Пример #1
0
import taichi as ti
import numpy as np

ti.init(
    arch=ti.cuda)  # Try to run on GPU, use ti.opengl if you don't have CUDA
quality = 1  # Use a larger value for higher-res simulations
n_particles, n_grid = 9000 * quality**2, 128 * quality
dx, inv_dx = 1 / n_grid, float(n_grid)
dt = 1e-4 / quality
p_vol, p_rho = (dx * 0.5)**2, 1
p_mass = p_vol * p_rho
E, nu = 5e3, 0.2  # Young's modulus and Poisson's ratio
mu_0, lambda_0 = E / (2 * (1 + nu)), E * nu / (
    (1 + nu) * (1 - 2 * nu))  # Lame parameters

x = ti.Vector(2, dt=ti.f32, shape=n_particles)  # position
v = ti.Vector(2, dt=ti.f32, shape=n_particles)  # velocity
C = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles)  # affine velocity field
F = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles)  # deformation gradient
material = ti.var(dt=ti.i32, shape=n_particles)  # material id
Jp = ti.var(dt=ti.f32, shape=n_particles)  # plastic deformation
grid_v = ti.Vector(2, dt=ti.f32,
                   shape=(n_grid, n_grid))  # grid node momentum/velocity
grid_m = ti.var(dt=ti.f32, shape=(n_grid, n_grid))  # grid node mass
gravity = ti.Vector(2, dt=ti.f32, shape=())
attractor_strength = ti.var(dt=ti.f32, shape=())
attractor_pos = ti.Vector(2, dt=ti.f32, shape=())


@ti.kernel
def substep():
Пример #2
0
# - [Homework 0 : Volumetric Clouds - GAMES201 高级物理引擎实战 - Taichi](https://forum.taichi.graphics/t/homework-0-volumetric-clouds/331)
# by: neverfelly
import taichi as ti
import numpy as np
import time

ti.init(arch=ti.gpu)

# res = 1280, 720
res = 320, 180

pixels = ti.Vector(3, dt=ti.f32, shape=res)

sun_dir = ti.Vector([-1.0, 0.0, -1.0])


@ti.func
def clamp(x):
    return ti.max(0, ti.min(1.0, x))


@ti.func
def mod289(x):
    return x - ti.floor(x * (1.0 / 289.0)) * 289.0


@ti.func
def perm(x):
    return mod289(((x * 34.0) + 1.0) * x)

Пример #3
0
import taichi as ti
import numpy as np
from enum import Enum

ti.init(debug=True)

MAX_NUM_ITEMS = 256

DT = 1e-1

NUM_ITEMS = ti.var(ti.i32, shape=())

CANVAS_SIZE = (512, 512)
# 位置
P = ti.Vector(2, dt=ti.f32, shape=MAX_NUM_ITEMS)
# 旋转角度 分别是角度, cos, sin值
R = ti.Vector(3, dt=ti.f32, shape=MAX_NUM_ITEMS)
# 速度
V = ti.Vector(2, dt=ti.f32, shape=MAX_NUM_ITEMS)
# 类型 0:圆, 1:长方形
TYPES = ti.var(dt=ti.u8, shape=MAX_NUM_ITEMS)
# 参数, 对于圆是半径,对于长方形是长宽
PARAMS = ti.Vector(2, dt=ti.u16, shape=MAX_NUM_ITEMS)

# 质量的倒数, 0表示Static
IM = ti.var(dt=ti.f32, shape=MAX_NUM_ITEMS)
# 转动惯量倒数
II = ti.var(dt=ti.f32, shape=MAX_NUM_ITEMS)

GRAVITY = ti.Vector(2, dt=ti.f32, shape=())
Пример #4
0
from taichi.examples.patterns import taichi_logo

import taichi as ti

ti.init(arch=ti.vulkan)

res = (512, 512)
pixels = ti.Vector.field(3, dtype=float, shape=res)

tex_format = ti.u8
texture = ti.Texture(tex_format, 1, (128, 128))
tex_ndarray = ti.ndarray(tex_format, shape=(128, 128))


