Пример #1
0
 def CCI(self, df):  #trend
     '''
 data range(-inf,inf)
 '''
     df_CCI = df.copy()
     cci = CCIIndicator(df['High'], df['Low'], df['Close'])
     df['CCI'] = cci.cci()
     return df
Пример #2
0
 def test_cci2(self):
     target = 'CCI'
     result = CCIIndicator(high=self._df['High'],
                           low=self._df['Low'],
                           close=self._df['Close'],
                           n=20,
                           c=0.015,
                           fillna=False).cci()
     pd.testing.assert_series_equal(self._df[target].tail(),
                                    result.tail(),
                                    check_names=False)
Пример #3
0
 def setUpClass(cls):
     cls._df = pd.read_csv(cls._filename, sep=',')
     cls._params = dict(high=cls._df['High'],
                        low=cls._df['Low'],
                        close=cls._df['Close'],
                        n=20,
                        c=0.015,
                        fillna=False)
     cls._indicator = CCIIndicator(**cls._params)
Пример #4
0
 def setUpClass(cls):
     cls._df = pd.read_csv(cls._filename, sep=",")
     cls._params = dict(
         high=cls._df["High"],
         low=cls._df["Low"],
         close=cls._df["Close"],
         window=20,
         constant=0.015,
         fillna=False,
     )
     cls._indicator = CCIIndicator(**cls._params)
Пример #5
0
def add_trend_ta(
    df: pd.DataFrame,
    high: str,
    low: str,
    close: str,
    fillna: bool = False,
    colprefix: str = "",
    vectorized: bool = False,
) -> pd.DataFrame:
    """Add trend technical analysis features to dataframe.

    Args:
        df (pandas.core.frame.DataFrame): Dataframe base.
        high (str): Name of 'high' column.
        low (str): Name of 'low' column.
        close (str): Name of 'close' column.
        fillna(bool): if True, fill nan values.
        colprefix(str): Prefix column names inserted
        vectorized(bool): if True, use only vectorized functions indicators

    Returns:
        pandas.core.frame.DataFrame: Dataframe with new features.
    """

    # MACD
    indicator_macd = MACD(close=df[close],
                          window_slow=26,
                          window_fast=12,
                          window_sign=9,
                          fillna=fillna)
    df[f"{colprefix}trend_macd"] = indicator_macd.macd()
    df[f"{colprefix}trend_macd_signal"] = indicator_macd.macd_signal()
    df[f"{colprefix}trend_macd_diff"] = indicator_macd.macd_diff()

    # SMAs
    df[f"{colprefix}trend_sma_fast"] = SMAIndicator(
        close=df[close], window=12, fillna=fillna).sma_indicator()
    df[f"{colprefix}trend_sma_slow"] = SMAIndicator(
        close=df[close], window=26, fillna=fillna).sma_indicator()

    # EMAs
    df[f"{colprefix}trend_ema_fast"] = EMAIndicator(
        close=df[close], window=12, fillna=fillna).ema_indicator()
    df[f"{colprefix}trend_ema_slow"] = EMAIndicator(
        close=df[close], window=26, fillna=fillna).ema_indicator()

    # Vortex Indicator
    indicator_vortex = VortexIndicator(high=df[high],
                                       low=df[low],
                                       close=df[close],
                                       window=14,
                                       fillna=fillna)
    df[f"{colprefix}trend_vortex_ind_pos"] = indicator_vortex.vortex_indicator_pos(
    )
    df[f"{colprefix}trend_vortex_ind_neg"] = indicator_vortex.vortex_indicator_neg(
    )
    df[f"{colprefix}trend_vortex_ind_diff"] = indicator_vortex.vortex_indicator_diff(
    )

    # TRIX Indicator
    df[f"{colprefix}trend_trix"] = TRIXIndicator(close=df[close],
                                                 window=15,
                                                 fillna=fillna).trix()

    # Mass Index
    df[f"{colprefix}trend_mass_index"] = MassIndex(high=df[high],
                                                   low=df[low],
                                                   window_fast=9,
                                                   window_slow=25,
                                                   fillna=fillna).mass_index()

    # DPO Indicator
    df[f"{colprefix}trend_dpo"] = DPOIndicator(close=df[close],
                                               window=20,
                                               fillna=fillna).dpo()

    # KST Indicator
    indicator_kst = KSTIndicator(
        close=df[close],
        roc1=10,
        roc2=15,
        roc3=20,
        roc4=30,
        window1=10,
        window2=10,
        window3=10,
        window4=15,
        nsig=9,
        fillna=fillna,
    )
    df[f"{colprefix}trend_kst"] = indicator_kst.kst()
    df[f"{colprefix}trend_kst_sig"] = indicator_kst.kst_sig()
    df[f"{colprefix}trend_kst_diff"] = indicator_kst.kst_diff()

