def _get_app_info(self): """Get information about the app. """ info = dict() info['core_data'] = core_data = _get_core_data() info['extensions'] = extensions = self._get_extensions(core_data) page_config = self._read_page_config() info['disabled'] = page_config.get('disabledExtensions', []) info['local_extensions'] = self._get_local_extensions() info['linked_packages'] = self._get_linked_packages() info['app_extensions'] = app = [] info['sys_extensions'] = sys = [] for (name, data) in extensions.items(): data['is_local'] = name in info['local_extensions'] if data['location'] == 'app': app.append(name) else: sys.append(name) info['uninstalled_core'] = self._get_uninstalled_core_extensions() info['version'] = core_data['jupyterlab']['version'] info['sys_dir'] = self.sys_dir info['app_dir'] = self.app_dir info['core_extensions'] = core_extensions = _get_core_extensions() disabled_core = [] for key in core_extensions: if key in info['disabled']: disabled_core.append(key) info['disabled_core'] = disabled_core return info
def plan_traj(): path_points = [do_trim(vt=100, gamma_deg=90, m_fuel=0.8)] path_points.append(do_trim(vt=100, gamma_deg= 45, m_fuel = 0.4)) path_points.append(do_trim(vt=100, gamma_deg = 0,m_fuel = 0)) lin = linearize() sys = [] ABCDs = [] gam_ref = [90,45,0] h_ref = [0,] for i,p in enumerate(path_points): x0 = p[0] u0 = p[1] p0 = p[2] A,B,C,D = lin(x0,u0,p0) ABCDs.append([A,B,C,D]) sys.append(control.ss(A,B,C,D)) # A = np.array(ABCDs[0][0]) # B = np.array(ABCDs[0][1]) # v1 = np.zeros((14,1)) # v2 = np.zeros((1,15)) # v2[0,9] = -1 # Ai = np.vstack([np.hstack([A,v1]),v2]) # Bi = np.vstack([B,np.zeros(4)]) # print(np.shape(Ai)) # print(np.shape(Bi)) # q = zeros(15) # q[14] = 40 # q[] # K,S,E = control.lqr(Ai,Bi,) return sys
def argfilter(args): switches = [] sys = [] for arg in args: if arg[0] == '-': switches.append(arg) else: sys.append(arg) return switches, " ".join(sys)
def install_module(command, dest_path=None): try: subprocess.check_call([sys.executable, "-m", "ensurepip"]) exe = [sys.executable] exe_cmd = exe.extend(command) if dest_path: subprocess.check_call(exe_cmd.extend(["-t", dest_path])) sys.append(dest_path) os.environ["PYTHONPATH"] = dest_path + (";" + os.environ["PYTHONPATH"] if "PYTHONPATH" in os.environ else "") else: subprocess.check_call(exe_cmd) except subprocess.CalledProcessError(e): print(e.output)
def getLTLRepresentation(self, mark_players=True, use_next=False, include_inputs=True, include_outputs=True, swap_players=False, exclude=[]): """ Returns an LTL formula representing this state. If `mark_players` is True, input propositions are prepended with "e.", and output propositions are prepended with "s.". (If `swap_players` is True, these labels will be reversed [this feature is used by Mopsy]) If `use_next` is True, all propositions will be modified by a single "next()" operator. `include_env`, which defaults to True, determines whether to include input propositions in addition to output propositions. """ # Make a helpful little closure for adding operators to bare props def decorate_prop(prop, polarity): #### TEMPORARY HACK: REMOVE ME AFTER OTHER COMPONENTS ARE UPDATED!!! # Rewrite proposition names to make the old bitvector system work # with the new one prop = re.sub(r'^([se]\.)region_b(\d+)$', r'\1bit\2', prop) prop = re.sub(r'^([se]\.)regionCompleted_b(\d+)$', r'\1sbit\2', prop) ################################################################# if use_next: prop = "next({})".format(prop) if polarity is False: prop = "!"+prop return prop if swap_players: env_label, sys_label = "s.", "e." else: env_label, sys_label = "e.", "s." if include_outputs: sys = [] for p, v in self.getOutputs(expand_domains=True).iteritems(): if p not in exclude: sys.append(decorate_prop(sys_label+p, v)) sys_state = ' & '.join(sys) if include_inputs: env_state = " & ".join((decorate_prop(env_label+p, v) for p, v in \ self.getInputs(expand_domains=True).iteritems())) if include_outputs and not include_inputs: return sys_state elif not include_outputs and include_inputs: return env_state elif include_outputs and include_inputs: return " & ".join([env_state, sys_state]) else: print "please specified either outputs or inputs to print"
def _format(self, n): '''Helper function for _makeMoreChannels()''' n = [i for i in n.split(';')] sys = [] dev = [] for elem in n: if ':' in elem: sys.append(elem.split(':')[0]) dev.append(elem.split(':')[1]) else: sys.append(elem) dev.append('None') return sys, dev
def get_systematics(file, overrides={}, rename=lambda u: u, samples=False): """Reads `file` and returns a list of (uncertainty, type, {sample: value}). The parameter `overrides` allows to specify a dict of form {uncertainty: value}, and values of "x" n the systematics file are replaced by the one specified in the dict. A function passed as `rename` allows to alter the uncertainty name, _after_ all other processing has happened. The parameter `samples` can be set to `True` to obtain the available sample names defined in the systematics file. """ reader = csv.DictReader(open(file)) reader.fieldnames = map(str.strip, reader.fieldnames) sys_samples = reader.fieldnames[2:] if samples: return sys_samples sys = [] # create a list whose elements are the tuples # (uncertainty, type, {sample:value}) # row is a list of the items in the row for row in reader: # comment character # if the line is not empty if len(row) >0: # print row # if the row starts with comment # if re.match("^#", row["Uncertainty"]): continue # end if re.match # end if len unc = row.pop("Uncertainty").strip() type = row.pop("Type").strip() # `row` is a dictionary with sample names as keys. Strip spaces # from the actual value row = dict(map(lambda (k,v): (k, v.strip()), row.items())) if unc in overrides: row = dict( map( lambda (k,v): (k, overrides[unc] if v == "x" else v), row.items())) sys.append((rename(unc), type, row)) return sys