@ti.kernel
def make_texture(arr: ti.types.ndarray()):
    for i, j in ti.ndrange(128, 128):
        ret = taichi_logo(ti.Vector([i, j]) / 128)
        ret = ti.cast(ret * 255, ti.u8)
        arr[i, j] = ret


make_texture(tex_ndarray)
texture.from_ndarray(tex_ndarray)


@ti.kernel
def paint(t: ti.f32, tex: ti.types.texture(num_dimensions=2)):
    for i, j in pixels:
        uv = ti.Vector([i / res[0], j / res[1]])
        warp_uv = uv + ti.Vector(
Пример #5
0
import taichi as ti
import numpy as np
ti.init(arch=ti.cuda)  # Try to run on GPU. Use arch=ti.opengl on old GPUs
quality = 1  # Use a larger value for higher-res simulations
n_particles, n_grid = 9000 * quality**2, 128 * quality
dx, inv_dx = 1 / n_grid, float(n_grid)
dt = 1e-4 / quality
p_vol, p_rho = (dx * 0.5)**2, 1
p_mass = p_vol * p_rho
E, nu = 0.1e4, 0.2  # Young's modulus and Poisson's ratio
mu_0, lambda_0 = E / (2 * (1 + nu)), E * nu / (
    (1 + nu) * (1 - 2 * nu))  # Lame parameters
x = ti.Vector(2, dt=ti.f32, shape=n_particles)  # position
v = ti.Vector(2, dt=ti.f32, shape=n_particles)  # velocity
C = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles)  # affine velocity field
F = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles)  # deformation gradient
material = ti.var(dt=ti.i32, shape=n_particles)  # material id
Jp = ti.var(dt=ti.f32, shape=n_particles)  # plastic deformation
grid_v = ti.Vector(2, dt=ti.f32,
                   shape=(n_grid, n_grid))  # grid node momentum/velocity
grid_m = ti.var(dt=ti.f32, shape=(n_grid, n_grid))  # grid node mass


@ti.kernel
def substep():
    for i, j in grid_m:
        grid_v[i, j] = [0, 0]
        grid_m[i, j] = 0
    for p in x:  # Particle state update and scatter to grid (P2G)
        base = (x[p] * inv_dx - 0.5).cast(int)
        fx = x[p] * inv_dx - base.cast(float)
Пример #6
0
import taichi as ti
import sys
import math
import numpy as np
import os
import taichi as tc
import matplotlib.pyplot as plt

real = ti.f32
ti.init(default_fp=real)

max_steps = 2048
vis_interval = 64
output_vis_interval = 16
steps = 1024
assert steps * 2 <= max_steps

vis_resolution = 1024

scalar = lambda: ti.var(dt=real)
vec = lambda: ti.Vector(2, dt=real)

loss = scalar()

init_x = vec()
init_v = vec()

x = vec()
x_inc = vec()  # for TOI
v = vec()
impulse = vec()
Пример #7
0
import numblend as nb
import taichi as ti
import numpy as np
import bpy

nb.init()
ti.init(arch=ti.cuda)

#dim, n_grid, steps, dt = 2, 128, 20, 2e-4
#dim, n_grid, steps, dt = 2, 256, 32, 1e-4
dim, n_grid, steps, dt = 3, 32, 25, 4e-4
#dim, n_grid, steps, dt = 3, 64, 25, 2e-4
#dim, n_grid, steps, dt = 3, 128, 25, 8e-5

n_particles = n_grid**dim // 2**(dim - 1)
dx = 1 / n_grid

p_rho = 1
p_vol = (dx * 0.5)**2
p_mass = p_vol * p_rho
gravity = 9.8
bound = 3
E = 400

x = ti.Vector.field(dim, float, n_particles)
v = ti.Vector.field(dim, float, n_particles)
C = ti.Matrix.field(dim, dim, float, n_particles)
J = ti.field(float, n_particles)

grid_v = ti.Vector.field(dim, float, (n_grid, ) * dim)
grid_m = ti.field(float, (n_grid, ) * dim)
Пример #8
0
@ti.archs_support_sparse
def benchmark_nested_struct_fill_and_clear():
    a = ti.var(dt=ti.f32)
    N = 512

    ti.root.pointer(ti.ij, [N, N]).dense(ti.ij, [8, 8]).place(a)

