Пример #1
0
    def test01_MultidimLeaves(self):
        """Creating new nodes with multidimensional time elements."""

        # Table creation.
        class MyTimeRow(tb.IsDescription):
            intcol = tb.IntCol(shape=(2, 1))
            t32col = tb.Time32Col(shape=(2, 1))
            t64col = tb.Time64Col(shape=(2, 1))

        self.h5file.create_table('/', 'table', MyTimeRow)

        # VLArray creation.
        self.h5file.create_vlarray('/', 'vlarray4',
                                   tb.Time32Atom(shape=(2, 1)))
        self.h5file.create_vlarray('/', 'vlarray8',
                                   tb.Time64Atom(shape=(2, 1)))

        # EArray creation.
        self.h5file.create_earray('/',
                                  'earray4',
                                  tb.Time32Atom(),
                                  shape=(0, 2, 1))
        self.h5file.create_earray('/',
                                  'earray8',
                                  tb.Time64Atom(),
                                  shape=(0, 2, 1))
Пример #2
0
    def test03b_Compare64EArray(self):
        "Comparing several written and read 64-bit time values in an EArray."

        # Create test EArray with data.
        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for comparing Time64 E arrays")
        ea = h5file.createEArray('/',
                                 'test',
                                 tables.Time64Atom(),
                                 shape=(0, 2))

        # Size of the test.
        nrows = ea.nrowsinbuf + 34  # Add some more rows than buffer.
        # Only for home checks; the value above should check better
        # the I/O with multiple buffers.
        ##nrows = 10

        for i in xrange(nrows):
            j = i * 2
            ea.append(((j + 0.012, j + 1 + 0.012), ))
        h5file.close()

        # Check the written data.
        h5file = tables.openFile(self.h5fname)
        arr = h5file.root.test.read()
        h5file.close()

        orig_val = numpy.arange(0, nrows * 2, dtype=numpy.int32) + 0.012
        orig_val.shape = (nrows, 2)
        if common.verbose:
            print "Original values:", orig_val
            print "Retrieved values:", arr
        self.assertTrue(allequal(arr, orig_val),
                        "Stored and retrieved values do not match.")
Пример #3
0
    def test03b_Compare64EArray(self):
        """Comparing several written and read 64-bit time values in an
        EArray."""

        # Create test EArray with data.
        ea = self.h5file.create_earray('/',
                                       'test',
                                       tb.Time64Atom(),
                                       shape=(0, 2))

        # Size of the test.
        nrows = ea.nrowsinbuf + 34  # Add some more rows than buffer.
        # Only for home checks; the value above should check better
        # the I/O with multiple buffers.
        # nrows = 10

        for i in range(nrows):
            j = i * 2
            ea.append(((j + 0.012, j + 1 + 0.012), ))
        self._reopen()

        # Check the written data.
        arr = self.h5file.root.test.read()
        self.h5file.close()

        orig_val = np.arange(0, nrows * 2, dtype=np.int32) + 0.012
        orig_val.shape = (nrows, 2)
        if common.verbose:
            print("Original values:", orig_val)
            print("Retrieved values:", arr)
        self.assertTrue(common.allequal(arr, orig_val),
                        "Stored and retrieved values do not match.")
Пример #4
0
    def test00_UnidimLeaves(self):
        "Creating new nodes with unidimensional time elements."

        # Table creation.
        class MyTimeRow(tables.IsDescription):
            intcol = tables.IntCol()
            t32col = tables.Time32Col()
            t64col = tables.Time64Col()
        self.h5file.create_table('/', 'table', MyTimeRow)

        # VLArray creation.
        self.h5file.create_vlarray('/', 'vlarray4', tables.Time32Atom())
        self.h5file.create_vlarray('/', 'vlarray8', tables.Time64Atom())

        # EArray creation.
        self.h5file.create_earray('/', 'earray4',
                                  tables.Time32Atom(), shape=(0,))
        self.h5file.create_earray('/', 'earray8',
                                  tables.Time64Atom(), shape=(0,))
Пример #5
0
    def test03_Compare64EArray(self):
        """Comparing written 64-bit time data with read data in an EArray."""

        wtime = 1234567890.123456

        # Create test EArray with data.
        ea = self.h5file.create_earray(
            '/', 'test', tables.Time64Atom(), shape=(0,))
        ea.append((wtime,))
        self._reopen()