def split_features(data): # print("CRAFTING FEATURES...") # print() dia = [] eda = [] sys = [] res = [] for i in range(len(data)): if i % 4 == 0: dia.append(data[i]) elif i % 4 == 1: eda.append(data[i]) elif i % 4 == 2: sys.append(data[i]) elif i % 4 == 3: res.append(data[i]) return dia, eda, sys, res
def AppendPythonPath(): import sys import Tkinter, Tkconstants, tkFileDialog root = Tkinter.Tk() root.withdraw() options = {} options['initialdir'] = '/' options['mustexist'] = False options['parent'] = root options['title'] = 'Choose directory to add to PATH' newdir = tkFileDialog.askdirectory(**options) sys.append(newdir) print '\nDirectory add to PATH: ' + newdir + '\n'
def AppendPythonPath(): import sys import Tkinter,Tkconstants,tkFileDialog root = Tkinter.Tk() root.withdraw() options = {} options['initialdir'] = '/' options['mustexist'] = False options['parent'] = root options['title'] = 'Choose directory to add to PATH' newdir = tkFileDialog.askdirectory(**options) sys.append(newdir) print '\nDirectory add to PATH: ' + newdir + '\n'
def plan_traj(): path_points = [do_trim(vt=100, gamma_deg=90, m_fuel=0.8)] path_points.append(do_trim(vt=100, gamma_deg= 45, m_fuel = 0.4)) path_points.append(do_trim(vt=100, gamma_deg = 0,m_fuel = 0)) lin = linearize() sys = [] ABCDs = [] gam_ref = [90,45,0] h_ref = [0,] for i,p in enumerate(path_points): x0 = p[0] u0 = p[1] p0 = p[2] A,B,C,D = lin(x0,u0,p0) ABCDs.append([A,B,C,D]) sys.append(control.ss(A,B,C,D)) return sys
def calc_word_sim(model, eval_file): df = pd.read_csv(eval_file, sep=',', header=0) # eval dataset col1, col2, score = df.columns.values model_vocab = model.vocab.keys() ground = [] sys = [] for idx, row in df.iterrows(): if row[col1] in model_vocab and row[col2] in model_vocab: ground.append(float(row[score])) sys.append(model.similarity(row[col1], row[col2])) # compute Spearman's rank correlation coefficient (https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient) print sys # import pdb;pdb.set_trace() corr, p_val = stats.spearmanr(sys, ground) logger.info("# of pairs found: %s / %s" % (len(ground), len(df))) logger.info("correlation: %s" % corr) return corr, p_val
def _get_app_info(self): """Get information about the app. """ info = dict() info['core_data'] = core_data = _get_core_data() info['extensions'] = extensions = self._get_extensions(core_data) page_config = self._read_page_config() info['disabled'] = page_config.get('disabledExtensions', []) info['local_extensions'] = self._get_local_extensions() info['linked_packages'] = self._get_linked_packages() info['app_extensions'] = app = [] info['sys_extensions'] = sys = [] for (name, data) in extensions.items(): data['is_local'] = name in info['local_extensions'] if data['location'] == 'app': app.append(name) else: sys.append(name) info['uninstalled_core'] = self._get_uninstalled_core_extensions() info['static_data'] = _get_static_data(self.app_dir) app_data = info['static_data'] or core_data info['version'] = app_data['jupyterlab']['version'] info['publicUrl'] = app_data['jupyterlab'].get('publicUrl', '') info['sys_dir'] = self.sys_dir info['app_dir'] = self.app_dir info['core_extensions'] = core_extensions = _get_core_extensions() disabled_core = [] for key in core_extensions: if key in info['disabled']: disabled_core.append(key) info['disabled_core'] = disabled_core return info
import sys import json import numpy as np import progressbar from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import ImageDataGenerator sys.append("../") from pyimagesearch.utils.ranked import rank5_accuracy from dog_vs_cat.configs import dog_vs_cat_configs as configs from pyimagesearch.preprocessing.croppreprocessor import CropPreprocessor from pyimagesearch.preprocessing.meanpreprocessor import MeanPreprocessor from pyimagesearch.preprocessing.simplepreprocessor import SimplePreprocessor from pyimagesearch.preprocessing.imagetoarraypreprocessor import ImageToArrayPreprocessor # load RGB mean values means = json.loads(open(configs.DATASET_MEAN).read()) # load preprocessors ip = ImageToArrayPreprocessor() cp = CropPreprocessor(width=227, height=227) sp = SimplePreprocessor(width=227, height=227) mp = MeanPreprocessor(rMean=means["R"], gMean=means["G"], bMean=means["B"]) # custom preprocessor class which utilizes custom preprocessors class CustomPreprocessing: def __init__(self, preprocessors=[]): self.preprocessors = preprocessors def preprocess(self, image):
#!/usr/bin/env python ''' NPR 2015-12-06 http://www.npr.org/2015/12/06/458661972/transform-words-with-an-additional-letter-in-this-weeks-puzzle Name a state capital. Drop one of its letters. The remaining letters can be rearranged to name of another major city in the United States. What is it? There are two different answers, and you should find both of them. ''' import sys sys.append('..') from nprcommontools import sort_string from nltk.corpus import wordnet as wn, gazetteers import re # U.S. States states = set(gazetteers.words('usstates.txt')) # capitals and major cities cities = set(); capitals = set() for synset in wn.all_synsets(): d = synset.definition() for state in states: if state in d and 'city' in d: for l in synset.lemma_names(): if l[0] == l[0].upper(): cities.add(l)
#!/annoroad/data1/bioinfo/PMO/yangmengcheng/SoftWare/Anaconda3-5.3.1/bin/python import sys sys.append('../lib') import bam.bam from read.Read import * import tempfile
import sys sys.append("../Py2D") sys.append("./Py2D")