    @ti.kernel
    def fill():
        for i, j in ti.ndrange(N * 8, N * 8):
            a[i, j] = 2.0

    @ti.kernel
    def clear():
        for i, j in a.parent():
            ti.deactivate(a.parent().parent(), [i, j])

    def task():
        fill()
        clear()

    return ti.benchmark(task, repeat=30)


'''
ti.init(arch=ti.cuda, enable_profiler=True)
benchmark_nested_struct_fill_and_clear()
ti.profiler_print()
'''
Пример #9
0
import taichi as ti
from display import display

ti.init(default_fp = ti.f32, arch = ti.cpu)

lx = 1.0
ly = 0.1

nx = 300
ny = 60

rho = 1
mu = 0.01
dx = lx / nx
dy = ly / ny
dt = 0.001

velo_rel = 0.01
p_rel = 0.03

# Add 1 cell padding to all directions.
p = ti.field(dtype=ti.f32, shape=(nx + 2, ny + 2))
pcor = ti.field(dtype=ti.f32, shape=(nx + 2, ny + 2))

u = ti.field(dtype=ti.f32, shape=(nx + 3, ny + 2))
u0 = ti.field(dtype=ti.f32, shape=(nx + 3, ny + 2))
ucor = ti.field(dtype=ti.f32, shape=(nx + 3, ny + 2))
u_post = ti.field(dtype=ti.f32, shape=(nx + 2, ny + 2))

v = ti.field(dtype=ti.f32, shape=(nx + 2, ny + 3))
vcor = ti.field(dtype=ti.f32, shape=(nx + 2, ny + 3))
Пример #10
0
import taichi as ti
import time

ti.init(default_fp=ti.f64, arch=ti.cpu)

n = 100

A = ti.field(dtype=ti.f64, shape=(n, n))
b = ti.field(dtype=ti.f64, shape=n)
x = ti.field(dtype=ti.f64, shape=n)
x_new = ti.field(dtype=ti.f64, shape=n)


@ti.func
def init():
    for i, j in A:
        if i == j:
            A[i, j] = 2.0
        elif ti.abs(i-j) == 1:
            A[i, j] = -1.0
        else:
            A[i, j] = 0.0

    A[0, 0] = 1.0
    A[0, 1] = 0.0
    A[n-1, n-1] = 1.0
    A[n-1, n-2] = 0.0
    for i in b:
        b[i] = 0.0
        x[i] = 0.0
    b[0] = 100
Пример #11
0
import taichi as ti
import taichi_three as t3
from taichi_three.mciso import MCISO, Voxelizer
import numpy as np

ti.init(arch=ti.cuda)  # can't use metal or opengl since sparse used in MCISO

#dim, n_grid, steps, dt = 2, 128, 20, 2e-4
#dim, n_grid, steps, dt = 2, 256, 32, 1e-4
dim, n_grid, steps, dt = 3, 32, 25, 4e-4
#dim, n_grid, steps, dt = 3, 64, 25, 2e-4
#dim, n_grid, steps, dt = 3, 128, 25, 8e-5

n_particles = n_grid**dim // 2**(dim - 1)
dx = 1 / n_grid

print(f'n_particles={n_particles}')

p_rho = 1
p_vol = (dx * 0.5)**2
p_mass = p_vol * p_rho
gravity = 9.8
bound = 3
E = 400

x = ti.Vector.field(dim, float, n_particles)
v = ti.Vector.field(dim, float, n_particles)
C = ti.Matrix.field(dim, dim, float, n_particles)
J = ti.field(float, n_particles)

grid_v = ti.Vector.field(dim, float, (n_grid, ) * dim)
Пример #12
0
 def wrapped(*test_args, **test_kwargs):
     for arch in archs:
         ti.init(arch=arch, **init_kwags)
         test(*test_args, **test_kwargs)
Пример #13
0
    def init(self):
        for I in ti.grouped(ti.ndrange(*[self.N] * self.dim)):
            r_I = 5.0
            for k in ti.static(range(self.dim)):
                r_I *= ti.cos(5 * math.pi * I[k] / self.N)
            self.init_r(I, r_I)

