Пример #1
0
    def get_ml_feature(self, symbol, prices=None, cutoff=None):
        if prices:
            price = prices.get(symbol, 1E10)
            vix = prices['^VIX']
        else:
            price = self.closes[symbol][cutoff]
            vix = self.closes['^VIX'][cutoff]

        if cutoff:
            close = self.closes[symbol][cutoff - DAYS_IN_A_YEAR:cutoff]
            high = np.array(
                self.hists[symbol].get('High')[cutoff - DAYS_IN_A_YEAR:cutoff])
            low = np.array(
                self.hists[symbol].get('Low')[cutoff - DAYS_IN_A_YEAR:cutoff])
        else:
            close = self.closes[symbol][-DAYS_IN_A_YEAR:]
            high = np.array(self.hists[symbol].get('High')[-DAYS_IN_A_YEAR:])
            low = np.array(self.hists[symbol].get('Low')[-DAYS_IN_A_YEAR:])
        # Basic stats
        day_range_change = price / np.max(close[-DATE_RANGE:]) - 1
        today_change = price / close[-1] - 1
        yesterday_change = close[-1] / close[-2] - 1
        day_before_yesterday_change = close[-2] / close[-3] - 1
        twenty_day_change = price / close[-20] - 1
        year_high_change = price / np.max(close) - 1
        year_low_change = price / np.min(close) - 1
        all_changes = [
            close[t + 1] / close[t] - 1 for t in range(len(close) - 1)
            if close[t + 1] > 0 and close[t] > 0
        ]
        # Technical indicators
        close = np.append(close, price)
        high = np.append(high, price)
        low = np.append(low, price)
        pd_close = pd.Series(close)
        pd_high = pd.Series(high)
        pd_low = pd.Series(low)
        rsi = momentum.rsi(pd_close).values[-1]
        macd_rate = trend.macd_diff(pd_close).values[-1] / price
        wr = momentum.wr(pd_high, pd_low, pd_close).values[-1]
        tsi = momentum.tsi(pd_close).values[-1]
        feature = {
            'Today_Change': today_change,
            'Yesterday_Change': yesterday_change,
            'Day_Before_Yesterday_Change': day_before_yesterday_change,
            'Twenty_Day_Change': twenty_day_change,
            'Day_Range_Change': day_range_change,
            'Year_High_Change': year_high_change,
            'Year_Low_Change': year_low_change,
            'Change_Average': np.mean(all_changes),
            'Change_Variance': np.var(all_changes),
            'RSI': rsi,
            'MACD_Rate': macd_rate,
            'WR': wr,
            'TSI': tsi,
            'VIX': vix
        }
        return feature
Пример #2
0
def WilliamsR(df, intervals):
    """
        Williams Percent Range.  Momentum indicator. Moves between 0 to-100 and measures overbought and oversold levels.
        Used to find entry and exit points in the market.

        Reference: https://www.investopedia.com/terms/w/williamsr.asp
    """
    from ta.momentum import wr
    from tqdm.auto import tqdm

    for interval in tqdm(intervals):
        df["wr_" + str(interval)] = wr(df['high'], df['low'], df['close'],
                                       interval)
Пример #3
0
def williams(datos, start, end= '', window = 10):
    '''
    ENTRADA
    datos: Pandas dataframe que contiene al menos una columna de fechas (DATE) y otra
    columna numérica

    start, end: strings en formato 'YYYY-MM-DD' representando la fecha de inicio
    y la fecha final respectivamente

    window: Entero que representa la ventan de tiempo a utilizar

    SALIDA
    resultado: Dataframe datos con una columna extra conteniendo la información
    del indicador
    '''
    #Localiza la fecha de inicio y revisa si hay suficiente información
    indiceInicio=datos[datos['Date']==start].index[0]
    if window > indiceInicio + 1:
        print 'No hay suficiente historia para esta fecha'
        return datos

    #Último índice
    if end=='':
        lastIndex=datos.shape[0] - 1
    else:
        lastIndex=datos[datos['Date']==end].index[0]

    #calcula el indicador
    indicador = wr(datos['High'], datos['Low'], datos['Adj Close'], window)

    #agrega la nueva columna
    resultado = deepcopy(datos)
    resName = 'Williams-R-' + str(window)
    resultado[resName] = indicador

    #Filtra a partir del índice correspondiente a la fecha start
    resultado=resultado.iloc[indiceInicio:lastIndex+1,:]
    resultado=resultado.reset_index(drop=True)

    #añade metadatos
    resultado.tipo = 'williams'
    resultado.resName = resName

    return resultado
Пример #4
0
        def williams_r_cb_pressed(stock_analysis_tool: QMainWindow,
                                  cb: QCheckBox) -> None:
            """