calc.set(isif=2) secban('Elastic tensor by internal routine') # Elastic tensor by internal routine Cij, Bij=cryst.get_elastic_tensor(n=5,d=0.33) print("Cij (GPa):", Cij/GPa) calc.clean() secban('C11 and C12 by hand') # Now let us do it (only c11 and c12) by hand sys=[] for d in linspace(-0.5,0.5,6): sys.append(cryst.get_cart_deformed_cell(axis=0,size=d)) r=ParCalculate(sys,cryst.calc) ss=[] for s in r: ss.append([s.get_strain(cryst), s.get_stress()]) # Plot strain-stress relation figure(3) ss=[] for p in r: ss.append([p.get_strain(cryst),p.get_stress()]) ss=array(ss) lo=min(ss[:,0,0]) hi=max(ss[:,0,0]) mi=(lo+hi)/2 wi=(hi-lo)/2
def plot_core(self): f = open(self.path + "cores.txt", "r") lines = f.readlines() usr = [] sys = [] softirq = [] iowait = [] idle = [] new_usr = [] new_sys = [] new_softirq = [] new_iowait = [] new_idle = [] for i in range(5): usr.append([]) sys.append([]) softirq.append([]) iowait.append([]) idle.append([]) for i in range(5): new_usr.append([]) new_sys.append([]) new_softirq.append([]) new_iowait.append([]) new_idle.append([]) for i in lines: k = i.split() if(len(k) > 1 and k[2] != 'CPU'): if(k[2] == 'all'): new_usr[4].append(float(k[3])) new_sys[4].append(float(k[5])) new_softirq[4].append(float(k[6])) new_iowait[4].append(float(k[6])) new_idle[4].append(float(k[12])) else: new_usr[int(k[2])].append(float(k[3])) new_sys[int(k[2])].append(float(k[5])) new_softirq[int(k[2])].append(float(k[6])) new_iowait[int(k[2])].append(float(k[6])) new_idle[int(k[2])].append(float(k[12])) for j in range(5): usr[j].append(new_usr[j][0]) sys[j].append(new_sys[j][0]) softirq[j].append(new_softirq[j][0]) iowait[j].append(new_iowait[j][0]) idle[j].append(new_idle[j][0]) for i in range(1, len(new_usr[j])): x = self.nextCur(new_usr[j][i-1], new_usr[j][i], i) usr[j].append(x) x = self.nextCur(new_sys[j][i-1], new_sys[j][i], i) sys[j].append(x) x = self.nextCur(new_softirq[j][i-1], new_softirq[j][i], i) softirq[j].append(x) x = self.nextCur(new_iowait[j][i-1], new_iowait[j][i], i) iowait[j].append(x) x = self.nextCur(new_idle[j][i-1], new_idle[j][i], i) idle[j].append(x) if(self.d['core_choice'] == 'both'): plt.title('softirq ' + self.exp) plt.plot(range(len(softirq[0])), softirq[0], 'r.') plt.plot(range(len(softirq[1])), softirq[1], 'g.') plt.plot(range(len(softirq[2])), softirq[2], 'b.') plt.plot(range(len(softirq[3])), softirq[3], 'y.') #plt.plot(range(len(softirq[4])), softirq[4], 'c.') plt.axis([0, len(usr[0]), 0, 100]) plt.show() for i in range(4): plt.xlabel('seconds') #plt.ylabel('Load on core 3') #plt.title('CPU ' + str(i) + ' ' + self.exp) plt.plot(range(len(iowait[i])), iowait[i], 'r+', label = 'iowait') #plt.plot(range(len(iowait[i])), iowait[i], 'b.') plt.plot(range(len(idle[i])), idle[i], 'g*', label = 'Idle') plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.axis([0, len(usr[i]), 0, 100]) plt.savefig('pictures/plot_' + str(i) + str(self.exp)) plt.show() plt.close() elif(self.d['core_choice'] == 'cpu'): for i in range(5): plt.title('CPU ' + str(i) + ' ' + self.exp) plt.plot(range(len(usr[i])), usr[i], 'ro') plt.plot(range(len(sys[i])), sys[i], 'b+') plt.plot(range(len(softirq[i])), softirq[i], 'k.') plt.plot(range(len(iowait[i])), iowait[i], 'rs') plt.plot(range(len(idle[i])), idle[i], 'go') plt.axis([0, len(usr[i]), 0, 100]) plt.show() else: plt.title('usr ' + self.exp) plt.plot(range(len(usr[0])), usr[0], 'r+') plt.plot(range(len(usr[1])), usr[1], 'g+') plt.plot(range(len(usr[2])), usr[2], 'b+') plt.plot(range(len(usr[3])), usr[3], 'y+') plt.plot(range(len(usr[4])), usr[4], 'c+') plt.axis([0, len(usr[0]), 0, 100]) plt.show() plt.title('sys ' + self.exp) plt.plot(range(len(sys[0])), sys[0], 'r+') plt.plot(range(len(sys[1])), sys[1], 'g+') plt.plot(range(len(sys[2])), sys[2], 'b+') plt.plot(range(len(sys[3])), sys[3], 'y+') plt.plot(range(len(sys[4])), sys[4], 'c+') plt.axis([0, len(usr[0]), 0, 100]) plt.show() plt.title('softirq ' + self.exp) plt.plot(range(len(softirq[0])), softirq[0], 'r+') plt.plot(range(len(softirq[1])), softirq[1], 'g+') plt.plot(range(len(softirq[2])), softirq[2], 'b+') plt.plot(range(len(softirq[3])), softirq[3], 'y+') plt.plot(range(len(softirq[4])), softirq[4], 'c+') plt.axis([0, len(usr[0]), 0, 100]) plt.show() plt.title('iowait ' + self.exp) plt.plot(range(len(iowait[0])), iowait[0], 'r') plt.plot(range(len(iowait[1])), iowait[1], 'g') plt.plot(range(len(iowait[2])), iowait[2], 'b') plt.plot(range(len(iowait[3])), iowait[3], 'y') plt.plot(range(len(iowait[4])), iowait[4], 'c') plt.axis([0, len(usr[0]), 0, 100]) plt.show() plt.title('idle ' + self.exp) plt.plot(range(len(idle[0])), idle[0], 'r+') plt.plot(range(len(idle[1])), idle[1], 'g+') plt.plot(range(len(idle[2])), idle[2], 'b+') plt.plot(range(len(idle[3])), idle[3], 'y+') plt.plot(range(len(idle[4])), idle[4], 'c+') plt.axis([0, len(usr[0]), 0, 100]) plt.show()
# Scan over deformations # Switch to IDOF optimizer calc.set(isif=2) # Elastic tensor by internal routine Cij, Bij = cryst.get_elastic_tensor(n=5, d=0.33) print("Cij (GPa):", Cij / units.GPa) calc.clean() # Now let us do it (only c11 and c12) by hand sys = [] for d in linspace(-0.5, 0.5, 6): sys.append(cryst.get_cart_deformed_cell(axis=0, size=d)) r = ParCalculate(sys, cryst.get_calculator()) ss = [] for s in r: ss.append([s.get_strain(cryst), s.get_stress()]) # Plot strain-stress relation figure(3) ss = [] for p in r: ss.append([p.get_strain(cryst), p.get_stress()]) ss = array(ss) lo = min(ss[:, 0, 0]) hi = max(ss[:, 0, 0]) mi = (lo + hi) / 2 wi = (hi - lo) / 2
import os import sys try: from gitcrawler import collect_details as detail except: sys.append('/media/laxmena/Bazinga/Crawler/GIT-beta') from gitcrawler import collect_details as detail count = 0 crawl_list = [] #Get initial Username from the User username = detail.get_username() crawl_list.append(username) if not os.path.exists('/home/laxmena/gitcrawler'): os.mkdir('/home/laxmena/gitcrawler') for i in crawl_list: try: file_name = '/home/laxmena/gitcrawler/' + i + '.txt' f = open(file_name,'w') f.write('Personal Details:\n') f.write('-'*50 + '\n') print ('Scraping Details of %s' % i) for itr in detail.personal_details(i): f.write(itr) f.write('\n') f.write('\n\nAll Repositories:\n') f.write('-'*50 + '\n') f.write('Repository Name\n')
