def main(model='Tacotron',input='training_data/train.txt',restore=True, summary_interval=100,base_dir='',hparams='',checkpoint_interval=500): # parser = argparse.ArgumentParser() # parser.add_argument('--base_dir', default='') # parser.add_argument('--hparams', default='', # help='Hyperparameter overrides as a comma-separated list of name=value pairs') # parser.add_argument('--input', default='training_data/train.txt') # parser.add_argument('--name', help='Name of logging directory.') # parser.add_argument('--model', default='Tacotron') # parser.add_argument('--restore', type=bool, default=True, help='Set this to False to do a fresh training') # parser.add_argument('--summary_interval', type=int, default=100, # help='Steps between running summary ops') # parser.add_argument('--''', type=int, default=500, # help='Steps between writing checkpoints') # parser.add_argument('--tf_log_level', type=int, default=1, help='Tensorflow C++ log level.') # args = parser.parse_args() # accepted_models = ['Tacotron', 'Wavenet'] # if args.model not in accepted_models: # raise ValueError('please enter a valid model to train: {}'.format(accepted_models)) if model == 'Tacotron': tacotron_train() elif model == 'Wavenet': raise NotImplementedError('Wavenet is still a work in progress, thank you for your patience!')
def main(): parser = argparse.ArgumentParser() parser.add_argument('--base_dir', default='') parser.add_argument('--hparams', default='', help='Hyperparameter overrides as a comma-separated list of name=value pairs') parser.add_argument('--model', default='Tacotron-2') parser.add_argument('--mode', default='synthesis', help='mode for synthesis of tacotron after training') parser.add_argument('--GTA', type=bool, default=True, help='Ground truth aligned synthesis, defaults to True, only considered in Tacotron synthesis mode') parser.add_argument('--restore', type=bool, default=True, help='Set this to False to do a fresh training') parser.add_argument('--summary_interval', type=int, default=250, help='Steps between running summary ops') parser.add_argument('--checkpoint_interval', type=int, default=5000, help='Steps between writing checkpoints') parser.add_argument('--eval_interval', type=int, default=10000, help='Steps between eval on test data') parser.add_argument('--tacotron_train_steps', type=int, default=100000, help='total number of tacotron training steps') parser.add_argument('--wavernn_train_epochs', type=int, default=300, help='total number of wavenet training epochs') parser.add_argument('--text_list', default='', help='Text file contains list of texts to be synthesized. Valid if mode=eval') parser.add_argument('--slack_url', default=None, help='slack webhook notification destination link') args = parser.parse_args() accepted_models = ['Tacotron', 'WaveRNN', 'Tacotron-2'] if args.model not in accepted_models: raise ValueError('please enter a valid model to train: {}'.format(accepted_models)) log_dir, hparams = prepare_run(args) if args.model == 'Tacotron': tacotron_train(args, log_dir, hparams) elif args.model == 'WaveRNN': wavernn_train(args, log_dir, hparams) elif args.model == 'Tacotron-2': train(args, log_dir, hparams) else: raise ValueError('Model provided {} unknown! {}'.format(args.model, accepted_models))
def train(args, log_dir, hparams): state_file = os.path.join(log_dir, 'state_log') # Get training states (taco_state, GTA_state, wave_state), input_path = read_seq(state_file) if not taco_state: logging.debug( '\n#############################################################\n' ) logging.debug('Tacotron Train\n') logging.debug( '###########################################################\n') checkpoint = tacotron_train(args, log_dir, hparams) tf.reset_default_graph() # Sleep 1/2 second to let previous graph close and avoid error messages while synthesis sleep(0.5) if checkpoint is None: raise ('Error occured while training Tacotron, Exiting!') taco_state = 1 save_seq(state_file, [taco_state, GTA_state, wave_state], input_path) else: checkpoint = os.path.join(log_dir, 'taco_pretrained/') if not GTA_state: logging.debug( '\n#############################################################\n' ) logging.debug('Tacotron GTA Synthesis\n') logging.debug( '###########################################################\n') input_path = tacotron_synthesize(args, hparams, checkpoint) tf.reset_default_graph() # Sleep 1/2 second to let previous graph close and avoid error messages while Wavenet is training sleep(0.5) GTA_state = 1 save_seq(state_file, [taco_state, GTA_state, wave_state], input_path) else: input_path = os.path.join('tacotron_' + args.output_dir, 'gta', 'map.txt') if input_path == '' or input_path is None: raise RuntimeError( 'input_path has an unpleasant value -> {}'.format(input_path)) if not wave_state: logging.debug( '\n#############################################################\n' ) logging.debug('Wavenet Train\n') logging.debug( '###########################################################\n') checkpoint = wavenet_train(args, log_dir, hparams, input_path) if checkpoint is None: raise ('Error occured while training Wavenet, Exiting!') wave_state = 1 save_seq(state_file, [taco_state, GTA_state, wave_state], input_path) if wave_state and GTA_state and taco_state: logging.debug('TRAINING IS ALREADY COMPLETE!!')
