def eval(self, environment, gene, date1, date2): timeperiod = (gene.next_value(environment, date1, date2)) date1 = environment.shift_date(date1, -(timeperiod - 1), -1) df = gene.next_value(environment, date1, date2) res = df.apply(lambda x: pd.Series( talib.LINEARREG(x.values, timeperiod=timeperiod), index=df.index)) return res.iloc[timeperiod - 1:]
def genTA(data, y, t): #t is timeperiod indicators = {} y_ind = copy.deepcopy(y) for ticker in data: ## Overlap indicators[ticker] = ta.SMA(data[ticker].iloc[:,3], timeperiod=t).to_frame() indicators[ticker]['EMA'] = ta.EMA(data[ticker].iloc[:,3], timeperiod=t) indicators[ticker]['BBAND_Upper'], indicators[ticker]['BBAND_Middle' ], indicators[ticker]['BBAND_Lower' ] = ta.BBANDS(data[ticker].iloc[:,3], timeperiod=t, nbdevup=2, nbdevdn=2, matype=0) indicators[ticker]['HT_TRENDLINE'] = ta.HT_TRENDLINE(data[ticker].iloc[:,3]) indicators[ticker]['SAR'] = ta.SAR(data[ticker].iloc[:,1], data[ticker].iloc[:,2], acceleration=0, maximum=0) #rename SMA column indicators[ticker].rename(columns={indicators[ticker].columns[0]: "SMA"}, inplace=True) ## Momentum indicators[ticker]['RSI'] = ta.RSI(data[ticker].iloc[:,3], timeperiod=(t-1)) indicators[ticker]['MOM'] = ta.MOM(data[ticker].iloc[:,3], timeperiod=(t-1)) indicators[ticker]['ROC'] = ta.ROC(data[ticker].iloc[:,3], timeperiod=(t-1)) indicators[ticker]['ROCP']= ta.ROCP(data[ticker].iloc[:,3],timeperiod=(t-1)) indicators[ticker]['STOCH_SLOWK'], indicators[ticker]['STOCH_SLOWD'] = ta.STOCH(data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3], fastk_period=t, slowk_period=int(.6*t), slowk_matype=0, slowd_period=int(.6*t), slowd_matype=0) indicators[ticker]['MACD'], indicators[ticker]['MACDSIGNAL'], indicators[ticker]['MACDHIST'] = ta.MACD(data[ticker].iloc[:,3], fastperiod=t,slowperiod=2*t,signalperiod=int(.7*t)) ## Volume indicators[ticker]['OBV'] = ta.OBV(data[ticker].iloc[:,3], data[ticker].iloc[:,4]) indicators[ticker]['AD'] = ta.AD(data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3], data[ticker].iloc[:,4]) indicators[ticker]['ADOSC'] = ta.ADOSC(data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3], data[ticker].iloc[:,4], fastperiod=int(.3*t), slowperiod=t) ## Cycle indicators[ticker]['HT_DCPERIOD'] = ta.HT_DCPERIOD(data[ticker].iloc[:,3]) indicators[ticker]['HT_TRENDMODE']= ta.HT_TRENDMODE(data[ticker].iloc[:,3]) ## Price indicators[ticker]['AVGPRICE'] = ta.AVGPRICE(data[ticker].iloc[:,0], data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3]) indicators[ticker]['TYPPRICE'] = ta.TYPPRICE(data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3]) ## Volatility indicators[ticker]['ATR'] = ta.ATR(data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3], timeperiod=(t-1)) ## Statistics indicators[ticker]['BETA'] = ta.BETA(data[ticker].iloc[:,1], data[ticker].iloc[:,2], timeperiod=(t-1)) indicators[ticker]['LINEARREG'] = ta.LINEARREG(data[ticker].iloc[:,3], timeperiod=t) indicators[ticker]['VAR'] = ta.VAR(data[ticker].iloc[:,3], timeperiod=t, nbdev=1) ## Math Transform indicators[ticker]['EXP'] = ta.EXP(data[ticker].iloc[:,3]) indicators[ticker]['LN'] = ta.LN(data[ticker].iloc[:,3]) ## Patterns (returns integers - but norming might not really do anything but wondering if they should be normed) indicators[ticker]['CDLENGULFING'] = ta.CDLENGULFING(data[ticker].iloc[:,0], data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3]) indicators[ticker]['CDLDOJI'] = ta.CDLDOJI(data[ticker].iloc[:,0], data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3]) indicators[ticker]['CDLHAMMER'] = ta.CDLHAMMER(data[ticker].iloc[:,0], data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3]) indicators[ticker]['CDLHANGINGMAN']= ta.CDLHANGINGMAN(data[ticker].iloc[:,0], data[ticker].iloc[:,1], data[ticker].iloc[:,2], data[ticker].iloc[:,3]) #drop 'nan' values indicators[ticker].drop(indicators[ticker].index[np.arange(0,63)], inplace=True) y_ind[ticker].drop(y_ind[ticker].index[np.arange(0,63)], inplace=True) #Normalize Features indicators_norm = normData(indicators) return indicators_norm, indicators, y_ind
def extract_features(data): high = data['High'] low = data['Low'] close = data['Close'] volume = data['Volume'] open_ = data['Open'] data['ADX'] = ta.ADX(high, low, close, timeperiod=19) data['CCI'] = ta.CCI(high, low, close, timeperiod=19) data['CMO'] = ta.CMO(close, timeperiod=14) data['MACD'], X, Y = ta.MACD(close, fastperiod=10, slowperiod=30, signalperiod=9) data['MFI'] = ta.MFI(high, low, close, volume, timeperiod=19) data['MOM'] = ta.MOM(close, timeperiod=9) data['ROCR'] = ta.ROCR(close, timeperiod=12) data['RSI'] = ta.RSI(close, timeperiod=19) data['STOCHSLOWK'], data['STOCHSLOWD'] = ta.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) data['TRIX'] = ta.TRIX(close, timeperiod=30) data['WILLR'] = ta.WILLR(high, low, close, timeperiod=14) data['OBV'] = ta.OBV(close, volume) data['TSF'] = ta.TSF(close, timeperiod=14) data['NATR'] = ta.NATR(high, low, close)#, timeperiod=14) data['ULTOSC'] = ta.ULTOSC(high, low, close) data['AROONOSC'] = ta.AROONOSC(high, low, timeperiod=14) data['BOP'] = ta.BOP(open_, high, low, close) data['LINEARREG'] = ta.LINEARREG(close) data['AP0'] = ta.APO(close, fastperiod=9, slowperiod=23, matype=1) data['TEMA'] = ta.TRIMA(close, 29) return data
def test_LINEARREG(self): self.env.add_operator('linearreg', { 'operator': OperatorLINEARREG, }) string = 'linearreg(14, open)' gene = self.env.parse_string(string) self.assertRaises(IndexError, gene.eval, self.env, self.dates[12], self.dates[-1]) df = gene.eval(self.env, self.dates[13], self.dates[14]) ser0, ser1 = df.iloc[0], df.iloc[1] o = self.env.get_data_value('open').values res0, res1, res = [], [], [] for i in df.columns: res0.append(talib.LINEARREG(o[:14, i], timeperiod=14)[-1] == ser0[i]) res1.append(talib.LINEARREG(o[1:14+1, i], timeperiod=14)[-1] == ser1[i]) res.append(talib.LINEARREG(o[:14+1, i], timeperiod=14)[-1] == ser1[i]) self.assertTrue(all(res0) and all(res1) and all(res))
def cfo(candles: np.ndarray, period: int = 14, scalar: float = 100, source_type: str = "close", sequential: bool = False) -> Union[float, np.ndarray]: """ CFO - Chande Forcast Oscillator :param candles: np.ndarray :param period: int - default: 14 :param source_type: str - default: "close" :param sequential: bool - default: False :return: float | np.ndarray """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) cfo = scalar * (source - talib.LINEARREG(source, timeperiod=period)) cfo /= source if sequential: return cfo else: return None if np.isnan(cfo[-1]) else cfo[-1]
def lineareg_band(data, nATR=14, nlookback=20, scale=1): """ 布林带和线性回归ATR通道共振指标系统 Source: https://cn.tradingview.com/script/jNWOuOMb-Colored-Linear-regression-band/ Translator: 阿财(Rgveda@github)(4910163#qq.com) Parameters ---------- nlookback = defval = 20, minval = 1 Number of Lookback scale = defval=1, scale of ATR nATR = defval = 14, ATR Parameter """ #Linear Regression Curve lrc = talib.LINEARREG(data.close, timeperiod=nlookback) # ATR band lrc_u = lrc + scale * talib.ATR( data.high, data.low, data.close, timeperiod=nATR) lrc_l = lrc - scale * talib.ATR( data.high, data.low, data.close, timeperiod=nATR) # direction color_reg = np.where(lrc > lrc.shift(1), 1, np.where(lrc < lrc.shift(1), -1, 0)) return lrc, lrc_u, lrc_l, color_reg