for pep in nt_all: if item == pep[i]: pass elif item not in codon: pass elif pep[i] not in codon: pass elif codon[item] == codon[pep[i]]: countsys += 1 elif codon[item] != codon[pep[i]]: countnonsys += 1 else : pass print(x) x = x + 1 sys.append(countsys) nonsys.append(countnonsys) diff = countnonsys - countsys dif.append(diff) rat = countnonsys - countsys ratio.append(rat) countsys = 0 countnonsys = 0 print(dif) deviation = np.std(dif) print(deviation) zscore = dif/deviation print(zscore) zscore = [] for di in dif: zscor = di/deviation
import sys sys.append('~/Development/uvadev/nlp2/project1') from flask import Flask, render_template, request, jsonify from flask_socketio import SocketIO, emit from flask_cors import CORS, cross_origin from models.make_vae import make_vae from app_config import config model_paths = { 'vae_vanilla': 'vae_best_mu0_wd1_fb-1.pt', 'vae_high_freebits': 'vae_best_mu5_wd1_fb8.pt', 'vae_md_freebits': 'vae_best_mu5_wd1_fv4.pt' } loaded_models = { key: make_vae(config, True, val) for key, val in model_paths.items() } app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' CORS(app) @app.route('', methods=['GET']) def init(): return loaded_models.keys() @app.route('/predict', methods=['POST']) def predict():
import numpy as np import pdb import numpy as np from skimage.measure import label from utils import segmentation_metrics import torch import SimpleITK as sitk import sys sys.append("/home/mahaoran/lei_nao/seg_thor") def get_metrics(segmentation, mask, n_class=4): results = np.zeros((n_class, 5)) overlap_measures_filter = sitk.LabelOverlapMeasuresImageFilter() hausdorff_distance_filter = sitk.HausdorffDistanceImageFilter() for i in range(n_class): cur_mask = (mask == i+1).astype(np.int16) cur_segmentation = (segmentation == i+1).astype(np.int16) segmentation_itk = sitk.GetImageFromArray(cur_segmentation) mask_itk = sitk.GetImageFromArray(cur_mask) overlap_measures_filter.Execute(segmentation_itk, mask_itk) hausdorff_distance_filter.Execute(segmentation_itk, mask_itk) results[i, 0] = overlap_measures_filter.GetJaccardCoefficient() results[i, 1] = overlap_measures_filter.GetDiceCoefficient() results[i, 2] = hausdorff_distance_filter.GetHausdorffDistance() results[i, 3] = overlap_measures_filter.GetFalseNegativeError() results[i, 4] = overlap_measures_filter.GetFalsePositiveError() return np.mean(results, 0) def multi_scale(images, if_zoom=True, if_flip=True): total_images = [] total_flip_flag = [] total_zoom_flag = []
def load_test_data( vref_file_name: str, src_file_name: str, pred_file_name: str, ref_pattern: str, output_file_name: str, ref_projects: Set[str], config: Config, books: Set[int], by_book: bool, ) -> Tuple[Dict[str, Tuple[List[str], List[List[str]]]], Dict[str, dict]]: dataset: Dict[str, Tuple[List[str], List[List[str]]]] = {} src_file_path = config.exp_dir / src_file_name pred_file_path = config.exp_dir / pred_file_name with src_file_path.open("r", encoding="utf-8") as src_file, pred_file_path.open( "r", encoding="utf-8") as pred_file, ( config.exp_dir / output_file_name).open( "w", encoding="utf-8") as out_file: ref_file_paths = list(config.exp_dir.glob(ref_pattern)) select_rand_ref_line = False if len(ref_file_paths) > 1: if len(ref_projects) == 0: # no refs specified, so randomly select verses from all available train refs to build one ref select_rand_ref_line = True ref_file_paths = [ p for p in ref_file_paths if config.is_train_project(p) ] else: # use specified refs only ref_file_paths = [ p for p in ref_file_paths if config.is_ref_project(ref_projects, p) ] ref_files: List[IO] = [] vref_file: Optional[IO] = None vref_file_path = config.exp_dir / vref_file_name if len(books) > 0 and vref_file_path.is_file(): vref_file = vref_file_path.open("r", encoding="utf-8") try: for ref_file_path in ref_file_paths: ref_files.append(ref_file_path.open("r", encoding="utf-8")) default_trg_iso = config.default_trg_iso for lines in zip(src_file, pred_file, *ref_files): if vref_file is not None: vref_line = vref_file.readline().strip() if vref_line != "": vref = VerseRef.from_string(vref_line, ORIGINAL_VERSIFICATION) if vref.book_num not in books: continue src_line = lines[0].strip() pred_line = lines[1].strip() detok_pred_line = decode_sp(pred_line) iso = default_trg_iso if src_line.startswith("<2"): index = src_line.index(">") val = src_line[2:index] if val != "qaa": iso = val if iso not in dataset: dataset[iso] = ([], []) sys, refs = dataset[iso] sys.append(detok_pred_line) if select_rand_ref_line: ref_lines: List[str] = [ l for l in map(lambda l: l.strip(), lines[2:]) if len(l) > 0 ] ref_index = random.randint(0, len(ref_lines) - 1) ref_line = ref_lines[ref_index] if len(refs) == 0: refs.append([]) refs[0].append(ref_line) else: for ref_index in range(len(ref_files)): ref_line = lines[ref_index + 2].strip() if len(refs) == ref_index: refs.append([]) refs[ref_index].append(ref_line) out_file.write(detok_pred_line + "\n") book_dict: Dict[str, dict] = {} if by_book: book_dict = process_individual_books( src_file_path, pred_file_path, ref_file_paths, vref_file_path, default_trg_iso, select_rand_ref_line, books, ) finally: if vref_file is not None: vref_file.close() for ref_file in ref_files: ref_file.close() return dataset, book_dict
#-*- coding: utf-8 -*- # 此程式用來檢查 OrderQuote.dat 中的時間是否順序正確 import os import collections import sys from subprocess import call import unittest import subprocess import re import time import shlex import shutil from datetime import datetime if(len(sys.argv)<2): sys.append('/home/newemg/data/OrderQuote.dat') arg_names = ['command', 'file'] args = dict(zip(arg_names, sys.argv)) Arg_list = collections.namedtuple('Arg_list', arg_names) args = Arg_list(*(args.get(arg, None) for arg in arg_names)) class CheckQrderQuoteTimeSeq(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def getLineInfo(self, line): ret='' if(line[41:133]==' '):