def train(args, log_dir, hparams): state_file = os.path.join(log_dir, 'state_log') (taco_state, GTA_state, wave_state) = read_seq(state_file) if not taco_state: log('\n#############################################################\n' ) log('Tacotron Train\n') log('###########################################################\n') checkpoint = tacotron_train(args, log_dir, hparams) tf.reset_default_graph() # Sleep 1/2 second to let previous graph close and avoid error messages while synthesis sleep(0.5) if checkpoint is None: raise ('Error occured while training Tacotron, Exiting!') taco_state = 1 save_seq(state_file, [taco_state, GTA_state, wave_state]) else: checkpoint = os.path.join(log_dir, 'taco_pretrained') if not GTA_state: log('\n#############################################################\n' ) log('Tacotron GTA Synthesis\n') log('###########################################################\n') args.mode = 'synthesis' tacotron_synthesize(args, hparams, checkpoint) args.mode = 'eval' tacotron_synthesize(args, hparams, checkpoint, get_sentences(args)) tf.reset_default_graph() # Sleep 1/2 second to let previous graph close and avoid error messages while Wavenet is training sleep(0.5) GTA_state = 1 save_seq(state_file, [taco_state, GTA_state, wave_state]) if not wave_state: log('\n#############################################################\n' ) log('WaveRNN Train\n') log('###########################################################\n') wavernn_preprocess(args, hparams) wavernn_train(args, log_dir, hparams) wave_state = 1 save_seq(state_file, [taco_state, GTA_state, wave_state]) if wave_state and GTA_state and taco_state: log('TRAINING IS ALREADY COMPLETE!!')
def main(): parser = argparse.ArgumentParser() parser.add_argument('--base_dir', default='') parser.add_argument('--hparams', default='', help='Hyperparameter overrides as a comma-separated list of name=value pairs') parser.add_argument('--tacotron_input', default='training_data/train.txt') parser.add_argument('--wavenet_input', default='tacotron_output/gta/map.txt') parser.add_argument('--name', help='Name of logging directory.') parser.add_argument('--model', default='Tacotron-2') parser.add_argument('--input_dir', default='training_data', help='folder to contain inputs sentences/targets') parser.add_argument('--output_dir', default='output', help='folder to contain synthesized mel spectrograms') parser.add_argument('--mode', default='synthesis', help='mode for synthesis of tacotron after training') parser.add_argument('--GTA', default='True', help='Ground truth aligned synthesis, defaults to True, only considered in Tacotron synthesis mode') parser.add_argument('--restore', type=bool, default=True, help='Set this to False to do a fresh training') parser.add_argument('--summary_interval', type=int, default=2500, help='Steps between running summary ops') parser.add_argument('--embedding_interval', type=int, default=10000, help='Steps between updating embeddings projection visualization') parser.add_argument('--checkpoint_interval', type=int, default=5000, help='Steps between writing checkpoints') parser.add_argument('--eval_interval', type=int, default=10000, help='Steps between eval on test data') parser.add_argument('--tacotron_train_steps', type=int, default=150000, help='total number of tacotron training steps') parser.add_argument('--wavenet_train_steps', type=int, default=750000, help='total number of wavenet training steps') parser.add_argument('--tf_log_level', type=int, default=1, help='Tensorflow C++ log level.') parser.add_argument('--slack_url', default=None, help='slack webhook notification destination link') args = parser.parse_args() accepted_models = ['Tacotron', 'WaveNet', 'Tacotron-2'] if args.model not in accepted_models: raise ValueError('please enter a valid model to train: {}'.format(accepted_models)) log_dir, hparams = prepare_run(args) if args.model == 'Tacotron': tacotron_train(args, log_dir, hparams) elif args.model == 'WaveNet': wavenet_train(args, log_dir, hparams, args.wavenet_input) elif args.model == 'Tacotron-2': train(args, log_dir, hparams) else: raise ValueError('Model provided {} unknown! {}'.format(args.model, accepted_models))