def cfo(candles: np.ndarray, period: int = 14, scalar: float = 100, source_type: str = "close", sequential: bool = False) -> Union[float, np.ndarray]: """ CFO - Chande Forcast Oscillator :param candles: np.ndarray :param period: int - default=14 :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ warmup_candles_num = get_config('env.data.warmup_candles_num', 240) if not sequential and len(candles) > warmup_candles_num: candles = candles[-warmup_candles_num:] source = get_candle_source(candles, source_type=source_type) cfo = scalar * (source - talib.LINEARREG(source, timeperiod=period)) cfo /= source if sequential: return cfo else: return None if np.isnan(cfo[-1]) else cfo[-1]
def maCross(self,am,paraDict): regPeriod = paraDict["regPeriod"] fastPeriod = paraDict["fastPeriod"] slowPeriod = paraDict["slowPeriod"] prediction = ta.LINEARREG(am.close, regPeriod) residual = (am.close - prediction) / am.close resSma = ta.MA(residual, fastPeriod) resLma = ta.MA(residual, slowPeriod) residualUp = resSma[-1] > resLma[-1] and resSma[-2]<= resLma[-2] residualDn = resSma[-1] < resLma[-1] and resSma[-2]>= resLma[-2] maCrossSignal = 0 if residualUp: maCrossSignal = 1 elif residualDn: maCrossSignal = -1 else: resSignal = 0 return maCrossSignal, resSma, resLma
def choose(): print("I'm working......选股策略") # 股票列表 engine = create_engine('postgresql://*****:*****@47.93.193.128:5432/xiaoan') # stock_basics = ts.get_stock_basics() temp_stock_basics = pd.read_sql_query('select * from stock_basics_all',con = engine) stock_basics = pd.DataFrame(temp_stock_basics) data = pd.DataFrame(stock_basics) data = data[(data['pe']<40)] # pe,市盈率 data = data[(data['pb']<10)] # pd,市净率 data = data[(data['npr']>10)] # npr,净利润率(%) data = data[(data['roe']>10)] # roe,净资产收益率 data = data[(data['rev']>0)] # rev,收入同比(%) # data = data[(data['profits_yoy'].isnull()) | (data['profits_yoy']>10)] data = data[(data['profit']>0)] # profit,利润同比(%) data.to_sql('my_stocks',engine,index=True,if_exists='replace') data = pd.read_sql_query('select * from my_stocks',con = engine) data = pd.DataFrame(read_sql_query) get_k_data = ts.get_k_data('000651', start='1990-12-19') ma5 = ta.MA(get_k_data['close'].values, timeperiod=5, matype=0) ma10 = ta.MA(get_k_data['close'].values, timeperiod=10, matype=0) ma20 = ta.MA(get_k_data['close'].values, timeperiod=20, matype=0) ma60 = ta.MA(get_k_data['close'].values, timeperiod=60, matype=0) fig, axes = plt.subplots(1, 1, sharex=True, sharey=True) # LINEARREG = ta.LINEARREG(get_k_data['close'].values, timeperiod=14) real = ta.LINEARREG(get_k_data['close'].values, timeperiod=60) get_k_data.set_index('date') axes.plot(ma60[1300:2300], 'k-') axes.plot(real[1300:2300], 'r-') axes.plot(ma60, 'k-') plt.subplots_adjust(wspace = 0, hspace = 0) # get_k_data.plot(x='date', y='close') # x=get_k_data.close # y=get_k_data.close # est=sm.OLS(y,x) # est=est.fit() # x_prime=np.linspace(x.close.min(), x.close.max(),100) # x_prime=sm.add_constant(x_prime) # y_hat=est.predict(x_prime) # plt.scatter(x.close, y, alpha=0.3) # plt.xlabel("Gross National Product") # plt.ylabel("Total Employment") # plt.plot(x_prime[:,1], y_hat, 'r', alpha=0.9) # print(est.summary()) plt.show() # send_mail(data, 'choose') print("选股策略......done")
def update(self, data, N): close = data[4] self.clear() self.series_fast.attachAxis(self.chart.ax) self.series_fast.attachAxis(self.chart.ay) self.series_slow.attachAxis(self.chart.ax) self.series_slow.attachAxis(self.chart.ay) regression_fast = talib.LINEARREG(close, timeperiod=11) firstNotNan = np.where(np.isnan(regression_fast))[0][-1] + 1 regression_fast[:firstNotNan] = regression_fast[firstNotNan] for i, val in enumerate(regression_fast[-N:]): self.series_fast.append(i + 0.5, val) regression_slow = talib.LINEARREG(close, timeperiod=23) firstNotNan = np.where(np.isnan(regression_slow))[0][-1] + 1 regression_slow[:firstNotNan] = regression_slow[firstNotNan] for i, val in enumerate(regression_slow[-N:]): self.series_slow.append(i + 0.5, val)
def LINEARREG(close, timeperiod=14): ''' Linear Regression 线性回归 分组: Statistic Functions 统计函数 简介: real = LINEARREG(close, timeperiod=14) ''' return talib.LINEARREG(close, timeperiod)
def linreg(vm, args, kwargs): source, length, _offset = _expand_args(args, kwargs, (('source', Series, True), ('length', int, True), ('offset', int, True))) try: return series_np(ta.LINEARREG(source, length) + _offset, source) except Exception as e: if str(e) == 'inputs are all NaN': return source.dup() raise
def test_linreg(self): result = self.overlap.linreg(self.close) self.assertIsInstance(result, Series) self.assertEqual(result.name, 'LR_14') try: expected = tal.LINEARREG(self.close) pdt.assert_series_equal(result, expected, check_names=False) except AssertionError as ae: try: corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION) self.assertGreater(corr, CORRELATION_THRESHOLD) except Exception as ex: error_analysis(result, CORRELATION, ex)
def getStatFunctions(df): high = df['High'] low = df['Low'] close = df['Close'] open = df['Open'] volume = df['Volume'] df['BETA'] = ta.BETA(high, low, timeperiod=5) df['CORREL'] = ta.CORREL(high, low, timeperiod=30) df['LINREG'] = ta.LINEARREG(close, timeperiod=14) df['LINREGANGLE'] = ta.LINEARREG_ANGLE(close, timeperiod=14) df['LINREGINTERCEPT'] = ta.LINEARREG_INTERCEPT(close, timeperiod=14) df['LINREGSLOPE'] = ta.LINEARREG_SLOPE(close, timeperiod=14) df['STDDEV'] = ta.STDDEV(close, timeperiod=5, nbdev=1) df['TSF'] = ta.TSF(close, timeperiod=14) df['VAR'] = ta.VAR(close, timeperiod=5, nbdev=1)
def linearreg(client, symbol, timeframe="6m", closecol="close", period=14): """This will return a dataframe of linear regression for the given symbol across the given timeframe Args: client (pyEX.Client): Client symbol (string): Ticker timeframe (string): timeframe to use, for pyEX.chart closecol (string): column to use to calculate period (int): period to calculate adx across Returns: DataFrame: result """ df = client.chartDF(symbol, timeframe) linearreg = t.LINEARREG(df[closecol].values, period) return pd.DataFrame({closecol: df[closecol].values, "lineearreg": linearreg})
def get_technicals_of_series(self, indivations): result = indivations result = np.vstack((result, ta.SMA(indivations, timeperiod=5))) result = np.vstack((result, ta.SMA(indivations, timeperiod=14))) result = np.vstack((result, ta.BBANDS(indivations))) result = np.vstack((result, ta.MAMA(indivations))) result = np.vstack((result, ta.APO(indivations))) result = np.vstack((result, ta.CMO(indivations))) result = np.vstack((result, ta.MACD(indivations))) result = np.vstack((result, ta.MOM(indivations))) result = np.vstack((result, ta.ROC(indivations))) result = np.vstack((result, ta.RSI(indivations))) result = np.vstack((result, ta.HT_TRENDMODE(indivations))) result = np.vstack((result, ta.LINEARREG(indivations))) result = result[:, ~np.isnan(result).any(axis=0)] result = result.T print(np.shape(result)) return result
def linearreg(candles: np.ndarray, period: int = 14, source_type: str = "close", sequential: bool = False) -> Union[ float, np.ndarray]: """ LINEARREG - Linear Regression :param candles: np.ndarray :param period: int - default: 14 :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) res = talib.LINEARREG(source, timeperiod=period) return res if sequential else res[-1]