        # Check the written data.
        rtime = self.h5file.root.test[0]
        self.h5file.close()
        self.assertTrue(allequal(rtime, wtime),
                        "Stored and retrieved values do not match.")
Пример #6
0
    def test03_Compare64EArray(self):
        "Comparing written 64-bit time data with read data in an EArray."

        wtime = 1234567890.123456

        # Create test EArray with data.
        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for comparing Time64 EArrays")
        ea = h5file.createEArray('/', 'test', tables.Time64Atom(), shape=(0, ))
        ea.append((wtime, ))
        h5file.close()

        # Check the written data.
        h5file = tables.openFile(self.h5fname)
        rtime = h5file.root.test[0]
        h5file.close()
        self.assertTrue(allequal(rtime, wtime),
                        "Stored and retrieved values do not match.")
Пример #7
0
class OpenTestCase(common.TempFileMixin, common.PyTablesTestCase):
    """Tests opening a file with Time nodes."""

    # The description used in the test Table.
    class MyTimeRow(tb.IsDescription):
        t32col = tb.Time32Col(shape=(2, 1))
        t64col = tb.Time64Col(shape=(2, 1))

    # The atoms used in the test VLArrays.
    myTime32Atom = tb.Time32Atom(shape=(2, 1))
    myTime64Atom = tb.Time64Atom(shape=(2, 1))

    def setUp(self):
        super().setUp()

        # Create test Table.
        self.h5file.create_table('/', 'table', self.MyTimeRow)

        # Create test VLArrays.
        self.h5file.create_vlarray('/', 'vlarray4', self.myTime32Atom)
        self.h5file.create_vlarray('/', 'vlarray8', self.myTime64Atom)

        self._reopen()

    def test00_OpenFile(self):
        """Opening a file with Time nodes."""

        # Test the Table node.
        tbl = self.h5file.root.table
        self.assertEqual(tbl.coldtypes['t32col'],
                         self.MyTimeRow.columns['t32col'].dtype,
                         "Column dtypes do not match.")
        self.assertEqual(tbl.coldtypes['t64col'],
                         self.MyTimeRow.columns['t64col'].dtype,
                         "Column dtypes do not match.")

        # Test the VLArray nodes.
        vla4 = self.h5file.root.vlarray4
        self.assertEqual(vla4.atom.dtype, self.myTime32Atom.dtype,
                         "Atom types do not match.")
        self.assertEqual(vla4.atom.shape, self.myTime32Atom.shape,
                         "Atom shapes do not match.")

        vla8 = self.h5file.root.vlarray8
        self.assertEqual(vla8.atom.dtype, self.myTime64Atom.dtype,
                         "Atom types do not match.")
        self.assertEqual(vla8.atom.shape, self.myTime64Atom.shape,
                         "Atom shapes do not match.")

    def test01_OpenFileStype(self):
        """Opening a file with Time nodes, comparing Atom.stype."""

        # Test the Table node.
        tbl = self.h5file.root.table
        self.assertEqual(tbl.coltypes['t32col'],
                         self.MyTimeRow.columns['t32col'].type,
                         "Column types do not match.")
        self.assertEqual(tbl.coltypes['t64col'],
                         self.MyTimeRow.columns['t64col'].type,
                         "Column types do not match.")

        # Test the VLArray nodes.
        vla4 = self.h5file.root.vlarray4
        self.assertEqual(vla4.atom.type, self.myTime32Atom.type,
                         "Atom types do not match.")

        vla8 = self.h5file.root.vlarray8
        self.assertEqual(vla8.atom.type, self.myTime64Atom.type,
                         "Atom types do not match.")
Пример #8
0
class CompareTestCase(common.TempFileMixin, common.PyTablesTestCase):
    """Tests whether stored and retrieved time data is kept the same."""