def main(): parser = argparse.ArgumentParser() parser.add_argument('--base_dir', default='') parser.add_argument('--hparams', default='', help='Hyperparameter overrides as a comma-separated list of name=value pairs') parser.add_argument('--tacotron_input', default='training_data/train.txt') parser.add_argument('--wavenet_input', default='tacotron_output/gta/map.txt') parser.add_argument('--name', help='Name of logging directory.') parser.add_argument('--model', default='Tacotron-2') parser.add_argument('--input_dir', default='training_data/', help='folder to contain inputs sentences/targets') parser.add_argument('--output_dir', default='output/', help='folder to contain synthesized mel spectrograms') parser.add_argument('--mode', default='synthesis', help='mode for synthesis of tacotron after training') parser.add_argument('--GTA', default='True', help='Ground truth aligned synthesis, defaults to True, only considered in Tacotron synthesis mode') parser.add_argument('--restore', type=bool, default=True, help='Set this to False to do a fresh training') parser.add_argument('--summary_interval', type=int, default=250, help='Steps between running summary ops') parser.add_argument('--checkpoint_interval', type=int, default=5000, help='Steps between writing checkpoints') parser.add_argument('--eval_interval', type=int, default=10000, help='Steps between eval on test data') parser.add_argument('--tacotron_train_steps', type=int, default=160000, help='total number of tacotron training steps') parser.add_argument('--wavenet_train_steps', type=int, default=360000, help='total number of wavenet training steps') parser.add_argument('--tf_log_level', type=int, default=1, help='Tensorflow C++ log level.') args = parser.parse_args() accepted_models = ['Tacotron', 'WaveNet', 'Both', 'Tacotron-2'] if args.model not in accepted_models: raise ValueError('please enter a valid model to train: {}'.format(accepted_models)) log_dir, hparams = prepare_run(args) if args.model == 'Tacotron': tacotron_train(args, log_dir, hparams) elif args.model == 'WaveNet': wavenet_train(args, log_dir, hparams, args.wavenet_input) elif args.model in ('Both', 'Tacotron-2'): train(args, log_dir, hparams) else: raise ValueError('Model provided {} unknown! {}'.format(args.model, accepted_models))
def train(args, log_dir, hparams): log('\n#############################################################\n') log('Tacotron Train\n') log('###########################################################\n') checkpoint = tacotron_train(args, log_dir, hparams) tf.reset_default_graph() if checkpoint is None: raise('Error occured while training Tacotron, Exiting!') log('\n#############################################################\n') log('Tacotron GTA Synthesis\n') log('###########################################################\n') input_path = tacotron_synthesize(args, hparams, checkpoint) log('\n#############################################################\n') log('Wavenet Train\n') log('###########################################################\n') wavenet_train(args, log_dir, hparams, input_path)
def train(args, log_dir, hparams): state_file = os.path.join(log_dir, 'state_log') #Get training states (taco_state, GTA_state, wave_state), input_path = read_seq(state_file) print('taco_state, GTA_state, wave_state:', taco_state, GTA_state, wave_state) if not taco_state: log('\n#############################################################\n' ) log('Tacotron Train\n') log('###########################################################\n') checkpoint = tacotron_train(args, log_dir, hparams) tf.reset_default_graph() #Sleep 1/2 second to let previous graph close and avoid error messages while synthesis sleep(0.5) if checkpoint is None: raise ('Error occured while training Tacotron, Exiting!') taco_state = 1 save_seq(state_file, [taco_state, GTA_state, wave_state], input_path) else: checkpoint = os.path.join(log_dir, 'taco_pretrained/') # print('checkpoint:',checkpoint) log('tacotron_train done!!') if not GTA_state: log('\n#############################################################\n' ) log('Tacotron GTA Synthesis\n') log('###########################################################\n') input_path = tacotron_synthesize(args, hparams, checkpoint) tf.reset_default_graph() #Sleep 1/2 second to let previous graph close and avoid error messages while Wavenet is training sleep(0.5) GTA_state = 1 save_seq(state_file, [taco_state, GTA_state, wave_state], input_path) else: input_path = os.path.join(log_dir, 'tacotron_' + args.output_dir, 'gta', 'map.txt') # input_path = './tacotron_output/gta/map.txt' log('Tacotron GTA Synthesis done')
