Пример #1
0
    def eq_vs_mean_price(self) -> Tuple[List[str], np.ndarray]:
        """
        Compute the mean price of each good and display it together with the equilibrium price.

        :return: a matrix of shape (2, nb_goods), where every column i contains the prices of the good.
        """
        nb_transactions = len(self.game.transactions)
        eq_prices = self.game.initialization.eq_prices
        nb_goods = len(eq_prices)

        result = np.zeros((2, nb_goods), dtype=np.float32)
        result[0, :] = np.asarray(eq_prices, dtype=np.float32)

        prices_by_transactions = np.zeros((nb_transactions + 1, nb_goods),
                                          dtype=np.float32)

        # initial prices
        prices_by_transactions[0, :] = np.asarray(0, dtype=np.float32)

        temp_game = Game(self.game.configuration, self.game.initialization)

        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            prices_by_transactions[idx + 1, :] = np.asarray(
                temp_game.get_prices(), dtype=np.float32)

        denominator = (prices_by_transactions != 0).sum(0)
        result[1, :] = np.true_divide(prices_by_transactions.sum(0),
                                      denominator)
        result[1, denominator == 0] = 0

        result = np.transpose(result)

        return self.game.configuration.good_names, result
Пример #2
0
    def price_history(self) -> np.ndarray:
        """Get the price history."""
        nb_transactions = len(self.game.transactions)
        nb_goods = self.game.configuration.nb_goods
        result = np.zeros((nb_transactions + 1, nb_goods), dtype=np.float32)

        temp_game = Game(self.game.configuration, self.game.initialization)

        # initial prices
        result[0, :] = np.asarray(0, dtype=np.float32)

        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            result[idx + 1, :] = np.asarray(temp_game.get_prices(),
                                            dtype=np.float32)

        return result