    # The description used in the test Table.
    class MyTimeRow(tb.IsDescription):
        t32col = tb.Time32Col(pos=0)
        t64col = tb.Time64Col(shape=(2, ), pos=1)

    # The atoms used in the test VLArrays.
    myTime32Atom = tb.Time32Atom(shape=(2, ))
    myTime64Atom = tb.Time64Atom(shape=(2, ))

    def test00_Compare32VLArray(self):
        """Comparing written 32-bit time data with read data in a VLArray."""

        wtime = np.array((1_234_567_890, ) * 2, np.int32)

        # Create test VLArray with data.
        vla = self.h5file.create_vlarray('/', 'test', self.myTime32Atom)
        vla.append(wtime)
        self._reopen()

        # Check the written data.
        rtime = self.h5file.root.test.read()[0][0]
        self.h5file.close()
        self.assertTrue(common.allequal(rtime, wtime),
                        "Stored and retrieved values do not match.")

    def test01_Compare64VLArray(self):
        """Comparing written 64-bit time data with read data in a VLArray."""

        wtime = np.array((1_234_567_890.123456, ) * 2, np.float64)

        # Create test VLArray with data.
        vla = self.h5file.create_vlarray('/', 'test', self.myTime64Atom)
        vla.append(wtime)
        self._reopen()

        # Check the written data.
        rtime = self.h5file.root.test.read()[0][0]
        self.h5file.close()
        self.assertTrue(common.allequal(rtime, wtime),
                        "Stored and retrieved values do not match.")

    def test01b_Compare64VLArray(self):
        """Comparing several written and read 64-bit time values in a
        VLArray."""

        # Create test VLArray with data.
        vla = self.h5file.create_vlarray('/', 'test', self.myTime64Atom)

        # Size of the test.
        nrows = vla.nrowsinbuf + 34  # Add some more rows than buffer.
        # Only for home checks; the value above should check better
        # the I/O with multiple buffers.
        # nrows = 10

        for i in range(nrows):
            j = i * 2
            vla.append((j + 0.012, j + 1 + 0.012))
        self._reopen()

        # Check the written data.
        arr = self.h5file.root.test.read()
        self.h5file.close()

        arr = np.array(arr)
        orig_val = np.arange(0, nrows * 2, dtype=np.int32) + 0.012
        orig_val.shape = (nrows, 1, 2)
        if common.verbose:
            print("Original values:", orig_val)
            print("Retrieved values:", arr)
        self.assertTrue(common.allequal(arr, orig_val),
                        "Stored and retrieved values do not match.")

    def test02_CompareTable(self):
        """Comparing written time data with read data in a Table."""

        wtime = 1_234_567_890.123456

        # Create test Table with data.
        tbl = self.h5file.create_table('/', 'test', self.MyTimeRow)
        row = tbl.row
        row['t32col'] = int(wtime)
        row['t64col'] = (wtime, wtime)
        row.append()
        self._reopen()

        # Check the written data.
        recarr = self.h5file.root.test.read(0)
        self.h5file.close()

        self.assertEqual(recarr['t32col'][0], int(wtime),
                         "Stored and retrieved values do not match.")

        comp = (recarr['t64col'][0] == np.array((wtime, wtime)))
        self.assertTrue(np.alltrue(comp),
                        "Stored and retrieved values do not match.")

    def test02b_CompareTable(self):
        """Comparing several written and read time values in a Table."""

        # Create test Table with data.
        tbl = self.h5file.create_table('/', 'test', self.MyTimeRow)

        # Size of the test.
        nrows = tbl.nrowsinbuf + 34  # Add some more rows than buffer.
        # Only for home checks; the value above should check better
        # the I/O with multiple buffers.
        # nrows = 10

        row = tbl.row
        for i in range(nrows):
            row['t32col'] = i
            j = i * 2
            row['t64col'] = (j + 0.012, j + 1 + 0.012)
            row.append()

        self._reopen()

        # Check the written data.
        recarr = self.h5file.root.test.read()
        self.h5file.close()

        # Time32 column.
        orig_val = np.arange(nrows, dtype=np.int32)
        if common.verbose:
            print("Original values:", orig_val)
            print("Retrieved values:", recarr['t32col'][:])
        self.assertTrue(np.alltrue(recarr['t32col'][:] == orig_val),
                        "Stored and retrieved values do not match.")