def train(args, log_dir, hparams): log('\n#############################################################\n') log('Tacotron Train\n') log('###########################################################\n') tacotron_train(args, log_dir, hparams)
def main(): parser = argparse.ArgumentParser() parser.add_argument('--base_dir', default='') parser.add_argument( '--hparams', default='', help= 'Hyperparameter overrides as a comma-separated list of name=value pairs' ) parser.add_argument('--tacotron_input', default='training_data/train.txt') parser.add_argument('--wavenet_input', default='tacotron_output/gta/map.txt') parser.add_argument('--name', help='Name of logging directory.') parser.add_argument('--model', default='Tacotron') parser.add_argument('--input_dir', default='training_data', help='folder to contain inputs sentences/targets') parser.add_argument('--output_dir', default='output', help='folder to contain synthesized mel spectrograms') parser.add_argument('--mode', default='synthesis', help='mode for synthesis of tacotron after training') parser.add_argument( '--GTA', default='True', help= 'Ground truth aligned synthesis, defaults to True, only considered in Tacotron synthesis mode' ) parser.add_argument('--restore', type=bool, default=True, help='Set this to False to do a fresh training') parser.add_argument('--summary_interval', type=int, default=250, help='Steps between running summary ops') parser.add_argument('--checkpoint_interval', type=int, default=1000, help='Steps between writing checkpoints') parser.add_argument('--eval_interval', type=int, default=1000, help='Steps between eval on test data') parser.add_argument('--tacotron_train_steps', type=int, default=150000, help='total number of tacotron training steps') parser.add_argument('--wavenet_train_steps', type=int, default=1300000, help='total number of wavenet training steps') parser.add_argument('--tf_log_level', type=int, default=1, help='Tensorflow C++ log level.') parser.add_argument('--slack_url', default=None, help='slack webhook notification destination link') args = parser.parse_args() log_dir, hparams = prepare_run(args) tacotron_train(args, log_dir, hparams)
def main(): parser = argparse.ArgumentParser() parser.add_argument('--base_dir', default='dataset/MultiSpeaker', required=True) parser.add_argument('--hparams', default='', help='Hyperparameter overrides from a json file') parser.add_argument('--tacotron_input', default='training_data/train.txt') parser.add_argument('--wavenet_input', default='tacotron_output/gta/map.txt') parser.add_argument('--name', help='Name of logging directory.') parser.add_argument('--model', default='MultiSpeaker', required=True) parser.add_argument('--input_dir', default='training_data', help='folder to contain inputs sentences/targets') parser.add_argument('--output_dir', default='output/', help='folder to contain synthesized mel spectrograms') parser.add_argument('--mode', default='synthesis', help='mode for synthesis of tacotron after training') parser.add_argument( '--GTA', default='True', help= 'Ground truth aligned synthesis, defaults to True, only considered in Tacotron synthesis mode' ) parser.add_argument('--restore', type=bool, default=True, help='Set this to False to do a fresh training') parser.add_argument('--summary_interval', type=int, default=200, help='Steps between running summary ops') parser.add_argument('--checkpoint_interval', type=int, default=500, help='Steps between writing checkpoints') parser.add_argument('--eval_interval', type=int, default=200, help='Steps between eval on test data') parser.add_argument('--tacotron_train_steps', type=int, default=500000, help='total number of tacotron training steps') parser.add_argument('--wavenet_train_steps', type=int, default=360000, help='total number of wavenet training steps') parser.add_argument('--tf_log_level', type=int, default=2, help='Tensorflow C++ log level.') args = parser.parse_args() accepted_models = [ 'Tacotron', 'WaveNet', 'Both', 'Tacotron-2', 'MultiSpeaker' ] if args.model not in accepted_models: raise ValueError( 'please enter a valid model to train: {}'.format(accepted_models)) log_dir, hparams = prepare_run(args) if args.model == 'Tacotron': tacotron_train(args, log_dir, hparams) elif args.model == 'WaveNet': wavenet_train(args, log_dir, hparams, args.wavenet_input) elif args.model == 'MultiSpeaker': multispeaker_train(args, log_dir, hparams) elif args.model in ('Both', 'Tacotron-2'): train(args, log_dir, hparams) else: raise ValueError('Model provided {} unknown! {}'.format( args.model, accepted_models))