def getSignalPos(self): """计算指标数据""" # 指标计算 am = self.am prediction = ta.LINEARREG(am.close, self.regPeriod) residual = (am.close - prediction) residualSma = ta.MA(residual, self.residualSmaPeriod) residualLma = ta.MA(residual, self.residualLmaPeriod) residualUp = residualSma[-1] > residualLma[-1] residualDn = residualSma[-1] < residualLma[-1] # 进出场逻辑 if (residualUp): return 1 if (residualDn): return -1 return 0
def statistic_process(event): print(event.widget.get()) statistic = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(statistic, fontproperties='SimHei') if statistic == '线性回归': real = ta.LINEARREG(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归角度': real = ta.LINEARREG_ANGLE(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归截距': real = ta.LINEARREG_INTERCEPT(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归斜率': real = ta.LINEARREG_SLOPE(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '标准差': real = ta.STDDEV(close, timeperiod=5, nbdev=1) axes[1].plot(real, 'r-') elif statistic == '时间序列预测': real = ta.TSF(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '方差': real = ta.VAR(close, timeperiod=5, nbdev=1) axes[1].plot(real, 'r-') plt.show()
def Stat_Function(dataframe): #Statistic Functions #BETA - Beta df[f'{ratio}_BETA'] = talib.BETA(High, Low, timeperiod=5) #CORREL - Pearson's Correlation Coefficient (r) df[f'{ratio}_CORREL'] = talib.CORREL(High, Low, timeperiod=30) #LINEARREG - Linear Regression df[f'{ratio}_LINEARREG'] = talib.LINEARREG(Close, timeperiod=14) #LINEARREG_ANGLE - Linear Regression Angle df[f'{ratio}_LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(Close, timeperiod=14) #LINEARREG_INTERCEPT - Linear Regression Intercept df[f'{ratio}_LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT(Close, timeperiod=14) #LINEARREG_SLOPE - Linear Regression Slope df[f'{ratio}_LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(Close, timeperiod=14) #STDDEV - Standard Deviation df[f'{ratio}_STDDEV'] = talib.STDDEV(Close, timeperiod=5, nbdev=1) #TSF - Time Series Forecast df[f'{ratio}_TSF'] = talib.TSF(Close, timeperiod=14) #VAR - Variance df[f'{ratio}_VAR'] = talib.VAR(Close, timeperiod=5, nbdev=1) return
def linearreg(candles: np.ndarray, period: int = 14, source_type: str = "close", sequential: bool = False) -> Union[float, np.ndarray]: """ LINEARREG - Linear Regression :param candles: np.ndarray :param period: int - default: 14 :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ warmup_candles_num = get_config('env.data.warmup_candles_num', 240) if not sequential and len(candles) > warmup_candles_num: candles = candles[-warmup_candles_num:] source = get_candle_source(candles, source_type=source_type) res = talib.LINEARREG(source, timeperiod=period) return res if sequential else res[-1]
def calculate(self, para): self.t = self.inputdata[:, 0] self.op = self.inputdata[:, 1] self.high = self.inputdata[:, 2] self.low = self.inputdata[:, 3] self.close = self.inputdata[:, 4] #adjusted close self.close1 = self.inputdata[:, 5] self.volume = self.inputdata[:, 6] #Overlap study #Overlap Studies #Overlap Studies if para is 'BBANDS': #Bollinger Bands upperband, middleband, lowerband = ta.BBANDS(self.close, timeperiod=self.tp, nbdevup=2, nbdevdn=2, matype=0) self.output = [upperband, middleband, lowerband] elif para is 'DEMA': #Double Exponential Moving Average self.output = ta.DEMA(self.close, timeperiod=self.tp) elif para is 'EMA': #Exponential Moving Average self.output = ta.EMA(self.close, timeperiod=self.tp) elif para is 'HT_TRENDLINE': #Hilbert Transform - Instantaneous Trendline self.output = ta.HT_TRENDLINE(self.close) elif para is 'KAMA': #Kaufman Adaptive Moving Average self.output = ta.KAMA(self.close, timeperiod=self.tp) elif para is 'MA': #Moving average self.output = ta.MA(self.close, timeperiod=self.tp, matype=0) elif para is 'MAMA': #MESA Adaptive Moving Average mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0) elif para is 'MAVP': #Moving average with variable period self.output = ta.MAVP(self.close, periods=10, minperiod=self.tp, maxperiod=self.tp1, matype=0) elif para is 'MIDPOINT': #MidPoint over period self.output = ta.MIDPOINT(self.close, timeperiod=self.tp) elif para is 'MIDPRICE': #Midpoint Price over period self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp) elif para is 'SAR': #Parabolic SAR self.output = ta.SAR(self.high, self.low, acceleration=0, maximum=0) elif para is 'SAREXT': #Parabolic SAR - Extended self.output = ta.SAREXT(self.high, self.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) elif para is 'SMA': #Simple Moving Average self.output = ta.SMA(self.close, timeperiod=self.tp) elif para is 'T3': #Triple Exponential Moving Average (T3) self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0) elif para is 'TEMA': #Triple Exponential Moving Average self.output = ta.TEMA(self.close, timeperiod=self.tp) elif para is 'TRIMA': #Triangular Moving Average self.output = ta.TRIMA(self.close, timeperiod=self.tp) elif para is 'WMA': #Weighted Moving Average self.output = ta.WMA(self.close, timeperiod=self.tp) #Momentum Indicators elif para is 'ADX': #Average Directional Movement Index self.output = ta.ADX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'ADXR': #Average Directional Movement Index Rating self.output = ta.ADXR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'APO': #Absolute Price Oscillator self.output = ta.APO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'AROON': #Aroon aroondown, aroonup = ta.AROON(self.high, self.low, timeperiod=self.tp) self.output = [aroondown, aroonup] elif para is 'AROONOSC': #Aroon Oscillator self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp) elif para is 'BOP': #Balance Of Power self.output = ta.BOP(self.op, self.high, self.low, self.close) elif para is 'CCI': #Commodity Channel Index self.output = ta.CCI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'CMO': #Chande Momentum Oscillator self.output = ta.CMO(self.close, timeperiod=self.tp) elif para is 'DX': #Directional Movement Index self.output = ta.DX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MACD': #Moving Average Convergence/Divergence macd, macdsignal, macdhist = ta.MACD(self.close, fastperiod=12, slowperiod=26, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MACDEXT': #MACD with controllable MA type macd, macdsignal, macdhist = ta.MACDEXT(self.close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) self.output = [macd, macdsignal, macdhist] elif para is 'MACDFIX': #Moving Average Convergence/Divergence Fix 12/26 macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MFI': #Money Flow Index self.output = ta.MFI(self.high, self.low, self.close, self.volume, timeperiod=self.tp) elif para is 'MINUS_DI': #Minus Directional Indicator self.output = ta.MINUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MINUS_DM': #Minus Directional Movement self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'MOM': #Momentum self.output = ta.MOM(self.close, timeperiod=10) elif para is 'PLUS_DI': #Plus Directional Indicator self.output = ta.PLUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'PLUS_DM': #Plus Directional Movement self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'PPO': #Percentage Price Oscillator self.output = ta.PPO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'ROC': #Rate of change : ((price/prevPrice)-1)*100 self.output = ta.ROC(self.close, timeperiod=10) elif para is 'ROCP': #Rate of change Percentage: (price-prevPrice)/prevPrice self.output = ta.ROCP(self.close, timeperiod=10) elif para is 'ROCR': #Rate of change ratio: (price/prevPrice) self.output = ta.ROCR(self.close, timeperiod=10) elif para is 'ROCR100': #Rate of change ratio 100 scale: (price/prevPrice)*100 self.output = ta.ROCR100(self.close, timeperiod=10) elif para is 'RSI': #Relative Strength Index self.output = ta.RSI(self.close, timeperiod=self.tp) elif para is 'STOCH': #Stochastic slowk, slowd = ta.STOCH(self.high, self.low, self.