    # Ichimoku Indicator
    indicator_ichi = IchimokuIndicator(
        high=df[high],
        low=df[low],
        window1=9,
        window2=26,
        window3=52,
        visual=False,
        fillna=fillna,
    )
    df[f"{colprefix}trend_ichimoku_conv"] = indicator_ichi.ichimoku_conversion_line(
    )
    df[f"{colprefix}trend_ichimoku_base"] = indicator_ichi.ichimoku_base_line()
    df[f"{colprefix}trend_ichimoku_a"] = indicator_ichi.ichimoku_a()
    df[f"{colprefix}trend_ichimoku_b"] = indicator_ichi.ichimoku_b()

    # Schaff Trend Cycle (STC)
    df[f"{colprefix}trend_stc"] = STCIndicator(
        close=df[close],
        window_slow=50,
        window_fast=23,
        cycle=10,
        smooth1=3,
        smooth2=3,
        fillna=fillna,
    ).stc()

    if not vectorized:
        # Average Directional Movement Index (ADX)
        indicator_adx = ADXIndicator(high=df[high],
                                     low=df[low],
                                     close=df[close],
                                     window=14,
                                     fillna=fillna)
        df[f"{colprefix}trend_adx"] = indicator_adx.adx()
        df[f"{colprefix}trend_adx_pos"] = indicator_adx.adx_pos()
        df[f"{colprefix}trend_adx_neg"] = indicator_adx.adx_neg()

        # CCI Indicator
        df[f"{colprefix}trend_cci"] = CCIIndicator(
            high=df[high],
            low=df[low],
            close=df[close],
            window=20,
            constant=0.015,
            fillna=fillna,
        ).cci()

        # Ichimoku Visual Indicator
        indicator_ichi_visual = IchimokuIndicator(
            high=df[high],
            low=df[low],
            window1=9,
            window2=26,
            window3=52,
            visual=True,
            fillna=fillna,
        )
        df[f"{colprefix}trend_visual_ichimoku_a"] = indicator_ichi_visual.ichimoku_a(
        )
        df[f"{colprefix}trend_visual_ichimoku_b"] = indicator_ichi_visual.ichimoku_b(
        )

        # Aroon Indicator
        indicator_aroon = AroonIndicator(close=df[close],
                                         window=25,
                                         fillna=fillna)
        df[f"{colprefix}trend_aroon_up"] = indicator_aroon.aroon_up()
        df[f"{colprefix}trend_aroon_down"] = indicator_aroon.aroon_down()
        df[f"{colprefix}trend_aroon_ind"] = indicator_aroon.aroon_indicator()

        # PSAR Indicator
        indicator_psar = PSARIndicator(
            high=df[high],
            low=df[low],
            close=df[close],
            step=0.02,
            max_step=0.20,
            fillna=fillna,
        )
        # df[f'{colprefix}trend_psar'] = indicator.psar()
        df[f"{colprefix}trend_psar_up"] = indicator_psar.psar_up()
        df[f"{colprefix}trend_psar_down"] = indicator_psar.psar_down()
        df[f"{colprefix}trend_psar_up_indicator"] = indicator_psar.psar_up_indicator(
        )
        df[f"{colprefix}trend_psar_down_indicator"] = indicator_psar.psar_down_indicator(
        )

    return df
Пример #6
0
    def applyIndicator(self, full_company_price):
        self.data = full_company_price

        high = self.data['high']
        low = self.data['low']
        close = self.data['close']
        volume = self.data['volume']