parser.add_argument('--checkpoint_interval', type=int, default=500, >>>>>>> f33090dba9ba4bc52db8367abdc48841d13c48f8 help='Steps between writing checkpoints') parser.add_argument('--eval_interval', type=int, default=1000, help='Steps between eval on test data') parser.add_argument('--tacotron_train_steps', type=int, default=1000000, help='total number of tacotron training steps') parser.add_argument('--wavenet_train_steps', type=int, default=750000, help='total number of wavenet training steps') parser.add_argument('--tf_log_level', type=int, default=1, help='Tensorflow C++ log level.') parser.add_argument('--slack_url', default=None, help='slack webhook notification destination link') args = parser.parse_args() accepted_models = ['Tacotron', 'WaveNet', 'Tacotron-2'] if args.model not in accepted_models: raise ValueError('please enter a valid model to train: {}'.format(accepted_models)) log_dir, hparams = prepare_run(args) if args.model == 'Tacotron': tacotron_train(args, log_dir, hparams) elif args.model == 'WaveNet': wavenet_train(args, log_dir, hparams, args.wavenet_input) elif args.model == 'Tacotron-2': train(args, log_dir, hparams) else: raise ValueError('Model provided {} unknown! {}'.format(args.model, accepted_models)) if __name__ == '__main__': main()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--base_dir', default='') parser.add_argument('--hparams', default='', help='Hyperparameter overrides as a comma-separated list of name=value pairs') parser.add_argument('--tacotron_input', default='../data/train_emt4_jessa.txt') parser.add_argument('--wavenet_input', default='tacotron_output/gta/map.txt') parser.add_argument('--name', help='Name of logging directory.') parser.add_argument('--model', default='Tacotron-2') parser.add_argument('--input_dir', default='../data', help='folder to contain inputs sentences/targets') parser.add_argument('--output_dir', default='output', help='folder to contain synthesized mel spectrograms') parser.add_argument('--mode', default='synthesis', help='mode for synthesis of tacotron after training') parser.add_argument('--GTA', default='True', help='Ground truth aligned synthesis, defaults to True, only considered in Tacotron synthesis mode') parser.add_argument('--restore', action='store_true', default=False, help='Set this to False to do a fresh training') parser.add_argument('--summary_interval', type=int, default=1000000, help='Steps between running summary ops') parser.add_argument('--embedding_interval', type=int, default=1000000, help='Steps between updating embeddings projection visualization') parser.add_argument('--checkpoint_interval', type=int, default=250, help='Steps between writing checkpoints') parser.add_argument('--eval_interval', type=int, default=20, help='Steps between eval on test data') parser.add_argument('--tacotron_train_steps', type=int, default=1000000, help='total number of tacotron training steps') parser.add_argument('--wavenet_train_steps', type=int, default=500000, help='total number of wavenet training steps') parser.add_argument('--tf_log_level', type=int, default=1, help='Tensorflow C++ log level.') parser.add_argument('--slack_url', default=None, help='slack webhook notification destination link') parser.add_argument('--emt_disc', action='store_true', default=False, help='whether to use emotion discriminator as part of loss') parser.add_argument('--spk_disc', action='store_true', default=False, help='whether to use speaker discriminator as part of loss') parser.add_argument('--intercross', action='store_true', default=True, help='whether to use intercross training') parser.add_argument('--synth_style_type', default=None, help='vary the emotion, speaker