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) self.output = [slowk, slowd] elif para is 'STOCHF': #Stochastic Fast fastk, fastd = ta.STOCHF(self.high, self.low, self.close, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'STOCHRSI': #Stochastic Relative Strength Index fastk, fastd = ta.STOCHRSI(self.close, timeperiod=self.tp, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'TRIX': #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA self.output = ta.TRIX(self.close, timeperiod=self.tp) elif para is 'ULTOSC': #Ultimate Oscillator self.output = ta.ULTOSC(self.high, self.low, self.close, timeperiod1=self.tp, timeperiod2=self.tp1, timeperiod3=self.tp2) elif para is 'WILLR': #Williams' %R self.output = ta.WILLR(self.high, self.low, self.close, timeperiod=self.tp) # Volume Indicators : # elif para is 'AD': #Chaikin A/D Line self.output = ta.AD(self.high, self.low, self.close, self.volume) elif para is 'ADOSC': #Chaikin A/D Oscillator self.output = ta.ADOSC(self.high, self.low, self.close, self.volume, fastperiod=3, slowperiod=10) elif para is 'OBV': #On Balance Volume self.output = ta.OBV(self.close, self.volume) # Volatility Indicators: # elif para is 'ATR': #Average True Range self.output = ta.ATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'NATR': #Normalized Average True Range self.output = ta.NATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'TRANGE': #True Range self.output = ta.TRANGE(self.high, self.low, self.close) #Price Transform : # elif para is 'AVGPRICE': #Average Price self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close) elif para is 'MEDPRICE': #Median Price self.output = ta.MEDPRICE(self.high, self.low) elif para is 'TYPPRICE': #Typical Price self.output = ta.TYPPRICE(self.high, self.low, self.close) elif para is 'WCLPRICE': #Weighted Close Price self.output = ta.WCLPRICE(self.high, self.low, self.close) #Cycle Indicators : # elif para is 'HT_DCPERIOD': #Hilbert Transform - Dominant Cycle Period self.output = ta.HT_DCPERIOD(self.close) elif para is 'HT_DCPHASE': #Hilbert Transform - Dominant Cycle Phase self.output = ta.HT_DCPHASE(self.close) elif para is 'HT_PHASOR': #Hilbert Transform - Phasor Components inphase, quadrature = ta.HT_PHASOR(self.close) self.output = [inphase, quadrature] elif para is 'HT_SINE': #Hilbert Transform - SineWave #2 sine, leadsine = ta.HT_SINE(self.close) self.output = [sine, leadsine] elif para is 'HT_TRENDMODE': #Hilbert Transform - Trend vs Cycle Mode self.integer = ta.HT_TRENDMODE(self.close) #Pattern Recognition : # elif para is 'CDL2CROWS': #Two Crows self.integer = ta.CDL2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3BLACKCROWS': #Three Black Crows self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3INSIDE': #Three Inside Up/Down self.integer = ta.CDL3INSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3LINESTRIKE': #Three-Line Strike self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low, self.close) elif para is 'CDL3OUTSIDE': #Three Outside Up/Down self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3STARSINSOUTH': #Three Stars In The South self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low, self.close) elif para is 'CDL3WHITESOLDIERS': #Three Advancing White Soldiers self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low, self.close) elif para is 'CDLABANDONEDBABY': #Abandoned Baby self.integer = ta.CDLABANDONEDBABY(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLBELTHOLD': #Belt-hold self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low, self.close) elif para is 'CDLBREAKAWAY': #Breakaway self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low, self.close) elif para is 'CDLCLOSINGMARUBOZU': #Closing Marubozu self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLCONCEALBABYSWALL': #Concealing Baby Swallow self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low, self.close) elif para is 'CDLCOUNTERATTACK': #Counterattack self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low, self.close) elif para is 'CDLDARKCLOUDCOVER': #Dark Cloud Cover self.integer = ta.CDLDARKCLOUDCOVER(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLDOJI': #Doji self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLDOJISTAR': #Doji Star self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLDRAGONFLYDOJI': #Dragonfly Doji self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLENGULFING': #Engulfing Pattern self.integer = ta.CDLENGULFING(self.op, self.high, self.low, self.close) elif para is 'CDLEVENINGDOJISTAR': #Evening Doji Star self.integer = ta.CDLEVENINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLEVENINGSTAR': #Evening Star self.integer = ta.CDLEVENINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLGAPSIDESIDEWHITE': #Up/Down-gap side-by-side white lines self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low, self.close) elif para is 'CDLGRAVESTONEDOJI': #Gravestone Doji self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLHAMMER': #Hammer self.integer = ta.CDLHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLHANGINGMAN': #Hanging Man self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMI': #Harami Pattern self.integer = ta.CDLHARAMI(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMICROSS': #Harami Cross Pattern self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low, self.close) elif para is 'CDLHIGHWAVE': #High-Wave Candle self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKE': #Hikkake Pattern self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKEMOD': #Modified Hikkake Pattern self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low, self.close) elif para is 'CDLHOMINGPIGEON': #Homing Pigeon self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low, self.close) elif para is 'CDLIDENTICAL3CROWS': #Identical Three Crows self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLINNECK': #In-Neck Pattern self.integer = ta.CDLINNECK(self.op, self.high, self.low, self.close) elif para is 'CDLINVERTEDHAMMER': #Inverted Hammer self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLKICKING': #Kicking self.integer = ta.CDLKICKING(self.op, self.high, self.low, self.close) elif para is 'CDLKICKINGBYLENGTH': #Kicking - bull/bear determined by the longer marubozu self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low, self.close) elif para is 'CDLLADDERBOTTOM': #Ladder Bottom self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLEGGEDDOJI': #Long Legged Doji self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLINE': #Long Line Candle self.integer = ta.CDLLONGLINE(self.op, self.high, self.low, self.close) elif para is 'CDLMARUBOZU': #Marubozu self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLMATCHINGLOW': #Matching Low self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low, self.close) elif