    @ti.kernel
    def paint(self):
        if ti.static(self.dim == 3):
            kk = self.N_tot * 3 // 8
            for i, j in self.pixels:
                ii = int(i * self.N / self.N_gui) + self.N_ext
                jj = int(j * self.N / self.N_gui) + self.N_ext
                self.pixels[i, j] = self.x[ii, jj, kk] / self.N_tot

    def run(self, verbose=False):
        self.init()
        self.solve(max_iters=400, verbose=verbose)
        self.paint()
        ti.imshow(self.pixels)
        ti.print_kernel_profile_info()


if __name__ == '__main__':
    ti.init(kernel_profiler=True)
    solver = MGPCG_Example()
    t = time.time()
    solver.run(verbose=True)
    print(f'Solver time: {time.time() - t:.3f} s')
Пример #14
0
# Tina is a real-time soft renderer based on Taichi for visualizing 3D scenes.
#
# To get started, let's try to load and display a monkey model in the GUI.

import taichi as ti
import tina

ti.init(ti.gpu)  # use GPU backend for better speed

# to make tina actually display things, we need at least three things:
#
# 1. Scene - the top structure that manages all resources in the scene
scene = tina.Scene()

# 2. Model - the model to be displayed
#
# here we use `tina.MeshModel` which can load models from OBJ format files
model = tina.MeshModel('assets/monkey.obj')
# and, don't forget to add the model into the scene so that it gets displayed
scene.add_object(model)

# 3. GUI - we also need to create an window for display
gui = ti.GUI('monkey')

while gui.running:
    # update the camera transform from mouse events (will invoke gui.get_events)
    scene.input(gui)

    # render scene to image
    scene.render()
Пример #15
0
import taichi as ti
import taichi_glsl as ts
import taichi_three as t3
ti.init(ti.opengl)

N = 12
dt = 0.01

scene = t3.SceneRT()
camera = t3.Camera()
scene.add_camera(camera)
pos = ti.Vector(3, ti.f32, N)
vel = ti.Vector(3, ti.f32, N)
radius = ti.var(ti.f32, N)

scene.add_ball(pos, radius)
scene.set_light_dir([1, 1, -1])


@ti.kernel
def init():
    for i in pos:
        pos[i] = ts.randNDRange(ts.vec3(-1), ts.vec3(1))
        vel[i] = ts.randNDRange(ts.vec3(-1.1), ts.vec3(1.1))
        radius[i] = ts.randRange(0.1, 0.2)


@ti.func
def interact(i, j):
    disp = pos[i] - pos[j]
    disv = vel[i] - vel[j]
Пример #16
0
# This file is not part of standard tests since it uses too much GPU memory

import taichi as ti

ti.init(arch=ti.cuda, debug=True)

res = 512

mask = ti.var(ti.i32)
val = ti.var(ti.f32)

ti.root.dense(ti.ijk, 512).place(mask)
block = ti.root.pointer(ti.ijk, 128).dense(ti.ijk, 4)
block.dense(ti.l, 128).place(val)


@ti.kernel
def load_inputs():
    for i, j, k in mask:
        for l in range(128):
            val[i, j, k, l] = 1


load_inputs()
import taichi as ti
import time
from pytest import approx

# TODO: make this a real benchmark and set up regression
# TODO: merge this file into benchmark_reduction.py
ti.init(arch=ti.gpu,
        print_ir=True,
        print_kernel_llvm_ir=True,
        kernel_profiler=True,
        print_kernel_llvm_ir_optimized=True)

N = 1024 * 1024 * 128

a = ti.field(ti.f32, shape=N)