id, or neither') parser.add_argument('--tacotron_test_steps', type=int, default=3, help='Num batches to process when running evaluation') parser.add_argument('--remove_long_samps', action='store_true', default=False, help='Will remove out the longest samples from EMT4/VCTK') parser.add_argument('--test_max_len', action='store_true', default=False,help='Will create batches with the longest samples first to test max batch size') parser.add_argument('--unpaired', action='store_true', default=False,help='Will create batches with the longest samples first to test max batch size') parser.add_argument('--TEST', action='store_true', default=False,help='Uses small groups of batches to make testing faster') parser.add_argument('--TEST_INPUTS', action='store_true', default=False,help='Fixes all input data to be the same for testing') parser.add_argument('--max_to_keep', type=int, default=50, help='how many checkpoints to save') parser.add_argument('--recon_emb_loss', action='store_true', default=False, help='Adds loss for reconstructing embeddings') parser.add_argument('--intercross_both', action='store_true', default=False, help='does intercross for emotion and spk for both datasets') parser.add_argument('--intercross_spk_only', action='store_true', default=False,help='does intercross for emotion and spk for both datasets') parser.add_argument('--unpaired_loss_derate', type=float, default=1, help='how much to derate the unpaired mel out emb disc loss') parser.add_argument('--unpaired_emt_loss_derate', type=float, default=1,help='how much to derate the unpaired mel out emb disc loss') parser.add_argument('--lock_ref_enc', action='store_true', default=False, help='does not allow retraining of reference encoders') parser.add_argument('--lock_gst', action='store_true', default=False, help='does not allow retraining of global style tokens') parser.add_argument('--nat_gan', action='store_true', default=False, help='whether to use the naturalness gan') parser.add_argument('--restart_nat_gan_d', action='store_true', default=False, help='whether to use the naturalness gan') parser.add_argument('--nat_gan_derate', type=float, default=.1, help='how much to derate the unpaired mel out emb disc loss') parser.add_argument('--restore_nat_gan_d_sep', action='store_true', default=False,help='whether to use the naturalness gan') parser.add_argument('--save_output_vars', action='store_true', default=False, help='saves csvs of output vars') parser.add_argument('--opt_ref_no_mo', action='store_true', default=False, help='dont train encoders based on synthesized samples style embeddings') parser.add_argument('--restart_optimizer_r', action='store_true', default=False, help='retrains the reference encoder optimizer') parser.add_argument('--pretrained_emb_disc', action='store_true', default=False, help='whether to use pretrained emt disc') parser.add_argument('--pretrained_emb_disc_all', action='store_true', default=False,help='use pretrained emb disc on references and unpaired') parser.add_argument('--no_general', action='store_true', default=False, help='mel output loss is not being classified as general') parser.add_argument('--restore_std', action='store_true', default=False,help='allows the restoring of a model without optimzer_r to a new model with optimizer_r') parser.add_argument('--emt_attn', action='store_true', default=False,help='allows the restoring of a model without optimzer_r to a new model with optimizer_r') parser.add_argument('--emt_ref_gru', default='none', help='whether to use the a gru at the end of the reference embedding cnn') parser.add_argument('--emt_only', action='store_true', default=False,help='does only one condition - emotion') parser.add_argument('--attn', default=None, help='what type of attention to use') parser.add_argument('--up_ref_match_p', action='store_true', default=False, help='feeds in the same references as paired for unpaired') parser.add_argument('--tfr_up_only', action='store_true', default=False,help='feeds in the same references as paired for unpaired') parser.add_argument('--no_mo_style_loss', action='store_true', default=False,help='feeds in the same references as paired for unpaired') parser.add_argument('--l2_spk_emb', action='store_true', default=False,help='feeds in the same references