para is 'CDLMATHOLD': #Mat Hold self.integer = ta.CDLMATHOLD(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGDOJISTAR': #Morning Doji Star self.integer = ta.CDLMORNINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGSTAR': #Morning Star self.integer = ta.CDLMORNINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLONNECK': #On-Neck Pattern self.integer = ta.CDLONNECK(self.op, self.high, self.low, self.close) elif para is 'CDLPIERCING': #Piercing Pattern self.integer = ta.CDLPIERCING(self.op, self.high, self.low, self.close) elif para is 'CDLRICKSHAWMAN': #Rickshaw Man self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low, self.close) elif para is 'CDLRISEFALL3METHODS': #Rising/Falling Three Methods self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low, self.close) elif para is 'CDLSEPARATINGLINES': #Separating Lines self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low, self.close) elif para is 'CDLSHOOTINGSTAR': #Shooting Star self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low, self.close) elif para is 'CDLSHORTLINE': #Short Line Candle self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low, self.close) elif para is 'CDLSPINNINGTOP': #Spinning Top self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low, self.close) elif para is 'CDLSTALLEDPATTERN': #Stalled Pattern self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low, self.close) elif para is 'CDLSTICKSANDWICH': #Stick Sandwich self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low, self.close) elif para is 'CDLTAKURI': #Takuri (Dragonfly Doji with very long lower shadow) self.integer = ta.CDLTAKURI(self.op, self.high, self.low, self.close) elif para is 'CDLTASUKIGAP': #Tasuki Gap self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low, self.close) elif para is 'CDLTHRUSTING': #Thrusting Pattern self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low, self.close) elif para is 'CDLTRISTAR': #Tristar Pattern self.integer = ta.CDLTRISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLUNIQUE3RIVER': #Unique 3 River self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low, self.close) elif para is 'CDLUPSIDEGAP2CROWS': #Upside Gap Two Crows self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLXSIDEGAP3METHODS': #Upside/Downside Gap Three Methods self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low, self.close) #Statistic Functions : # elif para is 'BETA': #Beta self.output = ta.BETA(self.high, self.low, timeperiod=5) elif para is 'CORREL': #Pearson's Correlation Coefficient (r) self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp) elif para is 'LINEARREG': #Linear Regression self.output = ta.LINEARREG(self.close, timeperiod=self.tp) elif para is 'LINEARREG_ANGLE': #Linear Regression Angle self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp) elif para is 'LINEARREG_INTERCEPT': #Linear Regression Intercept self.output = ta.LINEARREG_INTERCEPT(self.close, timeperiod=self.tp) elif para is 'LINEARREG_SLOPE': #Linear Regression Slope self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp) elif para is 'STDDEV': #Standard Deviation self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1) elif para is 'TSF': #Time Series Forecast self.output = ta.TSF(self.close, timeperiod=self.tp) elif para is 'VAR': #Variance self.output = ta.VAR(self.close, timeperiod=5, nbdev=1) else: print('You issued command:' + para)
def TALIB_LINEARREG(close, timeperiod=14): '''00348,2,1''' return talib.LINEARREG(close, timeperiod)
df['ATR2'] = abs( np.array(df['High'].shift(1)) - np.array(df['Adj Close'].shift(1))) df['ATR3'] = abs( np.array(df['Low'].shift(1)) - np.array(df['Adj Close'].shift(1))) df['AverageTrueRange'] = df[['ATR1', 'ATR2', 'ATR3']].max(axis=1) # df['EMA']=pd.Series(pd.ewma(df['Adj Close'], span = n, min_periods = n - 1)) # Statistic Functions df['Beta'] = ta.BETA(np.array(df['High'].shift(1)), np.array(df['Low'].shift(1)), timeperiod=n) df['CORREL'] = ta.CORREL(np.array(df['High'].shift(1)), np.array(df['Low'].shift(1)), timeperiod=n) df['LINEARREG'] = ta.LINEARREG(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['LINEARREG_ANGLE'] = ta.LINEARREG_ANGLE(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['LINEARREG_INTERCEPT'] = ta.LINEARREG_INTERCEPT(np.array( df['Adj Close'].shift(1)), timeperiod=n) df['LINEARREG_SLOPE'] = ta.LINEARREG_SLOPE(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['STDDEV'] = ta.STDDEV(np.array(df['Adj Close'].shift(1)), timeperiod=n, nbdev=1) df['Time Series Forecast'] = ta.TSF(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['VAR'] = ta.VAR(np.array(df['Adj Close'].shift(1)), timeperiod=n, nbdev=1) # Overlap Studies Functions
def calc_features(df): open = df['op'] high = df['hi'] low = df['lo'] close = df['cl'] volume = df['volume'] orig_columns = df.columns hilo = (df['hi'] + df['lo']) / 2 df['BBANDS_upperband'], df['BBANDS_middleband'], df[ 'BBANDS_lowerband'] = talib.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) df['BBANDS_upperband'] -= hilo df['BBANDS_middleband'] -= hilo df['BBANDS_lowerband'] -= hilo df['DEMA'] = talib.DEMA(close, timeperiod=30) - hilo df['EMA'] = talib.EMA(close, timeperiod=30) - hilo df['HT_TRENDLINE'] = talib.HT_TRENDLINE(close) - hilo df['KAMA'] = talib.KAMA(close, timeperiod=30) - hilo df['MA'] = talib.MA(close, timeperiod=30, matype=0) - hilo df['MIDPOINT'] = talib.MIDPOINT(close, timeperiod=14) - hilo df['SMA'] = talib.SMA(close, timeperiod=30) - hilo df['T3'] = talib.T3(close, timeperiod=5, vfactor=0) - hilo df['TEMA'] = talib.TEMA(close, timeperiod=30) - hilo df['TRIMA'] = talib.TRIMA(close, timeperiod=30) - hilo df['WMA'] = talib.WMA(close, timeperiod=30) - hilo df['ADX'] = talib.ADX(high, low, close, timeperiod=14) df['ADXR'] = talib.ADXR(high, low, close, timeperiod=14) df['APO'] = talib.APO(close, fastperiod=12, slowperiod=26, matype=0) df['AROON_aroondown'], df['AROON_aroonup'] = talib.AROON(high, low, timeperiod=14) df['AROONOSC'] = talib.AROONOSC(high, low, timeperiod=14) df['BOP'] = talib.BOP(open, high, low, close) df['CCI'] = talib.CCI(high, low, close, timeperiod=14) df['DX'] = talib.DX(high, low, close, timeperiod=14) df['MACD_macd'], df['MACD_macdsignal'], df['MACD_macdhist'] = talib.MACD( close, fastperiod=12, slowperiod=26, signalperiod=9) # skip MACDEXT MACDFIX たぶん同じなので df['MFI'] = talib.MFI(high, low, close, volume, timeperiod=14) df['MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=14) df['MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14) df['MOM'] = talib.MOM(close, timeperiod=10) df['PLUS_DI'] = talib.PLUS_DI(high, low, close, timeperiod=14) df['PLUS_DM'] = talib.PLUS_DM(high, low, timeperiod=14) df['RSI'] = talib.RSI(close, timeperiod=14) df['STOCH_slowk'], df['STOCH_slowd'] = talib.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df['STOCHF_fastk'], df['STOCHF_fastd'] = talib.STOCHF(high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0) df['STOCHRSI_fastk'], df['STOCHRSI_fastd'] = talib.STOCHRSI(close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) df['TRIX'] = talib.TRIX(close, timeperiod=30) df['ULTOSC'] = talib.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) df['WILLR'] = talib.WILLR(high, low, close, timeperiod=14) df['AD'] = talib.AD(high, low, close, volume) df['ADOSC'] = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) df['OBV'] = talib.OBV(close, volume) df['ATR'] = talib.ATR(high, low, close, timeperiod=14) df['NATR'] = talib.NATR(high, low, close, timeperiod=14) df['TRANGE'] = talib.TRANGE(high, low, close) df['HT_DCPERIOD'] = talib.HT_DCPERIOD(close) df['HT_DCPHASE'] = talib.HT_DCPHASE(close) df['HT_PHASOR_inphase'], df['HT_PHASOR_quadrature'] = talib.HT_PHASOR( close) df['HT_SINE_sine'], df['HT_SINE_leadsine'] = talib.HT_SINE(close) df['HT_TRENDMODE'] = talib.HT_TRENDMODE(close) df['BETA'] = talib.BETA(high, low, timeperiod=5) df['CORREL'] = talib.CORREL(high, low, timeperiod=30) df['LINEARREG'] = talib.LINEARREG(close, timeperiod=14) - close df['LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(close, timeperiod=14) df['LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT( close, timeperiod=14) - close df['LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(close, timeperiod=14) df['STDDEV'] = talib.STDDEV(close, timeperiod=5, nbdev=1) return df
