Пример #1
0
def poly_factorize(poly):
    """Factorize multivariate polynomials into a sum of products of monomials.

    This function can be used to decompose polynomials into a form which
    minimizes the number of additions and multiplications, and which thus
    can be evaluated efficently."""
    max_deg = {}

    if 'horner' in dir(sympy):
        return sympy.horner(poly)

    if not isinstance(poly, Poly):
        poly = Poly(sympy.expand(poly), *poly.atoms(Symbol))

    denom, poly = poly.as_integer()

    # Determine the order of factorization.  We proceed through the
    # symbols, starting with the one present in the highest order
    # in the polynomial.
    for i, sym in enumerate(poly.symbols):
        max_deg[i] = 0

    for monom in poly.monoms:
        for i, symvar in enumerate(monom):
            max_deg[i] = max(max_deg[i], symvar)

    ret_poly = 0
    monoms = list(poly.monoms)

    for isym, maxdeg in sorted(max_deg.items(),
                               key=itemgetter(1),
                               reverse=True):
        drop_idx = []
        new_poly = []

        for i, monom in enumerate(monoms):
            if monom[isym] > 0:
                drop_idx.append(i)
                new_poly.append((poly.coeff(*monom), monom))

        if not new_poly:
            continue

        ret_poly += sympy.factor(Poly(new_poly, *poly.symbols))

        for idx in reversed(drop_idx):
            del monoms[idx]

    # Add any remaining O(1) terms.
    new_poly = []
    for i, monom in enumerate(monoms):
        new_poly.append((poly.coeff(*monom), monom))

    if new_poly:
        ret_poly += Poly(new_poly, *poly.symbols)

    return ret_poly / denom
Пример #2
0
def poly_factorize(poly):
    """Factorize multivariate polynomials into a sum of products of monomials.

    This function can be used to decompose polynomials into a form which
    minimizes the number of additions and multiplications, and which thus
    can be evaluated efficently."""
    max_deg = {}

    if 'horner' in dir(sympy):
        return sympy.horner(poly)

    if not isinstance(poly, Poly):
        poly = Poly(sympy.expand(poly), *poly.atoms(Symbol))

    denom, poly = poly.as_integer()

    # Determine the order of factorization.  We proceed through the
    # symbols, starting with the one present in the highest order
    # in the polynomial.
    for i, sym in enumerate(poly.symbols):
        max_deg[i] = 0

    for monom in poly.monoms:
        for i, symvar in enumerate(monom):
            max_deg[i] = max(max_deg[i], symvar)

    ret_poly = 0
    monoms = list(poly.monoms)

    for isym, maxdeg in sorted(max_deg.items(), key=itemgetter(1), reverse=True):
        drop_idx = []
        new_poly = []

        for i, monom in enumerate(monoms):
            if monom[isym] > 0:
                drop_idx.append(i)
                new_poly.append((poly.coeff(*monom), monom))

        if not new_poly:
            continue

        ret_poly += sympy.factor(Poly(new_poly, *poly.symbols))

        for idx in reversed(drop_idx):
            del monoms[idx]

    # Add any remaining O(1) terms.
    new_poly = []
    for i, monom in enumerate(monoms):
        new_poly.append((poly.coeff(*monom), monom))

    if new_poly:
        ret_poly += Poly(new_poly, *poly.symbols)

    return ret_poly / denom
Пример #3
0
def ratint(f, x, **flags):
    """Performs indefinite integration of rational functions.

       Given a field K and a rational function f = p/q, where p and q
       are polynomials in K[x], returns a function g such that f = g'.

       >>> from sympy.integrals.rationaltools import ratint
       >>> from sympy.abc import x

       >>> ratint(36/(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2), x)
       -4*log(1 + x) + 4*log(-2 + x) - (6 + 12*x)/(1 - x**2)

       References
       ==========

       .. [Bro05] M. Bronstein, Symbolic Integration I: Transcendental
          Functions, Second Edition, Springer-Verlag, 2005, pp. 35-70

    """
    if type(f) is not tuple:
        p, q = f.as_numer_denom()
    else:
        p, q = f

    p, q = Poly(p, x), Poly(q, x)

    g = poly_gcd(p, q)

    p = poly_div(p, g)[0]
    q = poly_div(q, g)[0]

    result, p = poly_div(p, q)

    result = result.integrate(x).as_basic()

    if p.is_zero:
        return result

    g, h = ratint_ratpart(p, q, x)

    P, Q = h.as_numer_denom()
    q, r = poly_div(P, Q, x)

    result += g + q.integrate(x).as_basic()

    if not r.is_zero:
        symbol = flags.get('symbol', 't')

        if not isinstance(symbol, Symbol):
            t = Symbol(symbol, dummy=True)
        else:
            t = symbol

        L = ratint_logpart(r, Q, x, t)

        real = flags.get('real')

        if real is None:
            if type(f) is not tuple:
                atoms = f.atoms()
            else:
                p, q = f

                atoms = p.atoms() \
                      | q.atoms()

            for elt in atoms - set([x]):
                if not elt.is_real:
                    real = False
                    break
            else:
                real = True

        eps = S(0)

        if not real:
            for h, q in L:
                eps += RootSum(Lambda(t, t*log(h.as_basic())), q)
        else:
            for h, q in L:
                R = log_to_real(h, q, x, t)

                if R is not None:
                    eps += R
                else:
                    eps += RootSum(Lambda(t, t*log(h.as_basic())), q)

        result += eps

    return result
Пример #4
0
def ratint(f, x, **flags):
    """Performs indefinite integration of rational functions.

       Given a field K and a rational function f = p/q, where p and q
       are polynomials in K[x], returns a function g such that f = g'.

       >>> from sympy import *
       >>> x = Symbol('x')

       >>> ratint(36/(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2), x)
       -4*log(1 + x) + 4*log(-2 + x) - (6 + 12*x)/(1 - x**2)

       References
       ==========

       .. [Bro05] M. Bronstein, Symbolic Integration I: Transcendental
          Functions, Second Edition, Springer-Verlang, 2005, pp. 35-70

    """
    if type(f) is not tuple:
        p, q = f.as_numer_denom()
    else:
        p, q = f

    p, q = Poly(p, x), Poly(q, x)

    g = poly_gcd(p, q)

    p = poly_div(p, g)[0]
    q = poly_div(q, g)[0]

    result, p = poly_div(p, q)

    result = result.integrate(x).as_basic()

    if p.is_zero:
        return result

    g, h = ratint_ratpart(p, q, x)

    P, Q = h.as_numer_denom()
    q, r = poly_div(P, Q, x)

    result += g + q.integrate(x).as_basic()

    if not r.is_zero:
        symbol = flags.get('symbol', 't')

        if not isinstance(symbol, Symbol):
            t = Symbol(symbol, dummy=True)
        else:
            t = symbol

        L = ratint_logpart(r, Q, x, t)

        real = flags.get('real')

        if real is None:
            if type(f) is not tuple:
                atoms = f.atoms()
            else:
                p, q = f

                atoms = p.atoms() \
                      | q.atoms()

            for elt in atoms - set([x]):
                if not elt.is_real:
                    real = False
                    break
            else:
                real = True

        eps = S(0)

        if not real:
            for h, q in L:
                eps += RootSum(Lambda(t, t*log(h.as_basic())), q)
        else:
            for h, q in L:
                R = log_to_real(h, q, x, t)

                if R is not None:
                    eps += R
                else:
                    eps += RootSum(Lambda(t, t*log(h.as_basic())), q)

        result += eps

    return result