        EMA12 = EMAIndicator(close, 12, fillna=False)
        EMA30 = EMAIndicator(close, 20, fillna=False)
        EMA60 = EMAIndicator(close, 60, fillna=False)
        MACD1226 = MACD(close, 26, 12, 9, fillna=False)
        MACD2452 = MACD(close, 52, 24, 18, fillna=False)
        ROC12 = ROCIndicator(close, 12, fillna=False)
        ROC30 = ROCIndicator(close, 30, fillna=False)
        ROC60 = ROCIndicator(close, 60, fillna=False)
        RSI14 = RSIIndicator(close, 14, fillna=False)
        RSI28 = RSIIndicator(close, 28, fillna=False)
        RSI60 = RSIIndicator(close, 60, fillna=False)
        AROON25 = AroonIndicator(close, 25, fillna=False)
        AROON50 = AroonIndicator(close, 50, fillna=False)
        AROON80 = AroonIndicator(close, 80, fillna=False)
        MFI14 = MFIIndicator(high, low, close, volume, 14, fillna=False)
        MFI28 = MFIIndicator(high, low, close, volume, 28, fillna=False)
        MFI80 = MFIIndicator(high, low, close, volume, 80, fillna=False)
        CCI20 = CCIIndicator(high, low, close, 20, 0.015, fillna=False)
        CCI40 = CCIIndicator(high, low, close, 40, 0.015, fillna=False)
        CCI100 = CCIIndicator(high, low, close, 100, 0.015, fillna=False)
        WILLR14 = WilliamsRIndicator(high, low, close, 14, fillna=False)
        WILLR28 = WilliamsRIndicator(high, low, close, 28, fillna=False)
        WILLR60 = WilliamsRIndicator(high, low, close, 60, fillna=False)
        BBANDS20 = BollingerBands(close, 20, 2, fillna=False)
        KC20 = KeltnerChannel(high, low, close, 20, 10, fillna=False)
        STOCH14 = StochasticOscillator(high, low, close, 14, 3, fillna=False)
        STOCH28 = StochasticOscillator(high, low, close, 28, 6, fillna=False)
        STOCH60 = StochasticOscillator(high, low, close, 60, 12, fillna=False)
        CMI20 = ChaikinMoneyFlowIndicator(high,
                                          low,
                                          close,
                                          volume,
                                          20,
                                          fillna=False)
        CMI40 = ChaikinMoneyFlowIndicator(high,
                                          low,
                                          close,
                                          volume,
                                          40,
                                          fillna=False)
        CMI100 = ChaikinMoneyFlowIndicator(high,
                                           low,
                                           close,
                                           volume,
                                           100,
                                           fillna=False)

        self.data['ema12'] = (close - EMA12.ema_indicator()) / close
        self.data['ema30'] = (close - EMA30.ema_indicator()) / close
        self.data['ema60'] = (close - EMA60.ema_indicator()) / close
        self.data['macd1226'] = MACD1226.macd() - MACD1226.macd_signal()
        self.data['macd2452'] = MACD2452.macd() - MACD2452.macd_signal()
        self.data['roc12'] = ROC12.roc()
        self.data['roc30'] = ROC30.roc()
        self.data['roc60'] = ROC60.roc()
        self.data['rsi14'] = RSI14.rsi()
        self.data['rsi28'] = RSI28.rsi()
        self.data['rsi60'] = RSI60.rsi()
        self.data['aroon25'] = AROON25.aroon_indicator()
        self.data['aroon50'] = AROON50.aroon_indicator()
        self.data['aroon80'] = AROON80.aroon_indicator()
        self.data['mfi14'] = MFI14.money_flow_index()
        self.data['mfi28'] = MFI28.money_flow_index()
        self.data['mfi80'] = MFI80.money_flow_index()
        self.data['cci20'] = CCI20.cci()
        self.data['cci40'] = CCI40.cci()
        self.data['cci100'] = CCI100.cci()
        self.data['willr14'] = WILLR14.wr()
        self.data['willr28'] = WILLR28.wr()
        self.data['willr60'] = WILLR60.wr()
        self.data['bband20up'] = (BBANDS20.bollinger_hband() - close) / close
        self.data['bband20down'] = (close - BBANDS20.bollinger_lband()) / close
        self.data['stoch14'] = STOCH14.stoch()
        self.data['stoch28'] = STOCH28.stoch()
        self.data['stoch60'] = STOCH60.stoch()
        self.data['cmi20'] = CMI20.chaikin_money_flow()
        self.data['cmi40'] = CMI40.chaikin_money_flow()
        self.data['cmi100'] = CMI100.chaikin_money_flow()
        self.data['kc20up'] = (KC20.keltner_channel_hband() - close) / close
        self.data['kc20down'] = (close - KC20.keltner_channel_lband()) / close
        return self.data
Пример #7
0
def add_trend_ta(df: pd.DataFrame,
                 high: str,
                 low: str,
                 close: str,
                 fillna: bool = False,
                 colprefix: str = ""):
    """Add trend technical analysis features to dataframe.