def main(): ohlcv = api_ohlcv('20191017') open, high, low, close, volume, timestamp = [], [], [], [], [], [] for i in ohlcv: open.append(int(i[0])) high.append(int(i[1])) low.append(int(i[2])) close.append(int(i[3])) volume.append(float(i[4])) time_str = str(i[5]) timestamp.append( datetime.fromtimestamp(int( time_str[:10])).strftime('%Y/%m/%d %H:%M:%M')) date_time_index = pd.to_datetime( timestamp) # convert to DateTimeIndex type df = pd.DataFrame( { 'open': open, 'high': high, 'low': low, 'close': close, 'volume': volume }, index=date_time_index) # df.index += pd.offsets.Hour(9) # adjustment for JST if required print(df.shape) print(df.columns) # pct_change f = lambda x: 1 if x > 0.0001 else -1 if x < -0.0001 else 0 if -0.0001 <= x <= 0.0001 else np.nan y = df.rename(columns={ 'close': 'y' }).loc[:, 'y'].pct_change(1).shift(-1).fillna(0) X = df.copy() y_ = pd.DataFrame(y.map(f), columns=['y']) y = df.rename(columns={'close': 'y'}).loc[:, 'y'].pct_change(1).fillna(0) df_ = pd.concat([X, y_], axis=1) # check the shape print( '----------------------------------------------------------------------------------------' ) print('X shape: (%i,%i)' % X.shape) print('y shape: (%i,%i)' % y_.shape) print( '----------------------------------------------------------------------------------------' ) print(y_.groupby('y').size()) print('y=1 up, y=0 stay, y=-1 down') print( '----------------------------------------------------------------------------------------' ) # feature calculation open = pd.Series(df['open']) high = pd.Series(df['high']) low = pd.Series(df['low']) close = pd.Series(df['close']) volume = pd.Series(df['volume']) # pct_change for new column X['diff'] = y # Exponential Moving Average ema = talib.EMA(close, timeperiod=3) ema = ema.fillna(ema.mean()) # Momentum momentum = talib.MOM(close, timeperiod=5) momentum = momentum.fillna(momentum.mean()) # RSI rsi = talib.RSI(close, timeperiod=14) rsi = rsi.fillna(rsi.mean()) # ADX adx = talib.ADX(high, low, close, timeperiod=14) adx = adx.fillna(adx.mean()) # ADX change adx_change = adx.pct_change(1).shift(-1) adx_change = adx_change.fillna(adx_change.mean()) # AD ad = talib.AD(high, low, close, volume) ad = ad.fillna(ad.mean()) X_ = pd.concat([X, ema, momentum, rsi, adx_change, ad], axis=1).drop(['open', 'high', 'low', 'close'], axis=1) X_.columns = ['volume', 'diff', 'ema', 'momentum', 'rsi', 'adx', 'ad'] X_.join(y_).head(10) # default parameter models X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.33, random_state=42) print('X_train shape: {}'.format(X_train.shape)) print('X_test shape: {}'.format(X_test.shape)) print('y_train shape: {}'.format(y_train.shape)) print('y_test shape: {}'.format(y_test.shape)) pipe_knn = Pipeline([('scl', StandardScaler()), ('est', KNeighborsClassifier(n_neighbors=3))]) pipe_logistic = Pipeline([('scl', StandardScaler()), ('est', LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=39))]) pipe_rf = Pipeline([('scl', StandardScaler()), ('est', RandomForestClassifier(random_state=39))]) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting'] pipe_lines = [pipe_knn, pipe_logistic, pipe_rf, pipe_gb] for (i, pipe) in enumerate(pipe_lines): pipe.fit(X_train, y_train.values.ravel()) print(pipe) print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy', accuracy_score(y_train.values.ravel(), pipe.predict(X_train)))) print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy', accuracy_score(y_test.values.ravel(), pipe.predict(X_test)))) print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score', f1_score(y_train.values.ravel(), pipe.predict(X_train), average='micro'))) print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score', f1_score(y_test.values.ravel(), pipe.predict(X_test), average='micro'))) for (i, pipe) in enumerate(pipe_lines): predict = pipe.predict(X_test) cm = confusion_matrix(y_test.values.ravel(), predict, labels=[-1, 0, 1]) print('{} Confusion Matrix'.format(pipe_names[i])) print(cm) ## Overlap Studies Functions # DEMA - Double Exponential Moving Average dema = talib.DEMA(close, timeperiod=3) dema = dema.fillna(dema.mean()) print('DEMA - Double Exponential Moving Average shape: {}'.format( dema.shape)) # EMA - Exponential Moving Average ema = talib.EMA(close, timeperiod=3) ema = ema.fillna(ema.mean()) print('EMA - Exponential Moving Average shape: {}'.format(ema.shape)) # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline hilbert = talib.HT_TRENDLINE(close) hilbert = hilbert.fillna(hilbert.mean()) print( 'HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline shape: {}'. format(hilbert.shape)) # KAMA - Kaufman Adaptive Moving Average kama = talib.KAMA(close, timeperiod=3) kama = kama.fillna(kama.mean()) print('KAMA - Kaufman Adaptive Moving Average shape: {}'.format( kama.shape)) # MA - Moving average ma = talib.MA(close, timeperiod=3, matype=0) ma = ma.fillna(ma.mean()) print('MA - Moving average shape: {}'.format(kama.shape)) # MIDPOINT - MidPoint over period midpoint = talib.MIDPOINT(close, timeperiod=7) midpoint = midpoint.fillna(midpoint.mean()) print('MIDPOINT - MidPoint over period shape: {}'.format(midpoint.shape)) # MIDPRICE - Midpoint Price over period midprice = talib.MIDPRICE(high, low, timeperiod=7) midprice = midprice.fillna(midprice.mean()) print('MIDPRICE - Midpoint Price over period shape: {}'.format( midprice.shape)) # SAR - Parabolic SAR sar = talib.SAR(high, low, acceleration=0, maximum=0) sar = sar.fillna(sar.mean()) print('SAR - Parabolic SAR shape: {}'.format(sar.shape)) # SAREXT - Parabolic SAR - Extended sarext = talib.