#!/usr/bin/env python #-*-coding: utf-8-*- ## File name: ub_model/mr/mr_fac.py import os import sys import logging sys.append('../../common') from mr import Mr from utils import Utils class MrFac: def __init__(self): self.mr = None def getmr(self, mrname, productline): abspath = self.getmr_abspath(mrname) self.mr = Utils.getinstanceffile(abspath, Mr, productline) return self.mr def getmr_abspath(self, mrname): if mrname != None and not mrname.endswith('.py'): mrname = '%s.py' %(mrname) abspath = '' files = os.listdir('.') for f in files: if f == mrname: abspath = os.path.abspath('./%s' %(mrname))
#!/usr/bin/env python3 # coding: utf-8 """ Script to run the DeepSphere experiment with SHREC17 dataset. """ import os import shutil import sys sys.append('../..') os.environ[ "CUDA_VISIBLE_DEVICES"] = "0" # change to chosen GPU to use, nothing if work on CPU import numpy as np from deepsphere import models from . import hyperparameters from load_shrec import Shrec17DatasetCache, Shrec17DatasetTF, fix_dataset Nside = 32 experiment_type = 'CNN' ename = '_' + experiment_type datapath = '../../data/shrec17/' # localisation of the .obj files if len(sys.argv) > 4: Nside = int(sys.argv[1]) augmentation = int(sys.argv[2]) experiment = sys.argv[3] nfeat = int(sys.argv[4])
def txt2json(txtfile): # create base dictionary: SET_SLOTS = False ont = dict.fromkeys(['type','requestable','discourseAct','system_requestable','method','informable']) ont['discourseAct'] = [ "ack", "hello", "none", "repeat", "silence", "thankyou" ] ont['method'] = [ "none", "byconstraints", "byname", "finished", "byalternatives", "restart" ] # step through txt rules with open(txtfile+'.txt','r') as txtFILE: f = txtFILE.readlines() for i in range(len(f)): line = f[i] if line[0] == '#': continue if 'task' in line: continue if 'entity' in line: # assume entity comes before type: req = re.findall(r"[\w']+", line) continue if 'type' in line: req += re.findall(r"[\w']+", line) for x in remove_from_req: while x in req: req.remove(x) # this should remove all occurences. print 'requestable slots are (ie all slots)' req_final = copy.deepcopy(req) ont['requestable'] = req_final print ont['requestable'] ont['informable'] = dict.fromkeys(req) # also set the breakup of informable and requestable slots via inform_req_lines - # do this MANUALLY - easier! but gives some confidence/checks: sys = [] for slot in req: ans = raw_input('is slot: '+slot+' SYSTEM REQUESTABLE?') if ans == 'y': sys.append(slot) print 'system requestable slots are:' print sys ont['system_requestable'] = sys SET_SLOTS = True continue if 'method' in line: continue if 'discourseAct' in line: continue if SET_SLOTS: #for slot in ont['requestable']: for slot in req: #print slot #print line #raw_input() if slot in line and ('"' not in line): count = 0 while ');' not in f[i+count]: count += 1 values = f[i+1:i+count] #raw_input('-- print values now:') #print values #raw_input('check') vals = [] for v in values: x = v.split('"') vals.append(x[1]) print vals print '^^ are for slot: ', slot raw_input('check values parsed') ont['informable'][slot] = vals req.remove(slot) break writeto = open(txtfile+'.json','w') json.dump(ont,writeto) writeto.close()
def list_extensions(app_dir=None, logger=None): """List the extensions. """ logger = logger or logging app_dir = get_app_dir(app_dir) extensions = _get_extensions(app_dir) disabled = _get_disabled(app_dir) linked = _get_linked_packages(app_dir, logger=logger) app = [] sys = [] linked = [] errors = dict() core_data = _get_core_data() # We want to organize by dir. sys_path = pjoin(get_app_dir(), 'extensions') for (key, value) in extensions.items(): deps = extensions[key].get('dependencies', dict()) errors[key] = _validate_compatibility(key, deps, core_data) if key in linked: linked.append(key) if value['path'] == sys_path and sys_path != app_dir: sys.append(key) continue app.append(key) logger.info('JupyterLab v%s' % __version__) logger.info('Known labextensions:') if app: logger.info(' app dir: %s' % app_dir) for item in sorted(app): extra = '' if item in disabled: extra += ' %s' % RED_DISABLED else: extra += ' %s' % GREEN_ENABLED if errors[item]: extra += ' %s' % RED_X else: extra += ' %s' % GREEN_OK if item in linked: extra += '*' logger.info(' %s%s' % (item, extra)) version = extensions[item]['version'] if errors[item]: msg = _format_compatibility_errors(item, version, errors[item]) logger.warn(msg + '\n') if sys: logger.info(' sys dir: %s' % sys_path) for item in sorted(sys): extra = '' if item in disabled: extra += ' %s' % RED_DISABLED else: extra += ' %s' % GREEN_ENABLED logger.info(' %s%s' % (item, extra)) if errors[item]: extra += ' %s' % RED_X else: extra += ' %s' % GREEN_OK if item in linked: extra += '*' logger.info(' %s%s' % (item, extra)) version = extensions[item]['version'] if errors[item]: msg = _format_compatibility_errors(item, version, errors[item]) logger.warn(msg + '\n') if linked: logger.info( '* Denotes linked extensions. Use `jupyter labextension listlinked` to see details' ) # Handle uninstalled and disabled core packages uninstalled_core = _get_uinstalled_core_extensions(app_dir) if uninstalled_core: logger.info('\nUninstalled core extensions:') [logger.info(' %s' % item) for item in sorted(uninstalled_core)] core_extensions = _get_core_extensions() disabled_core = [] for key in core_extensions: if key in disabled: disabled_core.append(key) if disabled_core: logger.info('\nDisabled core extensions:') [logger.info(' %s' % item) for item in sorted(disabled_core)]