    Args:
        df (pandas.core.frame.DataFrame): Dataframe base.
        high (str): Name of 'high' column.
        low (str): Name of 'low' column.
        close (str): Name of 'close' column.
        fillna(bool): if True, fill nan values.
        colprefix(str): Prefix column names inserted

    Returns:
        pandas.core.frame.DataFrame: Dataframe with new features.
    """

    # MACD
    indicator_macd = MACD(close=df[close],
                          n_fast=12,
                          n_slow=26,
                          n_sign=9,
                          fillna=fillna)
    df[f'{colprefix}trend_macd'] = indicator_macd.macd()
    df[f'{colprefix}trend_macd_signal'] = indicator_macd.macd_signal()
    df[f'{colprefix}trend_macd_diff'] = indicator_macd.macd_diff()

    # EMAs
    df[f'{colprefix}trend_ema_fast'] = EMAIndicator(
        close=df[close], n=12, fillna=fillna).ema_indicator()
    df[f'{colprefix}trend_ema_slow'] = EMAIndicator(
        close=df[close], n=26, fillna=fillna).ema_indicator()

    # Average Directional Movement Index (ADX)
    indicator = ADXIndicator(high=df[high],
                             low=df[low],
                             close=df[close],
                             n=14,
                             fillna=fillna)
    df[f'{colprefix}trend_adx'] = indicator.adx()
    df[f'{colprefix}trend_adx_pos'] = indicator.adx_pos()
    df[f'{colprefix}trend_adx_neg'] = indicator.adx_neg()

    # Vortex Indicator
    indicator = VortexIndicator(high=df[high],
                                low=df[low],
                                close=df[close],
                                n=14,
                                fillna=fillna)
    df[f'{colprefix}trend_vortex_ind_pos'] = indicator.vortex_indicator_pos()
    df[f'{colprefix}trend_vortex_ind_neg'] = indicator.vortex_indicator_neg()
    df[f'{colprefix}trend_vortex_ind_diff'] = indicator.vortex_indicator_diff()

    # TRIX Indicator
    indicator = TRIXIndicator(close=df[close], n=15, fillna=fillna)
    df[f'{colprefix}trend_trix'] = indicator.trix()

    # Mass Index
    indicator = MassIndex(high=df[high],
                          low=df[low],
                          n=9,
                          n2=25,
                          fillna=fillna)
    df[f'{colprefix}trend_mass_index'] = indicator.mass_index()

    # CCI Indicator
    indicator = CCIIndicator(high=df[high],
                             low=df[low],
                             close=df[close],
                             n=20,
                             c=0.015,
                             fillna=fillna)
    df[f'{colprefix}trend_cci'] = indicator.cci()

    # DPO Indicator
    indicator = DPOIndicator(close=df[close], n=20, fillna=fillna)
    df[f'{colprefix}trend_dpo'] = indicator.dpo()

    # KST Indicator
    indicator = KSTIndicator(close=df[close],
                             r1=10,
                             r2=15,
                             r3=20,
                             r4=30,
                             n1=10,
                             n2=10,
                             n3=10,
                             n4=15,
                             nsig=9,
                             fillna=fillna)
    df[f'{colprefix}trend_kst'] = indicator.kst()
    df[f'{colprefix}trend_kst_sig'] = indicator.kst_sig()
    df[f'{colprefix}trend_kst_diff'] = indicator.kst_diff()

    # Ichimoku Indicator
    indicator = IchimokuIndicator(high=df[high],
                                  low=df[low],
                                  n1=9,
                                  n2=26,
                                  n3=52,
                                  visual=False,
                                  fillna=fillna)
    df[f'{colprefix}trend_ichimoku_a'] = indicator.ichimoku_a()
    df[f'{colprefix}trend_ichimoku_b'] = indicator.ichimoku_b()
    indicator = IchimokuIndicator(high=df[high],
                                  low=df[low],
                                  n1=9,
                                  n2=26,
                                  n3=52,
                                  visual=True,
                                  fillna=fillna)
    df[f'{colprefix}trend_visual_ichimoku_a'] = indicator.ichimoku_a()
    df[f'{colprefix}trend_visual_ichimoku_b'] = indicator.ichimoku_b()

    # Aroon Indicator
    indicator = AroonIndicator(close=df[close], n=25, fillna=fillna)
    df[f'{colprefix}trend_aroon_up'] = indicator.aroon_up()
    df[f'{colprefix}trend_aroon_down'] = indicator.aroon_down()
    df[f'{colprefix}trend_aroon_ind'] = indicator.aroon_indicator()

    # PSAR Indicator
    indicator = PSARIndicator(high=df[high],
                              low=df[low],
                              close=df[close],
                              step=0.02,
                              max_step=0.20,
                              fillna=fillna)
    df[f'{colprefix}trend_psar'] = indicator.psar()
    df[f'{colprefix}trend_psar_up'] = indicator.psar_up()
    df[f'{colprefix}trend_psar_down'] = indicator.psar_down()
    df[f'{colprefix}trend_psar_up_indicator'] = indicator.psar_up_indicator()
    df[f'{colprefix}trend_psar_down_indicator'] = indicator.psar_down_indicator(
    )

    return df