        # Time64 column.
        orig_val = np.arange(0, nrows * 2, dtype=np.int32) + 0.012
        orig_val.shape = (nrows, 2)
        if common.verbose:
            print("Original values:", orig_val)
            print("Retrieved values:", recarr['t64col'][:])
        self.assertTrue(
            common.allequal(recarr['t64col'][:], orig_val, np.float64),
            "Stored and retrieved values do not match.")

    def test03_Compare64EArray(self):
        """Comparing written 64-bit time data with read data in an EArray."""

        wtime = 1_234_567_890.123456

        # Create test EArray with data.
        ea = self.h5file.create_earray('/',
                                       'test',
                                       tb.Time64Atom(),
                                       shape=(0, ))
        ea.append((wtime, ))
        self._reopen()

        # Check the written data.
        rtime = self.h5file.root.test[0]
        self.h5file.close()
        self.assertTrue(common.allequal(rtime, wtime),
                        "Stored and retrieved values do not match.")

    def test03b_Compare64EArray(self):
        """Comparing several written and read 64-bit time values in an
        EArray."""

        # Create test EArray with data.
        ea = self.h5file.create_earray('/',
                                       'test',
                                       tb.Time64Atom(),
                                       shape=(0, 2))

        # Size of the test.
        nrows = ea.nrowsinbuf + 34  # Add some more rows than buffer.
        # Only for home checks; the value above should check better
        # the I/O with multiple buffers.
        # nrows = 10

        for i in range(nrows):
            j = i * 2
            ea.append(((j + 0.012, j + 1 + 0.012), ))
        self._reopen()

        # Check the written data.
        arr = self.h5file.root.test.read()
        self.h5file.close()

        orig_val = np.arange(0, nrows * 2, dtype=np.int32) + 0.012
        orig_val.shape = (nrows, 2)
        if common.verbose:
            print("Original values:", orig_val)
            print("Retrieved values:", arr)
        self.assertTrue(common.allequal(arr, orig_val),
                        "Stored and retrieved values do not match.")
Пример #9
0
class CompareTestCase(common.PyTablesTestCase):
    "Tests whether stored and retrieved time data is kept the same."

    # The description used in the test Table.
    class MyTimeRow(tables.IsDescription):
        t32col = tables.Time32Col(pos=0)
        t64col = tables.Time64Col(shape=(2, ), pos=1)

    # The atoms used in the test VLArrays.
    myTime32Atom = tables.Time32Atom(shape=(2, ))
    myTime64Atom = tables.Time64Atom(shape=(2, ))

    def setUp(self):
        """setUp() -> None

        This method sets the following instance attributes:
          * 'h5fname', the name of the temporary HDF5 file
        """

        self.h5fname = tempfile.mktemp(suffix='.h5')

    def tearDown(self):
        """tearDown() -> None

        Removes 'h5fname'.
        """

        os.remove(self.h5fname)

    def test00_Compare32VLArray(self):
        "Comparing written 32-bit time data with read data in a VLArray."

        wtime = numpy.array((1234567890, ) * 2, numpy.int32)

        # Create test VLArray with data.
        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for comparing Time32 VL arrays")
        vla = h5file.createVLArray('/', 'test', self.myTime32Atom)
        vla.append(wtime)
        h5file.close()

        # Check the written data.
        h5file = tables.openFile(self.h5fname)
        rtime = h5file.root.test.read()[0][0]
        h5file.close()
        self.assertTrue(allequal(rtime, wtime),
                        "Stored and retrieved values do not match.")

    def test01_Compare64VLArray(self):
        "Comparing written 64-bit time data with read data in a VLArray."

        wtime = numpy.array((1234567890.123456, ) * 2, numpy.float64)

        # Create test VLArray with data.
        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for comparing Time64 VL arrays")
        vla = h5file.createVLArray('/', 'test', self.myTime64Atom)
        vla.append(wtime)
        h5file.close()

        # Check the written data.
        h5file = tables.openFile(self.h5fname)
        rtime = h5file.root.test.read()[0][0]
        h5file.close()
        self.assertTrue(allequal(rtime, wtime),
                        "Stored and retrieved values do not match.")

    def test01b_Compare64VLArray(self):
        "Comparing several written and read 64-bit time values in a VLArray."