def concurrency_breakdown(logdir, cfg, df_mpstat, df_cpu, df_gpu, df_nvsmi, df_bandwidth, features): if cfg.verbose: print_title('Concurrency Breakdown Analysis') total_elapsed_time = {'usr':0, 'sys':0, 'gpu':0, 'iow':0, 'idl':0} elapsed_time_ratio = {'usr':0, 'sys':0, 'gpu':0, 'iow':0, 'idl':0} total_interval_vector = [] total_performace_vector = [] if len(df_mpstat) == 0: print_warning(cfg, 'no mpstat and perf traces!') return features t_begin = df_mpstat.iloc[0]['timestamp'] t_end = df_mpstat.iloc[-1]['timestamp'] t = t_begin sample_time = (1 / float(cfg.sys_mon_rate)) while t < t_end: t = t + sample_time if cfg.roi_end > 0 and (t < cfg.roi_begin or t > cfg.roi_end): continue window_begin = t - sample_time window_end = t if len(df_cpu) > 0: if df_cpu.iloc[0].timestamp > window_end: continue cond1 = (df_cpu['timestamp'] > window_begin) cond2 = (df_cpu['timestamp'] <= window_end) df_cpu_interval = df_cpu[ cond1 & cond2 ] num_gpus = len(list(set(df_nvsmi['deviceId']))) cond1 = (df_nvsmi['timestamp'] > window_begin) cond2 = (df_nvsmi['timestamp'] <= window_end) sm = df_nvsmi['event'] == int(0) df_nvsmi_interval = df_nvsmi[ cond1 & cond2 & sm ] cond1 = (df_mpstat['timestamp'] > window_begin) cond2 = (df_mpstat['timestamp'] <= window_end) df_mpstat_interval = df_mpstat[ cond1 & cond2 ] cond1 = (df_bandwidth['timestamp'] > window_begin) cond2 = (df_bandwidth['timestamp'] <= window_end) tx = df_bandwidth['event'] == float(0) rx = df_bandwidth['event'] == float(1) df_tx_interval = df_bandwidth[ cond1 & cond2 & tx ] df_rx_interval = df_bandwidth[ cond1 & cond2 & rx ] mp_usr = [] mp_sys = [] mp_idl = [] mp_iow = [] usr = [] sys = [] irq = [] cpu_max = 0 cpu_min = 100 for i in range(len(df_mpstat_interval)): ratios = df_mpstat_interval.iloc[i]['name'].split(':')[1].split('|') #print(ratios) mp_usr.append(sample_time*int(ratios[1])/100.0) mp_sys.append(sample_time*int(ratios[2])/100.0) mp_idl.append(sample_time*int(ratios[3])/100.0) mp_iow.append(sample_time*int(ratios[4])/100.0) usr.append(int(ratios[1])) sys.append(int(ratios[2])) irq.append(int(ratios[5])) cpu_tmp = int(ratios[1]) + int(ratios[2]) + int(ratios[5]) if cpu_tmp > cpu_max: cpu_max = cpu_tmp if cpu_tmp < cpu_min: cpu_min = cpu_tmp mp_usr = np.asarray(mp_usr) mp_sys = np.asarray(mp_sys) mp_idl = np.asarray(mp_idl) mp_iow = np.asarray(mp_iow) usr = np.asarray(usr) sys = np.asarray(sys) irq = np.asarray(irq) elapsed_time = {'usr':0, 'sys':0, 'gpu':0, 'iow':0, 'idl':0} if len(df_mpstat_interval) > 0: elapsed_time['usr'] = mp_usr.max() elapsed_time['sys'] = mp_sys.max() elapsed_time['gpu'] = df_nvsmi_interval['duration'].max() * 0.01 * sample_time elapsed_time['iow'] = mp_iow.max() #print('gput,usrt = ', elapsed_time['gpu'], elapsed_time['usr']) dominator = max(elapsed_time, key=elapsed_time.get) #if elapsed_time['gpu'] > 0.1 : # dominator = 'gpu' if elapsed_time[dominator] > sample_time * int(cfg.is_idle_threshold)/100: total_elapsed_time[dominator] = total_elapsed_time[dominator] + sample_time else: total_elapsed_time['idl'] += sample_time if num_gpus > 0: time_gpu_avg = df_nvsmi_interval['duration'].sum() * 0.01 * sample_time / num_gpus else: time_gpu_avg = 0 interval_vector = [mp_usr.max(), mp_sys.max(), mp_iow.max(), mp_idl.max(), time_gpu_avg, df_tx_interval['bandwidth'].sum(), df_rx_interval['bandwidth'].sum()] total_interval_vector.append(tuple(interval_vector)) if num_gpus > 0: sm_avg = df_nvsmi_interval['duration'].sum() / int(len(list(set(df_nvsmi_interval['deviceId'])))) else: sm_avg = 0 performace_vector = [window_end, df_nvsmi_interval['duration'].max(), sm_avg, df_nvsmi_interval['duration'].min(), round((usr.mean() + sys.mean() + irq.mean()), 0), cpu_max, cpu_min] total_performace_vector.append(tuple(performace_vector)) total_all_elapsed_time = sum(total_elapsed_time.values()) if total_all_elapsed_time > 0 : elapsed_time_ratio['usr'] = 100 * total_elapsed_time['usr'] / total_all_elapsed_time elapsed_time_ratio['sys'] = 100 * total_elapsed_time['sys'] / total_all_elapsed_time elapsed_time_ratio['gpu'] = 100 * total_elapsed_time['gpu'] / total_all_elapsed_time elapsed_time_ratio['idl'] = 100 * total_elapsed_time['idl'] / total_all_elapsed_time elapsed_time_ratio['iow'] = 100 * total_elapsed_time['iow'] / total_all_elapsed_time if cfg.verbose: print('Elapsed Time = %.1lf ' % total_all_elapsed_time) print('USR = %.1lf %%' % elapsed_time_ratio['usr']) print('SYS = %.1lf %%' % elapsed_time_ratio['sys']) if num_gpus > 0: print('GPU = %.1lf %%' % elapsed_time_ratio['gpu']) print('IDL = %.1lf %%' % elapsed_time_ratio['idl']) print('IOW = %.1lf %%' % elapsed_time_ratio['iow']) if cfg.spotlight_gpu: elapsed_hotspot_time = cfg.roi_end - cfg.roi_begin else: elapsed_hotspot_time = 0 df = pd.DataFrame({ 'name':['elapsed_usr_time_ratio', 'elapsed_sys_time_ratio', 'elapsed_gpu_time_ratio', 'elapsed_iow_time_ratio', 'elapsed_hotspot_time'], 'value':[elapsed_time_ratio['usr'], elapsed_time_ratio['sys'], elapsed_time_ratio['gpu'], elapsed_time_ratio['iow'], elapsed_hotspot_time ] }, columns=['name','value']) features = pd.concat([features, df]) if len(total_performace_vector) > 0: performance_table = pd.DataFrame(total_performace_vector, columns = ['time', 'max_gpu_util', 'avg_gpu_util', 'min_gpu_util', 'cpu_util', 'cpu_max', 'cpu_min']) performance_table.to_csv('%s/performance.csv' % logdir) vector_table = pd.DataFrame(total_interval_vector, columns = ['usr' , 'sys', 'iow', 'idl','gpu', 'net_tx', 'net_rx']) pearson = vector_table.corr(method ='pearson').round(2) if cfg.verbose: print('Correlation Table :') print(pearson) df = pd.DataFrame({ 'name':['corr_gpu_usr', 'corr_gpu_sys', 'corr_gpu_iow', 'corr_gpu_ntx', 'corr_gpu_nrx'], 'value':[pearson['gpu'].usr, pearson['gpu'].sys, pearson['gpu'].iow, pearson['gpu'].net_tx, pearson['gpu'].net_rx]}, columns=['name','value']) features = pd.concat([features, df]) return features