            :param cb:
            :return:
            """
            if cb.isChecked():
                # Add WilliamsR to Display Graph
                stock_analysis_tool.df['WilliamsR'] = wr(
                    stock_analysis_tool.df['high'],
                    stock_analysis_tool.df['low'],
                    stock_analysis_tool.df['close'])
                stock_analysis_tool.df['WilliamsR overbought'] = -20
                stock_analysis_tool.df['WilliamsR oversold'] = -80
                stock_analysis_tool.add_column_to_graph(
                    column_name='WilliamsR')
                stock_analysis_tool.add_column_to_graph(
                    column_name='WilliamsR overbought',
                    color=stock_analysis_tool.protected_colors['red'])
                stock_analysis_tool.add_column_to_graph(
                    column_name='WilliamsR oversold',
                    color=stock_analysis_tool.protected_colors['green'])
            else:
                # Remove WilliamsR from Display Graph
                stock_analysis_tool.remove_column_from_graph(
                    column_name='WilliamsR')
                stock_analysis_tool.remove_column_from_graph(
                    column_name='WilliamsR overbought')
                stock_analysis_tool.remove_column_from_graph(
                    column_name='WilliamsR oversold')
                stock_analysis_tool.df = stock_analysis_tool.df.drop(
                    "WilliamsR", axis=1)
                stock_analysis_tool.df = stock_analysis_tool.df.drop(
                    "WilliamsR overbought", axis=1)
                stock_analysis_tool.df = stock_analysis_tool.df.drop(
                    "WilliamsR oversold", axis=1)
Пример #5
0
def engineer_data_over_single_interval(df: pd.DataFrame,
                                       indicators: list,
                                       ticker: str = "",
                                       rsi_n: int = 14,
                                       cmo_n: int = 7,
                                       macd_fast: int = 12,
                                       macd_slow: int = 26,
                                       macd_sign: int = 9,
                                       roc_n: int = 12,
                                       cci_n: int = 20,
                                       dpo_n: int = 20,
                                       cmf_n: int = 20,
                                       adx_n: int = 14,
                                       mass_index_low: int = 9,
                                       mass_index_high: int = 25,
                                       trix_n: int = 15,
                                       stochastic_oscillator_n: int = 14,
                                       stochastic_oscillator_sma_n: int = 3,
                                       ultimate_oscillator_short_n: int = 7,
                                       ultimate_oscillator_medium_n: int = 14,
                                       ultimate_oscillator_long_n: int = 28,
                                       ao_short_n: int = 5,
                                       ao_long_n: int = 34,
                                       kama_n: int = 10,
                                       tsi_high_n: int = 25,
                                       tsi_low_n: int = 13,
                                       eom_n: int = 14,
                                       force_index_n: int = 13,
                                       ichimoku_low_n: int = 9,
                                       ichimoku_medium_n: int = 26):
    from ta.momentum import rsi, wr, roc, ao, stoch, uo, kama, tsi
    from ta.trend import macd, macd_signal, cci, dpo, adx, mass_index, trix, ichimoku_a
    from ta.volume import chaikin_money_flow, acc_dist_index, ease_of_movement, force_index

    # Momentum Indicators
    if Indicators.RELATIVE_STOCK_INDEX in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.RELATIVE_STOCK_INDEX.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.RELATIVE_STOCK_INDEX.value] = rsi(close=df['close'],
                                                        n=rsi_n)

    if Indicators.WILLIAMS_PERCENT_RANGE in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.WILLIAMS_PERCENT_RANGE.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.WILLIAMS_PERCENT_RANGE.value] = wr(
            df['high'], df['low'], df['close'])

    if Indicators.CHANDE_MOMENTUM_OSCILLATOR in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.CHANDE_MOMENTUM_OSCILLATOR.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.CHANDE_MOMENTUM_OSCILLATOR.
           value] = chande_momentum_oscillator(close_data=df['close'],
                                               period=cmo_n)

    if Indicators.RATE_OF_CHANGE in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.RATE_OF_CHANGE.value + " for stock " +
                           ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.RATE_OF_CHANGE.value] = roc(close=df['close'], n=roc_n)

    if Indicators.STOCHASTIC_OSCILLATOR in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.STOCHASTIC_OSCILLATOR.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.STOCHASTIC_OSCILLATOR.value] = stoch(
            high=df['high'],
            low=df['low'],
            close=df['close'],
            n=stochastic_oscillator_n,
            d_n=stochastic_oscillator_sma_n)

    if Indicators.ULTIMATE_OSCILLATOR in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.ULTIMATE_OSCILLATOR.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.ULTIMATE_OSCILLATOR.value] = uo(
            high=df['high'],
            low=df['low'],
            close=df['close'],
            s=ultimate_oscillator_short_n,
            m=ultimate_oscillator_medium_n,
            len=ultimate_oscillator_long_n)