as paired for unpaired') parser.add_argument('--flip_spk_emt', action='store_true', default=False,help='pass in emt as spk ref and vice versa - used for testing reversing the attention') parser.add_argument('--adain', action='store_true', default=False,help='use adaptive image normalization on references') parser.add_argument('--synth_constraint', action='store_true', default=False, help='use adaptive image normalization on references') parser.add_argument('--adv_emb_disc', action='store_true', default=False,help='use adversarial training on style embeddings') args = parser.parse_args() accepted_models = ['Tacotron', 'WaveNet', 'Tacotron-2'] if args.model not in accepted_models: raise ValueError('please enter a valid model to train: {}'.format(accepted_models)) log_dir, hparams = prepare_run(args) synth_metadata_filename = r"synth_emt4_jessa.txt" args.synth_metadata_filename = os.path.join(r"../data", synth_metadata_filename) import socket if socket.gethostname() in ['A3907623','MININT-39T168F']: hparams.tacotron_num_gpus = 1 hparams.tacotron_batch_size = 32 elif socket.gethostname() == 'area51.cs.washington.edu': hparams.tacotron_num_gpus = 2 hparams.tacotron_batch_size = 64 os.environ["CUDA_VISIBLE_DEVICES"]="1,2" args.input_dir = '/data/tts_emotion' args.synth_metadata_filename = os.path.join(r"/data/tts_emotion",synth_metadata_filename) print("over-riding input directory for running on Area51") if hparams.tacotron_fine_tuning and not(args.restore): raise ValueError('fine_tuning set to true but not restoring the model!') #need to use the intercross both method with the zo/jessa datasets if args.tacotron_input.endswith('jessa.txt'): assert(args.intercross_both) if args.emt_attn and args.attn==None: raise ValueError("can't have emotion attention and no attention type") if args.flip_spk_emt: assert(not (args.unpaired)) if args.model == 'Tacotron': tacotron_train(args, log_dir, hparams) elif args.model == 'WaveNet': wavenet_train(args, log_dir, hparams, args.wavenet_input) elif args.model == 'Tacotron-2': train(args, log_dir, hparams) else: raise ValueError('Model provided {} unknown! {}'.format(args.model, accepted_models))
def main(): parser = argparse.ArgumentParser() parser.add_argument( '--hparams', default='', help= 'Hyperparameter overrides as a comma-separated list of name=value pairs' ) parser.add_argument('--output-model-path', dest='output_model_path', required=True, type=str, default=os.path.dirname(os.path.realpath(__file__)), help='Philly model output path.') parser.add_argument('--log-dir', dest='log_dir', required=True, type=str, default=os.path.dirname(os.path.realpath(__file__)), help='Philly log dir.') parser.add_argument('--tacotron_input', default='clean100/training_data/train.txt') parser.add_argument('--name', help='Name of logging directory.') parser.add_argument('--model', default='Tacotron') parser.add_argument('--restore', type=bool, default=True, help='Set this to False to do a fresh training') parser.add_argument('--summary_interval', type=int, default=100, help='Steps between running summary ops') parser.add_argument( '--embedding_interval', type=int, default=10000, help='Steps between updating embeddings projection visualization') parser.add_argument('--checkpoint_interval', type=int, default=5000, help='Steps between writing checkpoints') parser.add_argument('--eval_interval', type=int, default=1000, help='Steps between eval on test data') parser.add_argument('--tacotron_train_steps', type=int, default=150000, help='total number of tacotron training steps') parser.add_argument('--wavenet_train_steps', type=int, default=750000, help='total number of wavenet training steps') parser.add_argument('--tf_log_level', type=int, default=1, help='Tensorflow C++ log level.') parser.add_argument('--slack_url', default=None, help='slack webhook notification destination link') args = parser.parse_args() accepted_models = ['Tacotron'] if args.model not in accepted_models: raise ValueError( 'please enter a valid model to train: {}'.format(accepted_models)) log_dir, hparams = prepare_run(args) if args.model == 'Tacotron': hparams.tacotron_batch_size = 16 tacotron_train(args, log_dir, hparams) else: raise ValueError('Model provided {} unknown! {}'.format( args.model, accepted_models))