def xml(f,extra_tag=None,p_=10): '''This takes a list of directories and creates a PROPhet xml file''' root = ET.Element("PROPhet") nsystms = ET.Element('nsystem') root.append(nsystms) systems = ET.Element("systems") for i in range(200): shuffle(f) N_train = int(0.80*len(f)) N_val = int(0.90*len(f)) sys = [] cnt = 1 for c,i in enumerate(f): if c%p_ == 0 : print(c) if c < N_train: t_flag = "train" elif N_train < c < N_val: t_flag = "val" else: t_flag = 'test' x = QE.Struct() try: x.XML_Process(i) except: continue system = ET.Element("system",id=str(c + 1)) train = ET.Element('train') train.text = t_flag system.append(train) lattice = ET.Element('lattice',units='angstrom') for j in x.lattice: l = ET.Element(j) l.text = ' '.join([str(zz) for zz in x.lattice[j]]) lattice.append(l) system.append(lattice) atoms = ET.Element('atoms',units='angstrom') atm,cell = x.return_params() natoms = ET.Element('natoms') natoms.text = str(len(x.atoms)) species = ET.Element('species') ntype = len(set([zz.split()[0] for zz in atm.split('\n')[:-1]])) species.text = str(ntype) atoms.append(natoms) atoms.append(species) for j in atm.split('\n')[:-1]: atom = ET.Element("atom",specie=j.split()[0]) atom.text = ' '.join(j.split()[1:4]) atoms.append(atom) system.append(atoms) target = ET.Element('target') target.text = str(x.energy) system.append(target) if extra_tag is not None: tag = extra_tag[c]['tag'] val = extra_tag[c]['val'] if 'other_tags' in list(extra_tag[c].keys()): _ = ET.Element(tag,**extra_tag[c]['other_tags']) else: _ = ET.Element(tag) _.text = val system.append(_) sys.append(system) cnt += 1 del x for i in sys: systems.append(i) nsystms.text = str(cnt) root.append(systems) str_ = ET.tostring(root,pretty_print=True).decode('utf-8') return str_
# ---------------------------------------- # VARIABLE DECLARATION ref = sys.argv[1] # full protein reference structure... traj_loc = sys.argv[2] # pointer to the directories of the systems... out = sys.argv[3] # output file name w/ extension selection = 'protein' alignment = 'protein and name CA and (resid 20:25 or resid 50:55 or resid 73:75 or resid 90:94 or resid 112:116 or resid 142:147 or resid 165:169 or resid 190:194 or resid 214:218 or resid 236:240 or resid 253:258 or resid 303:307)' grab_frame = 50 #grab a frame every 50 frames (100 ps); flush = sys.stdout.flush sys = [] sys.append(['AMBER_apo', 21, 150]) # #sys.append(['AMBER_atp', 51, 100]) # #sys.append(['AMBER_ssrna', 51, 100]) # #sys.append(['AMBER_ssrna_atp', 51, 100]) # #sys.append(['AMBER_ssrna_adp_pi', 51, 100]) # #sys.append(['AMBER_ssrna_adp', 51, 100]) # #sys.append(['AMBER_ssrna_pi', 51, 100]) # # ---------------------------------------- # SUBROUTINES: def ffprint(string): print '%s' %(string) flush() # ----------------------------------------
def gpt_sample(args_dict): print("\n=============== Argument ===============") for key in args_dict: print("{}: {}".format(key, args_dict[key])) print("========================================") np.random.seed(1) random.seed(1) refs = [] sys = [] MEGATRON_OUTPUT_FILENAME = ".megatron_output.json" VOCAB_FILEPATH = "./models/gpt2-vocab.json" MERGE_FILEPATH = "./models/gpt2-merges.txt" if os.path.exists(MEGATRON_OUTPUT_FILENAME) == False: """Megatron program.""" os.system(" python Megatron-LM/tools/generate_samples_gpt.py \ --num-layers {} \ --hidden-size {} \ --num-attention-heads {} \ --seq-length 1024 \ --max-position-embeddings 1024 \ --micro-batch-size 4 \ --global-batch-size 8 \ --vocab-file {} \ --merge-file {} \ --load ./models/megatron-models/345m \ --out-seq-length {} \ --temperature 1.0 \ --genfile {} \ --num-samples {} \ --top_k {} \ --top_p {} \ --recompute ".format( args_dict['num_layer'], args_dict['head_number'] * args_dict['size_per_head'], args_dict['head_number'], VOCAB_FILEPATH, MERGE_FILEPATH, args_dict['request_input_len'] + args_dict['request_output_len'], MEGATRON_OUTPUT_FILENAME, args_dict['request_batch_size'], args_dict['sampling_topk'], args_dict['sampling_topp'])) with open(MEGATRON_OUTPUT_FILENAME, 'r') as megatron_file: for i, line in enumerate(megatron_file.readlines()): line_j = json.loads(line) refs.append(line_j['text']) i += 1 if i == args_dict['request_batch_size']: break """ megatron finish """ enc = encoder.get_encoder(VOCAB_FILEPATH, MERGE_FILEPATH) with open("../sample/cpp/start_ids.csv", "w") as f: for tokens in refs: id_list = enc.encode(tokens) id_str = "{}\n".format(id_list[:args_dict['request_input_len']]) id_str = id_str.replace("[", "").replace("]", "") f.write(id_str) generate_gpt_config(args_dict) os.system("rm out") os.system( "mpirun -n {} --allow-run-as-root ./bin/gpt_sample .tmp.config.ini". format(args_dict['gpu_num'])) tokens_batch = np.loadtxt("out", dtype=np.int32).T for tokens in tokens_batch: sys.append(enc.decode(tokens)) bleu = sacrebleu.corpus_bleu(sys, [refs]) print("[INFO] bleu score: {}".format(bleu.score))