        # Create test VLArray with data.
        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for comparing Time64 VL arrays")
        vla = h5file.createVLArray('/', 'test', self.myTime64Atom)

        # Size of the test.
        nrows = vla.nrowsinbuf + 34  # Add some more rows than buffer.
        # Only for home checks; the value above should check better
        # the I/O with multiple buffers.
        #nrows = 10

        for i in xrange(nrows):
            j = i * 2
            vla.append((j + 0.012, j + 1 + 0.012))
        h5file.close()

        # Check the written data.
        h5file = tables.openFile(self.h5fname)
        arr = h5file.root.test.read()
        h5file.close()

        arr = numpy.array(arr)
        orig_val = numpy.arange(0, nrows * 2, dtype=numpy.int32) + 0.012
        orig_val.shape = (nrows, 1, 2)
        if common.verbose:
            print "Original values:", orig_val
            print "Retrieved values:", arr
        self.assertTrue(allequal(arr, orig_val),
                        "Stored and retrieved values do not match.")

    def test02_CompareTable(self):
        "Comparing written time data with read data in a Table."

        wtime = 1234567890.123456

        # Create test Table with data.
        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for comparing Time tables")
        tbl = h5file.createTable('/', 'test', self.MyTimeRow)
        row = tbl.row
        row['t32col'] = int(wtime)
        row['t64col'] = (wtime, wtime)
        row.append()
        h5file.close()

        # Check the written data.
        h5file = tables.openFile(self.h5fname)
        recarr = h5file.root.test.read(0)
        h5file.close()

        self.assertEqual(recarr['t32col'][0], int(wtime),
                         "Stored and retrieved values do not match.")

        comp = (recarr['t64col'][0] == numpy.array((wtime, wtime)))
        self.assertTrue(numpy.alltrue(comp),
                        "Stored and retrieved values do not match.")

    def test02b_CompareTable(self):
        "Comparing several written and read time values in a Table."

        # Create test Table with data.
        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for comparing Time tables")
        tbl = h5file.createTable('/', 'test', self.MyTimeRow)

        # Size of the test.
        nrows = tbl.nrowsinbuf + 34  # Add some more rows than buffer.
        # Only for home checks; the value above should check better
        # the I/O with multiple buffers.
        ##nrows = 10

        row = tbl.row
        for i in xrange(nrows):
            row['t32col'] = i
            j = i * 2
            row['t64col'] = (j + 0.012, j + 1 + 0.012)
            row.append()
        h5file.close()

        # Check the written data.
        h5file = tables.openFile(self.h5fname)
        recarr = h5file.root.test.read()
        h5file.close()

        # Time32 column.
        orig_val = numpy.arange(nrows, dtype=numpy.int32)
        if common.verbose:
            print "Original values:", orig_val
            print "Retrieved values:", recarr['t32col'][:]
        self.assertTrue(numpy.alltrue(recarr['t32col'][:] == orig_val),
                        "Stored and retrieved values do not match.")

        # Time64 column.
        orig_val = numpy.arange(0, nrows * 2, dtype=numpy.int32) + 0.012
        orig_val.shape = (nrows, 2)
        if common.verbose:
            print "Original values:", orig_val
            print "Retrieved values:", recarr['t64col'][:]
        self.assertTrue(allequal(recarr['t64col'][:], orig_val, numpy.float64),
                        "Stored and retrieved values do not match.")

    def test03_Compare64EArray(self):
        "Comparing written 64-bit time data with read data in an EArray."

        wtime = 1234567890.123456

        # Create test EArray with data.
        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for comparing Time64 EArrays")
        ea = h5file.createEArray('/', 'test', tables.Time64Atom(), shape=(0, ))
        ea.append((wtime, ))
        h5file.close()

        # Check the written data.
        h5file = tables.openFile(self.h5fname)
        rtime = h5file.root.test[0]
        h5file.close()
        self.assertTrue(allequal(rtime, wtime),
                        "Stored and retrieved values do not match.")

    def test03b_Compare64EArray(self):
        "Comparing several written and read 64-bit time values in an EArray."

        # Create test EArray with data.
        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for comparing Time64 E arrays")
        ea = h5file.createEArray('/',
                                 'test',
                                 tables.Time64Atom(),
                                 shape=(0, 2))

        # Size of the test.
        nrows = ea.nrowsinbuf + 34  # Add some more rows than buffer.
        # Only for home checks; the value above should check better
        # the I/O with multiple buffers.
        ##nrows = 10

        for i in xrange(nrows):
            j = i * 2
            ea.append(((j + 0.012, j + 1 + 0.012), ))
        h5file.close()

        # Check the written data.
        h5file = tables.openFile(self.h5fname)
        arr = h5file.root.test.read()
        h5file.close()

        orig_val = numpy.arange(0, nrows * 2, dtype=numpy.int32) + 0.012
        orig_val.shape = (nrows, 2)
        if common.verbose:
            print "Original values:", orig_val
            print "Retrieved values:", arr
        self.assertTrue(allequal(arr, orig_val),
                        "Stored and retrieved values do not match.")
Пример #10
0
class OpenTestCase(common.PyTablesTestCase):
    "Tests opening a file with Time nodes."

