Пример #1
0
def test_gauss():
    n = 64
    sigma = 2
    mean = n // 2
    x = np.arange(n)
    gt = np.exp(-((x - float(mean))**2) / (2 * sigma**2))

    g = get_gauss(x, mean, sigma, normalized=False)
    g_norm = get_gauss(n, mean, sigma, normalized=True)

    np.testing.assert_almost_equal(gt, g)
    assert np.abs(np.sum(g_norm) - 1) < 1e-7

    # Extremely broad peak, sum must be 1 anyway
    g = get_gauss(x, mean, n, normalized=True)
    assert np.abs(np.sum(g_norm) - 1) < 1e-7
Пример #2
0
 def __init__(self, energies, center, sigma, peak_transmission=1):
     """Create a Gussian beam filter for *energies* [keV], center it at *center* [keV] and use
     std *sigma* [keV]. *peak_transmission* specifies the transmitted intensity for energy
     *center*, i.e. this is the highest transmitted intensity.
     """
     if len(energies) < 4:
         raise ValueError('Number of energy points too low for interpolation')
     energies = energies.rescale(q.keV).magnitude
     center = center.rescale(q.keV).magnitude
     sigma = sigma.rescale(q.keV).magnitude
     profile = get_gauss(energies, center, sigma) * peak_transmission * q.keV
     self._tck = interp.splrep(energies, profile)
Пример #3
0
 def __init__(self, energies, center, sigma, peak_transmission=1):
     """Create a Gussian beam filter for *energies* [keV], center it at *center* [keV] and use
     std *sigma* [keV]. *peak_transmission* specifies the transmitted intensity for energy
     *center*, i.e. this is the highest transmitted intensity.
     """
     if len(energies) < 4:
         raise ValueError("Number of energy points too low for interpolation")
     energies = energies.rescale(q.keV).magnitude
     center = center.rescale(q.keV).magnitude
     sigma = sigma.rescale(q.keV).magnitude
     profile = get_gauss(energies, center, sigma) * peak_transmission * q.keV
     self._tck = interp.splrep(energies, profile)
Пример #4
0
def main():
    args = parse_args()
    syris.init()
    n = 1024
    shape = (n, n)
    ps = 1 * q.um
    tr = Trajectory([(n / 2, n / 2, 0)] * ps, pixel_size=ps)
    energy_center = args.energy_center * q.keV
    fwhm = args.energy_resolution * energy_center
    sigma = smath.fwnm_to_sigma(fwhm, n=2)
    # Make sure we resolve the curve nicely
    energies = np.arange(max(1 * q.keV, energy_center - 2 * fwhm),
                         energy_center + 2 * fwhm, fwhm / 25) * q.keV
    dE = energies[1] - energies[0]
    print 'Energy from, to, step, number:', energies[0], energies[-1], dE, len(
        energies)

    bm = make_topotomo(dE=dE, pixel_size=ps, trajectory=tr)
    spectrum_energies = np.arange(1, 50, 1) * q.keV
    native_spectrum = get_spectrum(bm, spectrum_energies, ps)

    fltr = GaussianFilter(energies, energy_center, sigma)
    gauss = get_gauss(energies.magnitude, energy_center.magnitude,
                      sigma.magnitude)
    filtered_spectrum = get_spectrum(bm, energies, ps) * gauss

    intensity = propagate([bm, fltr], shape, energies, 0 * q.m, ps).get()

    show(intensity,
         title='Intensity for energy range {} - {}'.format(
             energies[0], energies[-1]))

    plt.figure()
    plt.plot(spectrum_energies.magnitude, native_spectrum)
    plt.title('Source Spectrum')
    plt.xlabel('Energy [keV]')
    plt.ylabel('Intensity')

    plt.figure()
    plt.plot(energies.magnitude, gauss)
    plt.title('Gaussian Filter')
    plt.xlabel('Energy [keV]')
    plt.ylabel('Transmitted intensity')

    plt.figure()
    plt.plot(energies.magnitude, filtered_spectrum)
    plt.title('Filtered Spectrum')
    plt.xlabel('Energy [keV]')
    plt.ylabel('Intensity')
    plt.show()
Пример #5
0
def main():
    args = parse_args()
    syris.init()
    n = 1024
    shape = (n, n)
    ps = 1 * q.um
    tr = Trajectory([(n / 2, n / 2, 0)] * ps, pixel_size=ps)
    energy_center = args.energy_center * q.keV
    fwhm = args.energy_resolution * energy_center
    sigma = smath.fwnm_to_sigma(fwhm, n=2)
    # Make sure we resolve the curve nicely
    energies = np.arange(max(1 * q.keV, energy_center - 2 * fwhm),
                         energy_center + 2 * fwhm,
                         fwhm / 25) * q.keV
    dE = energies[1] - energies[0]
    print 'Energy from, to, step, number:', energies[0], energies[-1], dE, len(energies)

    bm = make_topotomo(dE=dE, pixel_size=ps, trajectory=tr)
    spectrum_energies = np.arange(1, 50, 1) * q.keV
    native_spectrum = get_spectrum(bm, spectrum_energies, ps)

    fltr = GaussianFilter(energies, energy_center, sigma)
    gauss = get_gauss(energies.magnitude, energy_center.magnitude, sigma.magnitude)
    filtered_spectrum = get_spectrum(bm, energies, ps) * gauss

    intensity = propagate([bm, fltr], shape, energies, 0 * q.m, ps).get()

    show(intensity, title='Intensity for energy range {} - {}'.format(energies[0], energies[-1]))

    plt.figure()
    plt.plot(spectrum_energies.magnitude, native_spectrum)
    plt.title('Source Spectrum')
    plt.xlabel('Energy [keV]')
    plt.ylabel('Intensity')

    plt.figure()
    plt.plot(energies.magnitude, gauss)
    plt.title('Gaussian Filter')
    plt.xlabel('Energy [keV]')
    plt.ylabel('Transmitted intensity')

    plt.figure()
    plt.plot(energies.magnitude, filtered_spectrum)
    plt.title('Filtered Spectrum')
    plt.xlabel('Energy [keV]')
    plt.ylabel('Intensity')
    plt.show()