    if Indicators.AWESOME_OSCILLATOR in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.AWESOME_OSCILLATOR.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.AWESOME_OSCILLATOR.value] = ao(high=df['high'],
                                                     low=df['low'],
                                                     s=ao_short_n,
                                                     len=ao_long_n)

    if Indicators.KAUFMAN_ADAPTIVE_MOVING_AVERAGE in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.KAUFMAN_ADAPTIVE_MOVING_AVERAGE.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.KAUFMAN_ADAPTIVE_MOVING_AVERAGE.value] = kama(
            close=df['close'], n=kama_n)

    if Indicators.TRUE_STRENGTH_INDEX in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.TRUE_STRENGTH_INDEX.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.TRUE_STRENGTH_INDEX.value] = tsi(close=df['close'],
                                                       r=tsi_high_n,
                                                       s=tsi_low_n)

    # Trend Indicator
    if Indicators.MOVING_AVERAGE_CONVERGENCE_DIVERGENCE in indicators:
        Logger.console_log(
            message="Calculating " +
            Indicators.MOVING_AVERAGE_CONVERGENCE_DIVERGENCE.value +
            " for stock " + ticker,
            status=Logger.LogStatus.EMPHASIS)
        df[Indicators.MOVING_AVERAGE_CONVERGENCE_DIVERGENCE.value] = macd(close=df['close'],
                                                                          n_slow=macd_slow,
                                                                          n_fast=macd_fast) - \
                                                                     macd_signal(close=df['close'],
                                                                                 n_slow=macd_slow,
                                                                                 n_fast=macd_fast,
                                                                                 n_sign=macd_sign)

    if Indicators.COMMODITY_CHANNEL_INDEX in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.COMMODITY_CHANNEL_INDEX.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.COMMODITY_CHANNEL_INDEX.value] = cci(high=df['high'],
                                                           low=df['low'],
                                                           close=df['close'],
                                                           n=cci_n)

    if Indicators.DETRENDED_PRICE_OSCILLATOR in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.DETRENDED_PRICE_OSCILLATOR.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.DETRENDED_PRICE_OSCILLATOR.value] = dpo(
            close=df['close'], n=dpo_n)

    if Indicators.AVERAGE_DIRECTIONAL_INDEX in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.AVERAGE_DIRECTIONAL_INDEX.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.AVERAGE_DIRECTIONAL_INDEX.value] = adx(high=df['high'],
                                                             low=df['low'],
                                                             close=df['close'],
                                                             n=adx_n)

    if Indicators.MASS_INDEX in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.MASS_INDEX.value + " for stock " +
                           ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.MASS_INDEX.value] = mass_index(high=df['high'],
                                                     low=df['low'],
                                                     n=mass_index_low,
                                                     n2=mass_index_high)

    if Indicators.TRIPLE_EXPONENTIALLY_SMOOTHED_MOVING_AVERAGE in indicators:
        Logger.console_log(
            message="Calculating " +
            Indicators.TRIPLE_EXPONENTIALLY_SMOOTHED_MOVING_AVERAGE.value +
            " for stock " + ticker,
            status=Logger.LogStatus.EMPHASIS)
        df[Indicators.TRIPLE_EXPONENTIALLY_SMOOTHED_MOVING_AVERAGE.
           value] = trix(close=df['close'], n=trix_n)

    if Indicators.ICHIMOKU_A in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.ICHIMOKU_A.value + " for stock " +
                           ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.ICHIMOKU_A.value] = ichimoku_a(high=df['high'],
                                                     low=df['low'],
                                                     n1=ichimoku_low_n,
                                                     n2=ichimoku_medium_n)

    # Volume Indicator
    if Indicators.CHAIKIN_MONEY_FLOW in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.CHAIKIN_MONEY_FLOW.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.CHAIKIN_MONEY_FLOW.value] = chaikin_money_flow(
            high=df['high'],
            low=df['low'],
            close=df['close'],
            volume=df['volume'],
            n=cmf_n)

    if Indicators.ACCUMULATION_DISTRIBUTION_INDEX in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.ACCUMULATION_DISTRIBUTION_INDEX.value +
                           " for stock " + ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.ACCUMULATION_DISTRIBUTION_INDEX.value] = acc_dist_index(
            high=df['high'],
            low=df['low'],
            close=df['close'],
            volume=df['volume'])

    if Indicators.EASE_OF_MOVEMENT in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.EASE_OF_MOVEMENT.value + " for stock " +
                           ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.EASE_OF_MOVEMENT.value] = ease_of_movement(
            high=df['high'], low=df['low'], volume=df['volume'], n=eom_n)