    # The description used in the test Table.
    class MyTimeRow(tables.IsDescription):
        t32col = tables.Time32Col(shape=(2, 1))
        t64col = tables.Time64Col(shape=(2, 1))

    # The atoms used in the test VLArrays.
    myTime32Atom = tables.Time32Atom(shape=(2, 1))
    myTime64Atom = tables.Time64Atom(shape=(2, 1))

    def setUp(self):
        """setUp() -> None

        This method sets the following instance attributes:
          * 'h5fname', the name of the temporary HDF5 file with '/table',
            '/vlarray4' and '/vlarray8' nodes.
        """

        self.h5fname = tempfile.mktemp(suffix='.h5')

        h5file = tables.openFile(self.h5fname,
                                 'w',
                                 title="Test for creating time leaves")

        # Create test Table.
        h5file.createTable('/', 'table', self.MyTimeRow)

        # Create test VLArrays.
        h5file.createVLArray('/', 'vlarray4', self.myTime32Atom)
        h5file.createVLArray('/', 'vlarray8', self.myTime64Atom)

        h5file.close()

    def tearDown(self):
        """tearDown() -> None

        Removes 'h5fname'.
        """

        os.remove(self.h5fname)

    def test00_OpenFile(self):
        "Opening a file with Time nodes."

        h5file = tables.openFile(self.h5fname)

        # Test the Table node.
        tbl = h5file.root.table
        self.assertEqual(tbl.coldtypes['t32col'],
                         self.MyTimeRow.columns['t32col'].dtype,
                         "Column dtypes do not match.")
        self.assertEqual(tbl.coldtypes['t64col'],
                         self.MyTimeRow.columns['t64col'].dtype,
                         "Column dtypes do not match.")

        # Test the VLArray nodes.
        vla4 = h5file.root.vlarray4
        self.assertEqual(vla4.atom.dtype, self.myTime32Atom.dtype,
                         "Atom types do not match.")
        self.assertEqual(vla4.atom.shape, self.myTime32Atom.shape,
                         "Atom shapes do not match.")

        vla8 = h5file.root.vlarray8
        self.assertEqual(vla8.atom.dtype, self.myTime64Atom.dtype,
                         "Atom types do not match.")
        self.assertEqual(vla8.atom.shape, self.myTime64Atom.shape,
                         "Atom shapes do not match.")

        h5file.close()

    def test01_OpenFileStype(self):
        "Opening a file with Time nodes, comparing Atom.stype."

        h5file = tables.openFile(self.h5fname)

        # Test the Table node.
        tbl = h5file.root.table
        self.assertEqual(tbl.coltypes['t32col'],
                         self.MyTimeRow.columns['t32col'].type,
                         "Column types do not match.")
        self.assertEqual(tbl.coltypes['t64col'],
                         self.MyTimeRow.columns['t64col'].type,
                         "Column types do not match.")

        # Test the VLArray nodes.
        vla4 = h5file.root.vlarray4
        self.assertEqual(vla4.atom.type, self.myTime32Atom.type,
                         "Atom types do not match.")

        vla8 = h5file.root.vlarray8
        self.assertEqual(vla8.atom.type, self.myTime64Atom.type,
                         "Atom types do not match.")

        h5file.close()
Пример #11
0
def tdms_to_hdf5(tdms_file,
                 h5_file,
                 load_data=True,
                 chan_map='',
                 memmap=True,
                 compression_level=0):
    """
    Converts TDMS data output from the LabView DAQ software used in the Viventi Lab to
    record from multiplexing neural implants. This method will most likely not interpret
    other TDMS files: see npTDMS for general file handling.

    Parameters
    ----------
    tdms_file : path (string)
    h5_file : path (string)
    chan_map : path (string)
        Optional table specifying a channel permutation. The first p rows
        of the outgoing H5 file will be the contents of these channels in
        sequence. The next (N-p) rows will be any channels not specified,
        in the order they are found.
    memmap : bool
    compression_level : int
        Optionally compress the outgoing H5 rows with zlib compression.
        This can reduce the time cost caused by disk access.

