Пример #1
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # Momentum Indicators
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # Plus Directional Indicator / Movement
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)

        # # Minus Directional Indicator / Movement
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # Aroon, Aroon Oscillator
        aroon = ta.AROON(dataframe)
        dataframe['aroonup'] = aroon['aroonup']
        dataframe['aroondown'] = aroon['aroondown']
        dataframe['aroonosc'] = ta.AROONOSC(dataframe)

        # Awesome Oscillator
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)

        # # Keltner Channel
        # keltner = qtpylib.keltner_channel(dataframe)
        # dataframe["kc_upperband"] = keltner["upper"]
        # dataframe["kc_lowerband"] = keltner["lower"]
        # dataframe["kc_middleband"] = keltner["mid"]
        # dataframe["kc_percent"] = (
        #     (dataframe["close"] - dataframe["kc_lowerband"]) /
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
        # )
        # dataframe["kc_width"] = (
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
        # )

        # Ultimate Oscillator
        dataframe['uo'] = ta.ULTOSC(dataframe)

        # Commodity Channel Index: values [Oversold:-100, Overbought:100]
        dataframe['cci'] = ta.CCI(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # Stochastic Slow
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']

        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # Stochastic RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # # ROC
        dataframe['roc'] = ta.ROC(dataframe)

        # Overlap Studies
        # ------------------------------------

        # # Bollinger Bands
        # bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        # dataframe['bb_lowerband'] = bollinger['lower']
        # dataframe['bb_middleband'] = bollinger['mid']
        # dataframe['bb_upperband'] = bollinger['upper']
        # dataframe["bb_percent"] = (
        #     (dataframe["close"] - dataframe["bb_lowerband"]) /
        #     (dataframe["bb_upperband"] - dataframe["bb_lowerband"])
        # )
        # dataframe["bb_width"] = (
        #     (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
        # )

        # # Bollinger Bands - Weighted (EMA based instead of SMA)
        # weighted_bollinger = qtpylib.weighted_bollinger_bands(
        #     qtpylib.typical_price(dataframe), window=20, stds=2
        # )
        # dataframe["wbb_upperband"] = weighted_bollinger["upper"]
        # dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
        # dataframe["wbb_middleband"] = weighted_bollinger["mid"]
        # dataframe["wbb_percent"] = (
        #     (dataframe["close"] - dataframe["wbb_lowerband"]) /
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
        # )
        # dataframe["wbb_width"] = (
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
        #     dataframe["wbb_middleband"]
        # )

        # # EMA - Exponential Moving Average
        # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        # dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
        # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # # SMA - Simple Moving Average
        # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
        # dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
        # dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
        # dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
        # dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
        # dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)

        # Parabolic SAR
        # dataframe['sar'] = ta.SAR(dataframe)

        # TEMA - Triple Exponential Moving Average
        # dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # # Cycle Indicator
        # # ------------------------------------
        # # Hilbert Transform Indicator - SineWave
        # hilbert = ta.HT_SINE(dataframe)
        # dataframe['htsine'] = hilbert['sine']
        # dataframe['htleadsine'] = hilbert['leadsine']

        # # Pattern Recognition - Bullish candlestick patterns
        # # ------------------------------------
        # # Hammer: values [0, 100]
        # dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # # Inverted Hammer: values [0, 100]
        # dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # # Dragonfly Doji: values [0, 100]
        # dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # # Piercing Line: values [0, 100]
        # dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # # Morningstar: values [0, 100]
        # dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # # Three White Soldiers: values [0, 100]
        # dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]

        # # Pattern Recognition - Bearish candlestick patterns
        # # ------------------------------------
        # # Hanging Man: values [0, 100]
        # dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # # Shooting Star: values [0, 100]
        # dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # # Gravestone Doji: values [0, 100]
        # dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # # Dark Cloud Cover: values [0, 100]
        # dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # # Evening Doji Star: values [0, 100]
        # dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # # Evening Star: values [0, 100]
        # dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)

        # # Pattern Recognition - Bullish/Bearish candlestick patterns
        # # ------------------------------------
        # # Three Line Strike: values [0, -100, 100]
        # dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # # Spinning Top: values [0, -100, 100]
        # dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # # Engulfing: values [0, -100, 100]
        # dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # # Harami: values [0, -100, 100]
        # dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # # Three Outside Up/Down: values [0, -100, 100]
        # dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # # Three Inside Up/Down: values [0, -100, 100]
        # dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]

