import tacoma as tc import numpy as np import matplotlib.pyplot as pl import GillEpi import networkx as nx import time N = 20 compl = tc.complete_graph(N) G = nx.complete_graph(N) R0s = np.logspace(1.0, 2.0, 5) k = N - 1.0 rho = 1.0 I0 = N // 2 N_meas = 100 Rs = np.zeros((len(R0s), N_meas)) R_gillepi_s = np.zeros((len(R0s), N_meas)) R_s = np.zeros((len(R0s), N_meas)) fig, ax = pl.subplots(4, 3, figsize=(18, 14)) ax = ax.flatten() for iR0, R0 in enumerate(R0s): for meas in range(N_meas): eta = R0 * rho / k start1 = time.time()
import tacoma as tc import pdb from tacoma.epidemics import simulate_quasi_stationary_SIS_on_static_network N = 100 R0 = 1.1 rho = 1.0 eta = rho * R0 / (N - 1.0) tmax = 100000 M = 100 G = tc.complete_graph(N, tmax=tmax) QS = tc.QS_SIS( N, tmax, eta, rho, M, sampling_rate=2 * rho, number_of_initially_infected=N, sample_network_state=False, ) I, I2 = simulate_quasi_stationary_SIS_on_static_network(G, QS, verbose=False) #pdb.set_trace() print(I, I2)