
    raises(ValueError, lambda:Float('-.'))
    assert Float('-0') == Float('0.0')
    assert Float('.0') == Float('0.0')
    assert Float('-.0') == Float('-0.0')
    assert Float(' .3e2') == Float('0.3e2')
Пример #33
0
def test_sympify_mpmath():
    value = sympify(mpmath.mpf(1.0))
    assert value == Float(1.0) and type(value) is Float

    mpmath.mp.dps = 12
    assert sympify(mpmath.pi).epsilon_eq(Float("3.14159265359"),
                                         Float("1e-12")) == True
    assert sympify(mpmath.pi).epsilon_eq(Float("3.14159265359"),
                                         Float("1e-13")) == False

    mpmath.mp.dps = 6
    assert sympify(mpmath.pi).epsilon_eq(Float("3.14159"),
                                         Float("1e-5")) == True
    assert sympify(mpmath.pi).epsilon_eq(Float("3.14159"),
                                         Float("1e-6")) == False

    assert sympify(mpmath.mpc(1.0 + 2.0j)) == Float(1.0) + Float(2.0) * I

    assert sympify(mpq(1, 2)) == S.Half
Пример #34
0
def test_mpf_norm():
    assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_
    assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_
Пример #35
0
 def _sympy_(self):
     return Float(1.1)
Пример #36
0
def test_issue_3982():
    a = [3, 2.0]
    assert sympify(a) == [Integer(3), Float(2.0)]
    assert sympify(tuple(a)) == Tuple(Integer(3), Float(2.0))
    assert sympify(set(a)) == FiniteSet(Integer(3), Float(2.0))
Пример #37
0
def test_erfinv_evalf():
    assert abs(erfinv(Float(0.2)) - 0.179143454621292) < 1E-13