def list_extensions(app_dir=None, logger=None): """List the extensions. """ logger = logger or logging app_dir = get_app_dir(app_dir) extensions = _get_extensions(app_dir) disabled = _get_disabled(app_dir) all_linked = _get_linked_packages(app_dir, logger=logger) app = [] sys = [] linked = [] errors = dict() core_data = _get_core_data() # We want to organize by dir. sys_path = pjoin(get_app_dir(), 'extensions') for (key, value) in extensions.items(): deps = extensions[key].get('dependencies', dict()) errors[key] = _validate_compatibility(key, deps, core_data) if key in all_linked: linked.append(key) if value['path'] == sys_path and sys_path != app_dir: sys.append(key) continue app.append(key) logger.info('JupyterLab v%s' % __version__) logger.info('Known labextensions:') if app: logger.info(' app dir: %s' % app_dir) for item in sorted(app): version = extensions[item]['version'] extra = '' if item in disabled: extra += ' %s' % RED_DISABLED else: extra += ' %s' % GREEN_ENABLED if errors[item]: extra += ' %s' % RED_X else: extra += ' %s' % GREEN_OK logger.info(' %s@%s%s' % (item, version, extra)) if errors[item]: msg = _format_compatibility_errors(item, version, errors[item]) logger.warn(msg + '\n') if sys: logger.info(' sys dir: %s' % sys_path) for item in sorted(sys): version = extensions[item]['version'] extra = '' if item in disabled: extra += ' %s' % RED_DISABLED else: extra += ' %s' % GREEN_ENABLED logger.info(' %s%s' % (item, extra)) if errors[item]: extra += ' %s' % RED_X else: extra += ' %s' % GREEN_OK if item in linked: extra += '*' logger.info(' %s@%s%s' % (item, version, extra)) if errors[item]: msg = _format_compatibility_errors(item, version, errors[item]) logger.warn(msg + '\n') if linked: logger.info(' linked extensions:') for item in sorted(linked): logger.info(' %s: %s' % (item, all_linked[item])) if len(all_linked) > len(linked): logger.info(' linked packages:') for key in sorted(all_linked.keys()): if (key in linked): continue logger.info(' %s: %s' % (key, all_linked[key])) # Handle uninstalled and disabled core packages uninstalled_core = _get_uinstalled_core_extensions(app_dir) if uninstalled_core: logger.info('\nUninstalled core extensions:') [logger.info(' %s' % item) for item in sorted(uninstalled_core)] core_extensions = _get_core_extensions() disabled_core = [] for key in core_extensions: if key in disabled: disabled_core.append(key) if disabled_core: logger.info('\nDisabled core extensions:') [logger.info(' %s' % item) for item in sorted(disabled_core)]
import sys sys.append('../') from 125_valid_palindrome import Solution import unittest class TestSolution(unittest.TestCase): def setUp(self): self.solution = Solution() def test_cases(self): pass if __name__ == '__main__': unittest.main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 28 17:06:19 2017 @author: wq """ import tensorflow as tf import sys sys.append('../function/') from preprocess import * from multiTask import * #%%
import sys import os import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter from plotting_functions import * from sel_list import * stdev = np.std sqrt = np.sqrt nullfmt = NullFormatter() file1 = sys.argv[1] time_offset = int(sys.argv[2]) # units of ns sys = [] sys.append(['Apo','steelblue',',']) sys.append(['ATP','cadetblue',',']) sys.append(['ssRNA','turquoise',',']) sys.append(['ssRNA+ATP','forestgreen',',']) sys.append(['ssRNA+ADP+Pi','limegreen',',']) sys.append(['ssRNA+ADP','orangered',',']) sys.append(['ssRNA+Pi','crimson',',']) nSys = len(sys) nSel = len(sel) # ---------------------------------------- # MAIN PROGRAM: datalist1 = np.loadtxt(file1) nSteps = len(datalist1)/nSys
sys.path.insert(0, 'python') from get_modis import * fh = fhead.split('20')[0] files = glob.glob('%s*B01.jp2' % fh) dates = [] ds = [] de = [] sys = [] eys = [] for i in files: date = datetime.datetime.strptime( (i.split('%s' % fh)[1]).split('0B01.jp2')[0], "%Y%m%d") dates.append(date) doy = date.timetuple().tm_yday if doy - 8 < 0: sys.append(date.year - 1) days = (datetime.date(date.year, 1, 1) - datetime.date(date.year - 1, 1, 1)).days ds.append(doy - 8 + days) else: sys.append(date.year) ds.append(doy - 8) if doy + 8 > 366: eys.append(date.year + 1) days = (datetime.date(date.year + 1, 1, 1) - datetime.date(date.year, 1, 1)).days ds.append(doy + 8 - days) else: eys.append(date.year) de.append(doy + 8)
# -*- coding: utf-8 -*- """ Created on Tue Dec 4 14:47:15 2018 @author: theod """ import sys sys.append(r'C:\Users\theod\OneDrive\Documents\python army of functions2\bond_price_project\risky_bond_and_CDS') from first_to_default_swap import price_FtD_swap1 from last_to_default_swap import price_LtD_swap1 from CDS_price import price_CDS #%% def test_FtD_swap_price(): FV1,FV2,c,T,rate,lbd1,lbd2,R1,R2,freq = 100,100,0.02,5,0.05,0.3,0.4,0.4,0.4,1 print(price_FtD_swap1(FV1,FV2,c,T,rate,lbd1,lbd2,R1,R2,freq)) print(price_LtD_swap1(FV1,FV2,c,T,rate,lbd1,lbd2,R1,R2,freq)) print(price_CDS(FV1,c,T,rate,lbd1,R1,freq)) print(price_CDS(FV2,c,T,rate,lbd2,R2,freq)) test_FtD_swap_price() #%% def test_FtD_LtD_CDS_prices(): FV1,FV2,c,T,rate,lbd1,lbd2,R1,R2,freq = 100,100,0.02,5,0.05,0.3,0.4,0.4,0.4,1 intensities1 = ([0.5],[0.3,0.3]) intensities2 = ([0.5],[0.4,0.4]) from first_to_default_swap import price_FtD_swap2 from last_to_default_swap import price_LtD_swap2 from CDS_price2 import price_CDS2 x1 = price_FtD_swap2(FV1,FV2,c,T,rate,lbd1,lbd2,R1,R2,freq) x2 = price_LtD_swap2(FV1,FV2,c,T,rate,lbd1,lbd2,R1,R2,freq) x3 = price_CDS2(FV1,c,T,rate,lbd1,R1,freq,option = "clean") x4 = price_CDS2(FV2,c,T,rate,lbd2,R2,freq,option = "clean")
from find_peaks4 import plot_pks plot_pks( img, nsigs=4, filt=False, thresh=50, sig_G=1.1, make_sparse=True) pk,_ = pk_pos( img, nsigs=4, filt=False, thresh=50, sig_G=1.1, make_sparse=True) pk,_ = pk_pos( img, nsigs=4 thresh=50, sig_G=1.1, make_sparse=True) pk,_ = pk_pos( img, nsigs=4 ,thresh=50, sig_G=1.1, make_sparse=True) pk y,x = list(map(array, list(zip(*pk)))) y x for j,i in zip(y,x): img[j-3:j+3, i-3:i+3] = 0 cla() imshow( img, vmax=199) import sys sys.append("../.asu_tools/lib/python") sys.path.append("../.asu_tools/lib/python") from loki.RingData import RingFit rf = RingFit(img) #xi,yi = ( img.shape xi,yi = (1440,1440) get_ipython().run_line_magic('pinfo', 'rf.fit_circle_fast') #rf.fit_circle_fast( (xi,yi, ) xi-1137 ri = 303 rf.fit_circle_fast( (xi,yi,ri ), num_fitting_pts=5000, num_high_pix=100, ring_width=100) x,y,r = array([ 1450.10619788, 1430.22695615, 316.51128542]) from loki.RingData import RadialProfile rp = RadialProfile( (xi,yi), img.shape) figure(2);plot( rp.calculate(img))