        # # Chart type
        # # ------------------------------------
        # # Heikin Ashi Strategy
        # heikinashi = qtpylib.heikinashi(dataframe)
        # dataframe['ha_open'] = heikinashi['open']
        # dataframe['ha_close'] = heikinashi['close']
        # dataframe['ha_high'] = heikinashi['high']
        # dataframe['ha_low'] = heikinashi['low']

        # Retrieve best bid and best ask from the orderbook
        # ------------------------------------
        """
        # first check if dataprovider is available
        if self.dp:
            if self.dp.runmode in ('live', 'dry_run'):
                ob = self.dp.orderbook(metadata['pair'], 1)
                dataframe['best_bid'] = ob['bids'][0][0]
                dataframe['best_ask'] = ob['asks'][0][0]
        """

        return dataframe
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """

        # Momentum Indicator
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # Awesome oscillator
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
        """
        # Commodity Channel Index: values Oversold:<-100, Overbought:>100
        dataframe['cci'] = ta.CCI(dataframe)
        """
        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # Minus Directional Indicator / Movement
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # Plus Directional Indicator / Movement
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        """
        # ROC
        dataframe['roc'] = ta.ROC(dataframe)
        """
        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi'] = fishers_inverse(dataframe['rsi'])

        # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # Stoch
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']

        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']
        """
        # Stoch RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']
        """

        # Overlap Studies
        # ------------------------------------

        # Previous Bollinger bands
        # Because ta.BBANDS implementation is broken with small numbers, it actually
        # returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
        # and use middle band instead.
        dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2,
                                        nbdevdn=2)['lowerband']

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # SAR Parabol
        dataframe['sar'] = ta.SAR(dataframe)

        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Cycle Indicator
        # ------------------------------------
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        """
        # Hammer: values [0, 100]
        dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # Inverted Hammer: values [0, 100]
        dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # Dragonfly Doji: values [0, 100]
        dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # Piercing Line: values [0, 100]
        dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # Morningstar: values [0, 100]
        dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # Three White Soldiers: values [0, 100]
        dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
        """

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        """
        # Hanging Man: values [0, 100]
        dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # Shooting Star: values [0, 100]
        dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # Gravestone Doji: values [0, 100]
        dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # Dark Cloud Cover: values [0, 100]
        dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # Evening Doji Star: values [0, 100]
        dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # Evening Star: values [0, 100]
        dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
        """

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        """
        # Three Line Strike: values [0, -100, 100]
        dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # Spinning Top: values [0, -100, 100]
        dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # Engulfing: values [0, -100, 100]
        dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # Harami: values [0, -100, 100]
        dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # Three Outside Up/Down: values [0, -100, 100]
        dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # Three Inside Up/Down: values [0, -100, 100]
        dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
        """

        # Chart type
        # ------------------------------------
        # Heikinashi stategy
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['ha_close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']

        return dataframe
Пример #3
0
    def populate_indicators(dataframe: DataFrame) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame
        """
        dataframe['adx'] = ta.ADX(dataframe)
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
        dataframe['cci'] = ta.CCI(dataframe)
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']
        dataframe['mfi'] = ta.MFI(dataframe)
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)
        dataframe['roc'] = ta.ROC(dataframe)
        dataframe['rsi'] = ta.RSI(dataframe)
        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
        # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
        # Stoch
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']
        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']
        # Stoch RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']
        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
        # SAR Parabolic
        dataframe['sar'] = ta.SAR(dataframe)
        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        """
        # Hammer: values [0, 100]
        dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # Inverted Hammer: values [0, 100]
        dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # Dragonfly Doji: values [0, 100]
        dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # Piercing Line: values [0, 100]
        dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # Morningstar: values [0, 100]
        dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # Three White Soldiers: values [0, 100]
        dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
        """

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        """
        # Hanging Man: values [0, 100]
        dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # Shooting Star: values [0, 100]
        dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # Gravestone Doji: values [0, 100]
        dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # Dark Cloud Cover: values [0, 100]
        dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # Evening Doji Star: values [0, 100]
        dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # Evening Star: values [0, 100]
        dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
        """

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        """
        # Three Line Strike: values [0, -100, 100]
        dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # Spinning Top: values [0, -100, 100]
        dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # Engulfing: values [0, -100, 100]
        dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # Harami: values [0, -100, 100]
        dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # Three Outside Up/Down: values [0, -100, 100]
        dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # Three Inside Up/Down: values [0, -100, 100]
        dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
        """

        # Chart type
        # ------------------------------------
        # Heikinashi stategy
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['ha_close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']

        return dataframe