@ti.kernel
def fill():
    ti.block_dim(128)
    for i in a:
        a[i] = 1.0


@ti.kernel
def reduce() -> ti.f32:
    s = 0.0
    ti.block_dim(1024)
    for i in a:
        s += a[i]
    return s
Пример #18
0
import taichi as ti
import math

ti.init(arch=ti.opengl)

width = 660
height = 1000
pixels = ti.Vector(3, dt=ti.f32, shape=(width, height))


@ti.func
def generatePoint(x, y, t):
    r = ti.random()
    nextX, nextY = 0.0, 0.0

    if r < 0.01:
        nextX = 0
        nextY = 0.16 * y
    elif r < 0.85:
        nextX = 0.85 * x + (0.04 + t) * y
        nextY = -(0.04 + t) * x + 0.85 * y + 1.6
    elif r < 0.93:
        nextX = 0.20 * x + -0.26 * y
        nextY = 0.23 * x + 0.22 * y + 1.0
    else:
        nextX = -0.15 * x + 0.28 * y
        nextY = 0.26 * x + 0.24 * y + 0.44
    return nextX, nextY


@ti.kernel
Пример #19
0
import taichi as ti
import numpy as np
import math

ti.init(arch=ti.cpu)

mat = np.array([[8, -3, 2], [4, 11, -1], [6, 3, 12]])
a = np.zeros(shape=3)
b = np.array([20, 30, 36])
for iter in range(5):
    for i in range(3):
        temp = b[i]
        for j in range(3):
            if i != j:
                temp -= mat[i, j] * a[j]
        a[i] = temp / mat[i, i]
print(a)
Пример #20
0
import taichi as ti
import numpy as np
import time

# apply force after grid normalization (or explosion)
# pressure in air cells should be 0 (or volume shrink quickly)
# velocity in air cells may not be 0

# FIX: adjusted the boundary response in handle_boundary() and advect_particles(), is seems to be more energetic now

# TODO: solve vorticity enhancement explosion problem

ti.init(arch=ti.gpu, default_fp=ti.f32)

res = 512
dt = 2e-2  #2e-3 #2e-2
substep = 1

rho = 1000
jacobi_iters = 500
jacobi_damped_para = 1

m_g = 128
n_grid = m_g * m_g
n_particle = n_grid * 4

length = 10.0
dx = length / m_g
inv_dx = 1 / dx

# solid boundary
import taichi as ti
import numpy as np
import utils
import math
from engine.mpm_solver import MPMSolver

write_to_disk = False

ti.init(arch=ti.cuda)  # Try to run on GPU

gui = ti.GUI("Taichi MLS-MPM", res=512, background_color=0x112F41)
mpm = MPMSolver(res=(128, 128), unbounded=True)
mpm.add_surface_collider(point=(0, 0.0),
                         normal=(0.3, 1),
                         surface=mpm.surface_slip)

for i in range(3):
    mpm.add_cube(lower_corner=[0.2 + i * 0.1, 0.3 + i * 0.1],
                 cube_size=[0.1, 0.1],
                 material=MPMSolver.material_elastic)

for frame in range(500):
    mpm.step(8e-3)
    if frame < 100:
        mpm.add_cube(lower_corner=[0.1, 0.4],
                     cube_size=[0.01, 0.05],
                     velocity=[1, 0],
                     material=MPMSolver.material_sand)
    if 10 < frame < 200:
        mpm.add_cube(lower_corner=[0.3, 0.7],
                     cube_size=[0.2, 0.01],
Пример #22
0
import numpy as np
import taichi as ti

real = ti.f32
ti.init(default_fp=real, arch=ti.x64, kernel_profiler=True)

# grid parameters
N = 128
N_gui = 512  # gui resolution

n_mg_levels = 4
pre_and_post_smoothing = 2
bottom_smoothing = 50

use_multigrid = True

N_ext = N // 2  # number of ext cells set so that that total grid size is still power of 2
N_tot = 2 * N

