no_negs[no_negs < 0] = 0 rolling = no_negs.rolling(7).mean() rolling.to_csv("rolling.csv") lga_movement = [] for col in totals.index: print(col) row = {} row['lga'] = col row['change'] = rolling.loc[lga_daily.index[-1], col] - rolling.loc[one_week_ago, col] row['this_week'] = lga_daily[one_week_ago:][col].sum() row['last_week'] = lga_daily[two_weeks_ago:one_week_ago - timedelta(days=1)][col].sum() row['weekly_change'] = row['this_week'] - row['last_week'] row['date'] = lga_daily.index[-1].strftime('%Y-%m-%d') lga_movement.append(row) lga_df_movement1 = pd.DataFrame(lga_movement) #%% syncData(lga_movement,'2020/07/vic-corona-map{test}'.format(test=test), "vicChange-2") syncData(totals_30day.to_dict(orient='records'),'2020/07/vic-corona-map{test}'.format(test=test), "vicTotals") # short['rolling_mean'] = df.groupby('lga')['cases'].transform(lambda x: x.rolling(7, 1).mean())
negative_countries_deaths = [] for country in deaths_countries: temp_series = deaths_new[deaths_new[country] < 0] if len(temp_series.index) > 0: negative_countries_deaths.append(country) print(",".join(negative_countries_deaths)) deaths_new[deaths_new < 0] = 0 #%% confirmedDailyData = json.dumps(ecdc_new.reset_index().to_dict('records')) syncData(confirmedDailyData, "2020/03/coronavirus-widget-data", "confirmed_daily_ecdc.json") confirmedTotalData = json.dumps(ecdc_high.reset_index().to_dict('records')) syncData(confirmedTotalData, "2020/03/coronavirus-widget-data", "confirmed_total_ecdc.json") negativeCaseData = json.dumps(negative_cases) syncData(negativeCaseData, "2020/03/coronavirus-widget-data", "negative_case_countries.json") #%% confirmedDailyDeathData = json.dumps( deaths_new.reset_index().to_dict('records')) syncData(confirmedDailyDeathData, "2020/03/coronavirus-widget-data", "confirmed_daily_deaths_ecdc.json")
with open('latest.json') as json_file: latestJson = json.load(json_file) latestObj = [] shortlist = ["Australia", "United Kingdom", "US"] for row in latestJson['features']: latestObj.append(row['attributes']) latest = pd.DataFrame(latestObj) latest_country = latest.groupby(["Country_Region"]).sum() latest_country.loc['Total'] = latest_country.sum() latestData = json.dumps(latest_country.reset_index().to_dict('records')) syncData(latestData, "2020/03/coronavirus-widget-data", "latest{preview}.json".format(preview=preview)) # For confirmed cases, since we want it for charts confirmed = pd.read_csv("time_series_covid19_confirmed_global.csv") shortlist = ["United Kingdom", "US", "Total"] confirmed.loc['Total'] = confirmed.sum(numeric_only=True, axis=0) confirmed.loc[['Total'], ["Country/Region"]] = "Total" confirmed_country = confirmed.groupby(["Country/Region"]).sum() over100 = confirmed_country[confirmed_country.iloc[:, -1] > 100]
data['notes'] = notes #handle weird cases if data['entry'] != "": if data['notes'] == "German literary movement": data['entry'] = "Sturm und Drang" #print data styleData.append(data) final = {"data": styleData, "lastUpdated": currDate + " " + currTime} if not errors: syncData(json.dumps(final, indent=4), "australia/2014/styleguide", "style-guide.json") with open('style-guide.json', 'w') as f: json.dump(final, f, indent=4) # output = StringIO.StringIO() # output.write('{"data":') # output.write(json.dumps(styleData)) # output.write(', "lastUpdated":"' + currDate + ' ' + currTime + '"') # output.write('}') # print "Connecting to S3" # bucket = conn.get_bucket('gdn-cdn') # from boto.s3.key import Key
headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36' } r = requests.get('https://covidlive.com.au/covid-live.json', headers=headers) #%% data = r.json() df = pd.read_json(r.text) print(list(df.columns.values)) cols = [ 'REPORT_DATE', 'LAST_UPDATED_DATE', 'ACTIVE_CNT', 'PREV_ACTIVE_CNT', 'CODE', 'NAME', 'RECOV_CNT', 'VACC_DIST_CNT', 'PREV_VACC_DIST_CNT', 'VACC_DOSE_CNT', 'PREV_VACC_DOSE_CNT', 'VACC_PEOPLE_CNT', 'PREV_VACC_PEOPLE_CNT' ] df_aus = df[df['NAME'] == "Australia"] df_aus = df_aus[df_aus['REPORT_DATE'] >= '2021-02-14'] final = df_aus[cols] finalJson = final.to_json(orient='records') #%% syncData(finalJson, "2021/02/coronavirus-widget-data", "aus-vaccines.json")
no_negs = lga_daily no_negs[no_negs < 0] = 0 rolling = no_negs.rolling(7).mean() rolling.to_csv("rolling.csv") lga_movement = [] for col in totals.index: print(col) row = {} row['lga'] = col row['change'] = rolling.loc[lga_daily.index[-1], col] - rolling.loc[one_week_ago, col] row['this_week'] = lga_daily[one_week_ago:][col].sum() row['last_week'] = lga_daily[two_weeks_ago:one_week_ago - timedelta(days=1)][col].sum() row['weekly_change'] = row['this_week'] - row['last_week'] row['date'] = lga_daily.index[-1].strftime('%Y-%m-%d') lga_movement.append(row) lga_df_movement1 = pd.DataFrame(lga_movement) #%% syncData(lga_movement,'2020/07/vic-corona-map{test}'.format(test=test), "vicChange-2") # short['rolling_mean'] = df.groupby('lga')['cases'].transform(lambda x: x.rolling(7, 1).mean())