    """

    map_dir = tempfile.gettempdir() if memmap else None

    with tables.open_file(h5_file, mode='w') as h5_file:

        tdms_file = nptdms.TdmsFile(tdms_file, memmap_dir=map_dir)
        # assume for now there is only a single group -- see more files later

        # Catch an API change (older version first)
        try:
            t_group = tdms_file.groups()[0]
            group = tdms_file.object(t_group)
            chans = tdms_file.group_channels(t_group)
        except AttributeError:
            group = tdms_file.groups()[0]
            # Headstage channels and BNC channels are presently lumped into the "data" HDF5 array.. it might make sense
            # to separate them
            chans = group.channels()

        n_col = len(chans)
        n_row = len(chans[0])

        # The H5 file will be constructed as follows:
        #  * create a Group for the info section
        #  * create a CArray with zlib(3) compression for the data channels
        #  * create separate Arrays for special values
        #    (SampRate[SamplingRate], numRow[nrRows], numCol[nrColumns],
        #     OSR[OverSampling], numChan[nrColumns+nrBNCs])
        special_conversion = dict(SamplingRate='sampRate',
                                  nrRows='numRow',
                                  nrColumns='numCol',
                                  OverSampling='OSR')
        h5_info = h5_file.create_group(h5_file.root, 'info')
        for (key, val) in group.properties.items():
            if isinstance(val, str):
                # pytables doesn't support strings as arrays
                arr = h5_file.create_vlarray(h5_info,
                                             key,
                                             atom=tables.ObjectAtom())
                arr.append(val)
            elif isinstance(val, np.datetime64):
                h5_file.create_array(h5_info,
                                     key,
                                     obj=val.astype('f8'),
                                     atom=tables.Time64Atom())
            else:
                h5_file.create_array(h5_info, key, obj=val)
                if key in special_conversion:
                    print('caught', key)
                    # Put this array at the top level with new name
                    h5_file.create_array('/', special_conversion[key], obj=val)

        # do extra extra conversions
        try:
            num_chan = group.properties['nrColumns'] + group.properties[
                'nrBNCs']
            h5_file.create_array(h5_file.root, 'numChan', num_chan)
        except KeyError:
            pass
        try:
            mux_ratio = group.properties['OverSampling'] * group.properties[
                'nrRows']
            Fs = float(group.properties['SamplingRate']) / mux_ratio
            h5_file.create_array(h5_file.root, 'Fs', Fs)
        except KeyError:
            print('Could not determine sampling rate')

        h5_file.flush()

        if not load_data:
            return h5_file

        # now get down to the data
        atom = tables.Float64Atom()
        if compression_level > 0:
            filters = tables.Filters(complevel=compression_level,
                                     complib='zlib')
        else:
            filters = None

        d_array = h5_file.create_earray(h5_file.root,
                                        'data',
                                        atom=atom,
                                        shape=(0, n_row),
                                        filters=filters,
                                        expectedrows=n_col)

        # create a reverse lookup to index channels by number
        col_mapping = dict([(ch.properties['NI_ArrayColumn'], ch)
                            for ch in chans])
        # If a channel permutation is requested, lay down channels
        # in that order. Otherwise go in sequential order.
        if chan_map:
            chan_map = np.loadtxt(chan_map).astype('i')
            if chan_map.ndim > 1:
                print(chan_map.shape)
                # the actual channel permutation is in the 1st column
                # the array matrix coordinates are in the next columns
                chan_ij = chan_map[:, 1:3]
                chan_map = chan_map[:, 0]
            else:
                chan_ij = None
            # do any channels not specified at the end
            if len(chan_map) < n_col:
                left_out = set(range(n_col)).difference(chan_map.tolist())
                left_out = sorted(left_out)
                chan_map = np.r_[chan_map, left_out]
        else:
            chan_map = list(range(n_col))
            chan_ij = None

        for n in chan_map:
            # get TDMS column
            ch = col_mapping[n]
            # make a temp array here.. if all data in memory, then this is
            # slightly wasteful, but if it is mmap'd then this is more flexible
            d = ch.data[:]
            d_array.append(d[None, :])
            print('copied channel', ch.path, d_array.shape)

        if chan_ij is not None:
            h5_file.create_array(h5_file.root, 'channel_ij', obj=chan_ij)

    return h5_file