# setup sparse simulation data arrays
r = [ti.field(dtype=real) for _ in range(n_mg_levels)]  # residual
z = [ti.field(dtype=real) for _ in range(n_mg_levels)]  # M^-1 r
x = ti.field(dtype=real)  # solution
p = ti.field(dtype=real)  # conjugate gradient
Ap = ti.field(dtype=real)  # matrix-vector product
alpha = ti.field(dtype=real)  # step size
beta = ti.field(dtype=real)  # step size
sum = ti.field(dtype=real)  # storage for reductions
pixels = ti.field(dtype=real, shape=(N_gui, N_gui))  # image buffer

grid = ti.root.pointer(ti.ijk, [N_tot // 4]).dense(ti.ijk, 4).place(x, p, Ap)
Пример #23
0
import taichi as ti
import taichi_glsl as ts
import warnings
ti.init()


class MyAnimation(ts.Animation):
    def on_init(self):
        res = 512, 512
        self.color = ts.Maccormack.make(lambda: ti.var(ti.f32, res))
        self.vorts = ti.Vector(2, ti.f32, 4)
        self.vorty = ti.var(ti.f32, 4)
        self.circles = self.vorts
        self.circle_radius = 3
        self.circle_color = 0x000000
        self.img = self.color.new
        self.dt = 0.04
        self.dx = 1 / res[0]
        self.define_input()

    @ti.func
    def velocity(self, P):
        p = P * self.dx
        vel = ts.vec2(0.0)
        for v in range(self.vorts.shape[0]):
            dis = (p - self.vorts[v])
            dis = ts.normalizePow(dis, -1, 0.001)
            dis = dis.yx * ts.vec(-1, 1) * self.vorty[v]
            vel += dis
        return vel * 0.01
Пример #24
0
import taichi as ti
import numpy as np

ti.init(arch=ti.gpu)  # Try to run on GPU

quality = 1  # Use a larger value for higher-res simulations
n_particles, n_grid = 9000 * quality**2, 128 * quality
dx, inv_dx = 1 / n_grid, float(n_grid)
dt = 1e-4 / quality
p_vol, p_rho = (dx * 0.5)**2, 1
p_mass = p_vol * p_rho
E, nu = 5e3, 0.2  # Young's modulus and Poisson's ratio
mu_0, lambda_0 = E / (2 * (1 + nu)), E * nu / (
    (1 + nu) * (1 - 2 * nu))  # Lame parameters

x = ti.Vector(2, dt=ti.f32, shape=n_particles)  # position
v = ti.Vector(2, dt=ti.f32, shape=n_particles)  # velocity
C = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles)  # affine velocity field
F = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles)  # deformation gradient
material = ti.var(dt=ti.i32, shape=n_particles)  # material id
Jp = ti.var(dt=ti.f32, shape=n_particles)  # plastic deformation
grid_v = ti.Vector(2, dt=ti.f32,
                   shape=(n_grid, n_grid))  # grid node momentum/velocity
grid_m = ti.var(dt=ti.f32, shape=(n_grid, n_grid))  # grid node mass
gravity = ti.Vector(2, dt=ti.f32, shape=())
attractor_strength = ti.var(dt=ti.f32, shape=())
attractor_pos = ti.Vector(2, dt=ti.f32, shape=())


@ti.kernel
def substep():
Пример #25
0
import taichi as ti
import taichi_glsl as tl
import taichi_three as t3

import numpy as np
import math
ti.init(ti.gpu)

### Parameters

dt, beta, steps = 5e-3, 0, 12
#dt, beta, steps = 1e-2, 0.5, 5
beta_dt = beta * dt
alpha_dt = (1 - beta) * dt
jacobi_steps = 15

N = 128
NN = N, N
W = 1
L = W / N
gravity = 0.4
stiff = 20
damp = 2.6

### Generic helpers

x = ti.Vector(3, ti.f32, NN)
v = ti.Vector(3, ti.f32, NN)
b = ti.Vector(3, ti.f32, NN)
F = ti.Vector(3, ti.f32, NN)
# This file has a kernel with 16 equal offloaded tasks.