    if Indicators.FORCE_INDEX in indicators:
        Logger.console_log(message="Calculating " +
                           Indicators.FORCE_INDEX.value + " for stock " +
                           ticker,
                           status=Logger.LogStatus.EMPHASIS)
        df[Indicators.FORCE_INDEX.value] = force_index(close=df['close'],
                                                       volume=df['volume'],
                                                       n=force_index_n)
Пример #6
0
 def test_wr2(self):
     target = 'Williams_%R'
     result = wr(**self._params)
     pd.testing.assert_series_equal(self._df[target].tail(),
                                    result.tail(),
                                    check_names=False)
Пример #7
0
from ta.momentum import uo  # Ultimate Oscilator
from ta.momentum import wr  #William Percent Range
from ta.trend import macd  # Moving Average Convergence/Divergence

# *************************** DATA PREPROCESSING ******************************

# Load Data
df = pd.read_csv('^GSPC.csv')

# Data Augmentation
df['Relative_Strength_Index'] = rsi(df['Close'])
df['Money_Flow_Index'] = money_flow_index(df['High'], df['Low'], df['Close'],
                                          df['Volume'])
df['Stoch_Oscilator'] = stoch(df['High'], df['Low'], df['Close'])
df['Ultimate_Oscilator'] = uo(df['High'], df['Low'], df['Close'])
df['William_Percent'] = wr(df['High'], df['Low'], df['Close'])
df['MACD'] = macd(df['Close'])

# Some indicators require many days in advance before they produce any
# values. So the begining rows of our df may have NaNs. Lets drop them:
df = df.dropna()

# Scaling Data
from sklearn.preprocessing import MinMaxScalern
sc = MinMaxScaler(feature_range=(0, 1))
scaled_df = sc.fit_transform(df.iloc[:, 1:].values)

# Creating a data structure with 60 timesteps and 1 output
X_train = np.array(
    [scaled_df[i:i + 60, :] for i in range(len(scaled_df) - 60)])
y_train = np.array([scaled_df[i + 60, 0] for i in range(len(scaled_df) - 60)])
Пример #8
0
def calculate_Momentum_Indicators():

    JSON_sent = request.get_json()
    df = pd.DataFrame(JSON_sent[0])

    _, RSI, TSI, UO, STOCH, STOCH_SIGNAL, WR, AO, KAMA, ROC = JSON_sent

    indicator_RSI = RSIIndicator(close=df["close"], n=RSI['N'])
    df['rsi'] = indicator_RSI.rsi()

    if TSI['displayTSI']:
        indicator_TSI = TSIIndicator(close=df["close"],
                                     r=TSI['rTSI'],
                                     s=TSI['sTSI'])
        df['tsi'] = indicator_TSI.tsi()

    if UO['displayUO']:
        indicator_UO = uo(high=df['high'],
                          low=df['low'],
                          close=df['close'],
                          s=UO['sForUO'],
                          m=UO['mForUO'],
                          len=UO['lenForUO'],
                          ws=UO['wsForUO'],
                          wm=UO['wmForUO'],
                          wl=UO['wlForUO'])
        df['uo'] = indicator_UO

    if STOCH['displaySTOCH']:
        indicator_Stoch = stoch(high=df['high'],
                                low=df['low'],
                                close=df['close'],
                                n=STOCH['nForSTOCH'],
                                d_n=STOCH['dnForSTOCH'])
        df['stoch'] = indicator_Stoch

    if STOCH_SIGNAL['displayStochSignal']:
        indicator_StochSignal = stoch_signal(
            high=df['high'],
            low=df['low'],
            close=df['close'],
            n=STOCH_SIGNAL['nForStochSignal'],
            d_n=STOCH_SIGNAL['dnForStochSignal'])
        df['stoch_signal'] = indicator_StochSignal

    if WR['displayWR']:
        indicator_wr = wr(high=df['high'],
                          low=df['low'],
                          close=df['close'],
                          lbp=WR['lbpForWR'])
        df['wr'] = indicator_wr

    if AO['displayAO']:
        indicator_ao = ao(high=df['high'],
                          low=df['low'],
                          s=AO['sForAO'],
                          len=AO['lenForAO'])
        df['ao'] = indicator_ao

    if KAMA['displayKama']:
        indicator_kama = kama(close=df['close'],
                              n=KAMA['nForKama'],
                              pow1=KAMA['pow1ForKama'],
                              pow2=KAMA['pow2ForKama'])
        df['kama'] = indicator_kama

    if ROC['displayROC']:
        indicator_roc = roc(close=df['close'], n=ROC['nForROC'])
        df['roc'] = indicator_roc

    df.fillna(0, inplace=True)
    export_df = df.drop(columns=['open', 'high', 'low', 'close', 'volume'])
    return (json.dumps(export_df.to_dict('records')))