import taichi as ti

ti.init(arch=ti.x64)
quality = 1  # Use a larger value for higher-res simulations
n_particles, n_grid = 9000 * quality**2, 128 * quality
dx, inv_dx = 1 / n_grid, float(n_grid)
dt = 1e-4 / quality
p_vol, p_rho = (dx * 0.5)**2, 1
p_mass = p_vol * p_rho
E, nu = 0.1e4, 0.2  # Young's modulus and Poisson's ratio
mu_0, lambda_0 = E / (2 * (1 + nu)), E * nu / (
    (1 + nu) * (1 - 2 * nu))  # Lame parameters
x = ti.Vector.field(2, ti.f32, shape=n_particles)  # position
v = ti.Vector.field(2, ti.f32, shape=n_particles)  # velocity
# affine velocity field
C = ti.Matrix.field(2, 2, ti.f32, shape=n_particles)
# deformation gradient
F = ti.Matrix.field(2, 2, ti.f32, shape=n_particles)
material = ti.field(dtype=int, shape=n_particles)  # material id
Jp = ti.field(ti.f32, shape=n_particles)  # plastic deformation
grid_v = ti.Vector.field(2, ti.f32,
                         shape=(n_grid, n_grid))  # grid node momentum/velocity
grid_m = ti.field(ti.f32, shape=(n_grid, n_grid))  # grid node mass


@ti.kernel
def substep():
    for K in ti.static(range(4)):
        for p in x:
Пример #27
0
import math
import time
import random
import numpy as np
from plyfile import PlyData, PlyElement
import os
import utils
from utils import create_output_folder
from engine.mpm_solver import MPMSolver

with_gui = True
write_to_disk = False

# Try to run on GPU
ti.init(arch=ti.cuda,
        kernel_profiler=True,
        use_unified_memory=False,
        device_memory_fraction=0.7)

max_num_particles = 400000

if with_gui:
    gui = ti.GUI("MLS-MPM", res=512, background_color=0x112F41)

if write_to_disk:
    output_dir = create_output_folder('./sim')


def visualize(particles):
    np_x = particles['position'] / 1.0

    # simple camera transform
Пример #28
0
 def test(*args, **kwargs):
     archs = [ti.core.host_arch()]
     for arch in archs:
         ti.init(arch=arch)
         func(*args, **kwargs)
Пример #29
0
import taichi as ti
import taichi_three as t3
import numpy as np

ti.init(ti.cpu)

scene = t3.Scene()
model = t3.Model(t3.Mesh.from_obj('assets/monkey.obj'))
scene.add_model(model)
camera = t3.Camera()
scene.add_camera_d(camera)
buffer = t3.GaussianBlur(t3.FrameBuffer(camera), 8)
scene.add_buffer(buffer)
light = t3.Light([0.4, -1.5, -0.8])
scene.add_light(light)

gui = ti.GUI('Gaussian', camera.res)
while gui.running:
    gui.get_event(None)
    gui.running = not gui.is_pressed(ti.GUI.ESCAPE)
    camera.from_mouse(gui)
    scene.render()
    gui.set_image(buffer.img)
    gui.show()
Пример #30
0
import taichi as ti

arch = ti.vulkan if ti._lib.core.with_vulkan() else ti.cuda
ti.init(arch=arch)

N = 128
cell_size = 1.0 / N
gravity = 0.5
stiffness = 1600
damping = 2
dt = 5e-4

ball_radius = 0.2
ball_center = ti.Vector.field(3, float, (1, ))

x = ti.Vector.field(3, float, (N, N))
v = ti.Vector.field(3, float, (N, N))

num_triangles = (N - 1) * (N - 1) * 2
indices = ti.field(int, num_triangles * 3)
vertices = ti.Vector.field(3, float, N * N)


def init_scene():
    for i, j in ti.ndrange(N, N):
        x[i, j] = ti.Vector([
            i * cell_size, j * cell_size / ti.sqrt(2),
            (N - j) * cell_size / ti.sqrt(2)
        ])
    ball_center[0] = ti.Vector([0.5, -0.5, -0.0])