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) sarext = sarext.fillna(sarext.mean()) print('SAREXT - Parabolic SAR - Extended shape: {}'.format(sarext.shape)) # SMA - Simple Moving Average sma = talib.SMA(close, timeperiod=3) sma = sma.fillna(sma.mean()) print('SMA - Simple Moving Average shape: {}'.format(sma.shape)) # T3 - Triple Exponential Moving Average (T3) t3 = talib.T3(close, timeperiod=5, vfactor=0) t3 = t3.fillna(t3.mean()) print('T3 - Triple Exponential Moving Average shape: {}'.format(t3.shape)) # TEMA - Triple Exponential Moving Average tema = talib.TEMA(close, timeperiod=3) tema = tema.fillna(tema.mean()) print('TEMA - Triple Exponential Moving Average shape: {}'.format( tema.shape)) # TRIMA - Triangular Moving Average trima = talib.TRIMA(close, timeperiod=3) trima = trima.fillna(trima.mean()) print('TRIMA - Triangular Moving Average shape: {}'.format(trima.shape)) # WMA - Weighted Moving Average wma = talib.WMA(close, timeperiod=3) wma = wma.fillna(wma.mean()) print('WMA - Weighted Moving Average shape: {}'.format(wma.shape)) ## Momentum Indicator Functions # ADX - Average Directional Movement Index adx = talib.ADX(high, low, close, timeperiod=14) adx = adx.fillna(adx.mean()) print('ADX - Average Directional Movement Index shape: {}'.format( adx.shape)) # ADXR - Average Directional Movement Index Rating adxr = talib.ADXR(high, low, close, timeperiod=7) adxr = adxr.fillna(adxr.mean()) print('ADXR - Average Directional Movement Index Rating shape: {}'.format( adxr.shape)) # APO - Absolute Price Oscillator apo = talib.APO(close, fastperiod=12, slowperiod=26, matype=0) apo = apo.fillna(apo.mean()) print('APO - Absolute Price Oscillator shape: {}'.format(apo.shape)) # AROONOSC - Aroon Oscillator aroon = talib.AROONOSC(high, low, timeperiod=14) aroon = aroon.fillna(aroon.mean()) print('AROONOSC - Aroon Oscillator shape: {}'.format(apo.shape)) # BOP - Balance Of Power bop = talib.BOP(open, high, low, close) bop = bop.fillna(bop.mean()) print('BOP - Balance Of Power shape: {}'.format(apo.shape)) # CCI - Commodity Channel Index cci = talib.CCI(high, low, close, timeperiod=7) cci = cci.fillna(cci.mean()) print('CCI - Commodity Channel Index shape: {}'.format(cci.shape)) # CMO - Chande Momentum Oscillator cmo = talib.CMO(close, timeperiod=7) cmo = cmo.fillna(cmo.mean()) print('CMO - Chande Momentum Oscillator shape: {}'.format(cmo.shape)) # DX - Directional Movement Index dx = talib.DX(high, low, close, timeperiod=7) dx = dx.fillna(dx.mean()) print('DX - Directional Movement Index shape: {}'.format(dx.shape)) # MFI - Money Flow Index mfi = talib.MFI(high, low, close, volume, timeperiod=7) mfi = mfi.fillna(mfi.mean()) print('MFI - Money Flow Index shape: {}'.format(mfi.shape)) # MINUS_DI - Minus Directional Indicator minusdi = talib.MINUS_DI(high, low, close, timeperiod=14) minusdi = minusdi.fillna(minusdi.mean()) print('MINUS_DI - Minus Directional Indicator shape: {}'.format( minusdi.shape)) # MINUS_DM - Minus Directional Movement minusdm = talib.MINUS_DM(high, low, timeperiod=14) minusdm = minusdm.fillna(minusdm.mean()) print('MINUS_DM - Minus Directional Movement shape: {}'.format( minusdm.shape)) # MOM - Momentum mom = talib.MOM(close, timeperiod=5) mom = mom.fillna(mom.mean()) print('MOM - Momentum shape: {}'.format(mom.shape)) # PLUS_DI - Plus Directional Indicator plusdi = talib.PLUS_DI(high, low, close, timeperiod=14) plusdi = plusdi.fillna(plusdi.mean()) print('PLUS_DI - Plus Directional Indicator shape: {}'.format( plusdi.shape)) # PLUS_DM - Plus Directional Movement plusdm = talib.PLUS_DM(high, low, timeperiod=14) plusdm = plusdm.fillna(plusdm.mean()) print('PLUS_DM - Plus Directional Movement shape: {}'.format(plusdi.shape)) # PPO - Percentage Price Oscillator ppo = talib.PPO(close, fastperiod=12, slowperiod=26, matype=0) ppo = ppo.fillna(ppo.mean()) print('PPO - Percentage Price Oscillator shape: {}'.format(ppo.shape)) # ROC - Rate of change:((price/prevPrice)-1)*100 roc = talib.ROC(close, timeperiod=10) roc = roc.fillna(roc.mean()) print('ROC - Rate of change : ((price/prevPrice)-1)*100 shape: {}'.format( roc.shape)) # RSI - Relative Strength Index rsi = talib.RSI(close, timeperiod=14) rsi = rsi.fillna(rsi.mean()) print('RSI - Relative Strength Index shape: {}'.format(rsi.shape)) # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA trix = talib.TRIX(close, timeperiod=30) trix = trix.fillna(trix.mean()) print('TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA shape: {}'. format(trix.shape)) # ULTOSC - Ultimate Oscillator ultosc = talib.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) ultosc = ultosc.fillna(ultosc.mean()) print('ULTOSC - Ultimate Oscillator shape: {}'.format(ultosc.shape)) # WILLR - Williams'%R willr = talib.WILLR(high, low, close, timeperiod=7) willr = willr.fillna(willr.mean()) print("WILLR - Williams'%R shape: {}".format(willr.shape)) ## Volume Indicator Functions # AD - Chaikin A/D Line ad = talib.AD(high, low, close, volume) ad = ad.fillna(ad.mean()) print('AD - Chaikin A/D Line shape: {}'.format(ad.shape)) # ADOSC - Chaikin A/D Oscillator adosc = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) adosc = adosc.fillna(adosc.mean()) print('ADOSC - Chaikin A/D Oscillator shape: {}'.format(adosc.shape)) # OBV - On Balance Volume obv = talib.OBV(close, volume) obv = obv.fillna(obv.mean()) print('OBV - On Balance Volume shape: {}'.format(obv.shape)) ## Volatility Indicator Functions # ATR - Average True Range atr = talib.ATR(high, low, close, timeperiod=7) atr = atr.fillna(atr.mean()) print('ATR - Average True Range shape: {}'.format(atr.shape)) # NATR - Normalized Average True Range natr = talib.NATR(high, low, close, timeperiod=7) natr = natr.fillna(natr.mean()) print('NATR - Normalized Average True Range shape: {}'.format(natr.shape)) # TRANGE - True Range trange = talib.TRANGE(high, low, close) trange = trange.fillna(trange.mean()) print('TRANGE - True Range shape: {}'.format(natr.shape)) ## Price Transform Functions # AVGPRICE - Average Price avg = talib.AVGPRICE(open, high, low, close) avg = avg.fillna(avg.mean()) print('AVGPRICE - Average Price shape: {}'.format(natr.shape)) # MEDPRICE - Median Price medprice = talib.MEDPRICE(high, low) medprice = medprice.fillna(medprice.mean()) print('MEDPRICE - Median Price shape: {}'.format(medprice.shape)) # TYPPRICE - Typical Price typ = talib.TYPPRICE(high, low, close) typ = typ.fillna(typ.mean()) print('TYPPRICE - Typical Price shape: {}'.format(typ.shape)) # WCLPRICE - Weighted Close Price wcl = talib.WCLPRICE(high, low, close) wcl = wcl.fillna(wcl.mean()) print('WCLPRICE - Weighted Close Price shape: {}'.format(wcl.shape)) ## Cycle Indicator Functions # HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period dcperiod = talib.HT_DCPERIOD(close) dcperiod = dcperiod.fillna(dcperiod.mean()) print('HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period shape: {}'. format(dcperiod.shape)) # HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase dcphase = talib.HT_DCPHASE(close) dcphase = dcphase.fillna(dcphase.mean()) print('HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase shape: {}'. format(dcperiod.shape)) ## Statistic Functions # BETA - Beta beta = talib.BETA(high, low, timeperiod=3) beta = beta.fillna(beta.mean()) print('BETA - Beta shape: {}'.format(beta.shape)) # CORREL - Pearson's Correlation Coefficient(r) correl = talib.CORREL(high, low, timeperiod=30) correl = correl.fillna(correl.mean()) print("CORREL - Pearson's Correlation Coefficient(r) shape: {}".format( beta.shape)) # LINEARREG - Linear Regression linreg = talib.LINEARREG(close, timeperiod=7) linreg = linreg.fillna(linreg.mean()) print("LINEARREG - Linear Regression shape: {}".format(linreg.shape)) # STDDEV - Standard Deviation stddev = talib.STDDEV(close, timeperiod=5, nbdev=1) stddev = stddev.fillna(stddev.mean()) print("STDDEV - Standard Deviation shape: {}".format(stddev.shape)) # TSF - Time Series Forecast tsf = talib.TSF(close, timeperiod=7) tsf = tsf.fillna(tsf.mean()) print("TSF - Time Series Forecast shape: {}".format(tsf.shape)) # VAR - Variance var = talib.VAR(close, timeperiod=5, nbdev=1) var = var.fillna(var.mean()) print("VAR - Variance shape: {}".format(var.shape)) ## Feature DataFrame X_full = pd.concat([ X, dema, ema, hilbert, kama, ma, midpoint, midprice, sar, sarext, sma, t3, tema, trima, wma, adx, adxr, apo, aroon, bop, cci, cmo, mfi, minusdi, minusdm, mom, plusdi, plusdm, ppo, roc, rsi, trix, ultosc, willr, ad, adosc, obv, atr, natr, trange, avg, medprice, typ, wcl, dcperiod, dcphase, beta, correl, linreg, stddev, tsf, var ], axis=1).drop(['open', 'high', 'low', 'close'], axis=1) X_full.columns = [ 'volume', 'diff', 'dema', 'ema', 'hilbert', 'kama', 'ma', 'midpoint', 'midprice', 'sar', 'sarext', 'sma', 't3', 'tema', 'trima', 'wma', 'adx', 'adxr', 'apo', 'aroon', 'bop', 'cci', 'cmo', 'mfi', 'minusdi', 'minusdm', 'mom', 'plusdi', 'plusdm', 'ppo', 'roc', 'rsi', 'trix', 'ultosc', 'willr', 'ad', 'adosc', 'obv', 'atr', 'natr', 'trange', 'avg', 'medprice', 'typ', 'wcl', 'dcperiod', 'dcphase', 'beta', 'correl', 'linreg', 'stddev', 'tsf', 'var' ] X_full.join(y_).head(10) # full feature models X_train_full, X_test_full, y_train_full, y_test_full = train_test_split( X_full, y_, test_size=0.33, random_state=42) print('X_train shape: {}'.format(X_train_full.shape)) print('X_test shape: {}'.format(X_test_full.shape)) print('y_train shape: {}'.format(y_train_full.shape)) print('y_test shape: {}'.format(y_test_full.shape)) pipe_knn_full = Pipeline([('scl', StandardScaler()), ('est', KNeighborsClassifier(n_neighbors=3))]) pipe_logistic_full = Pipeline([ ('scl', StandardScaler()), ('est', LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=39)) ]) pipe_rf_full = Pipeline([('scl', StandardScaler()), ('est', RandomForestClassifier(random_state=39))]) pipe_gb_full = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting'] pipe_lines_full = [ pipe_knn_full, pipe_logistic_full, pipe_rf_full, pipe_gb_full ] for (i, pipe) in enumerate(pipe_lines_full): pipe.fit(X_train_full, y_train_full.values.ravel()) print(pipe) print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy', accuracy_score(y_train_full.values.ravel(), pipe.predict(X_train_full)))) print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy', accuracy_score(y_test_full.values.ravel(), pipe.predict(X_test_full)))) print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score', f1_score(y_train_full.values.ravel(), pipe.predict(X_train_full), average='micro'))) print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score', f1_score(y_test_full.values.ravel(), pipe.predict(X_test_full), average='micro'))) # Univariate Statistics select = SelectPercentile(percentile=25) select.fit(X_train_full, y_train_full.values.ravel()) X_train_selected = select.transform(X_train_full) X_test_selected = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Univariate Statistics-------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Cllassifier with Univariate Statistics print( '---------------------------With Univariate Statistics--------------------------------------' ) pipe_gb_percentile = Pipeline([ ('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39)) ]) pipe_gb_percentile.fit(X_train_selected, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_percentile.predict(X_train_selected)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_percentile.predict(X_test_selected)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_percentile.predict(X_train_selected), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_percentile.predict(X_test_selected), average='micro'))) # Model-based Selection select = SelectFromModel(RandomForestClassifier(n_estimators=100, random_state=42), threshold="1.25*mean") select.fit(X_train_full, y_train_full.values.ravel()) X_train_model = select.transform(X_train_full) X_test_model = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Model-based Selection--------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Classifier with Model-based Selection print( '----------------------------With Model-based Selection--------------------------------------' ) pipe_gb_model = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb_model.fit(X_train_model, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_model.predict(X_train_model)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_model.predict(X_test_model)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_model.predict(X_train_model), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_model.predict(X_test_model), average='micro'))) # Recursive Feature Elimination select = RFE(RandomForestClassifier(n_estimators=100, random_state=42), n_features_to_select=15) select.fit(X_train_full, y_train_full.values.ravel()) X_train_rfe = select.transform(X_train_full) X_test_rfe = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Recursive Feature Elimination-------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Classifier with Recursive Feature Elimination print( '----------------------------With Recursive Feature Elimination--------------------------------------' ) pipe_gb_rfe = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb_rfe.fit(X_train_rfe, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe), average='micro'))) cv = cross_val_score(pipe_gb, X_, y_.values.ravel(), cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=39)) print('Cross validation with StratifiedKFold scores: {}'.format(cv)) print('Cross Validation with StatifiedKFold mean: {}'.format(cv.mean())) # GridSearch n_features = len(df.columns) param_grid = { 'learning_rate': [0.01, 0.1, 1, 10], 'n_estimators': [1, 10, 100, 200, 300], 'max_depth': [1, 2, 3, 4, 5] } stratifiedcv = StratifiedKFold(n_splits=10, shuffle=True, random_state=39) X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.33, random_state=42) grid_search = GridSearchCV(GradientBoostingClassifier(), param_grid, cv=stratifiedcv) grid_search.fit(X_train, y_train.values.ravel()) print('GridSearch Train Accuracy: {:.3f}'.format( accuracy_score(y_train.values.ravel(), grid_search.predict(X_train)))) print('GridSearch Test Accuracy: {:.3f}'.format( accuracy_score(y_test.values.ravel(), grid_search.predict(X_test)))) print('GridSearch Train F1 Score: {:.3f}'.format( f1_score(y_train.values.ravel(), grid_search.predict(X_train), average='micro'))) print('GridSearch Test F1 Score: {:.3f}'.format( f1_score(y_test.values.ravel(), grid_search.predict(X_test), average='micro'))) # GridSearch results print("Best params:\n{}".format(grid_search.best_params_)) print("Best cross-validation score: {:.2f}".format( grid_search.best_score_)) results = pd.DataFrame(grid_search.cv_results_) corr_params = results.drop(results.columns[[ 0, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20 ]], axis=1) corr_params.head() # GridSearch in nested cv_gb = cross_val_score(grid_search, X_, y_.values.ravel(), cv=StratifiedKFold(n_splits=3, shuffle=True, random_state=39)) print('Grid Search with nested cross validation scores: {}'.format(cv_gb)) print('Grid Search with nested cross validation mean: {}'.format( cv_gb.mean()))
def LINEARREG(Series, N=14): res = talib.LINEARREG(Series.values, N) return pd.Series(res, index=Series.index)
def LINEARREG(data, **kwargs): _check_talib_presence() prices = _extract_series(data) return talib.LINEARREG(prices, **kwargs)
def LINEARREG(Series, timeperiod=14): res = talib.LINEARREG(Series.values, timeperiod) return pd.Series(res, index=Series.index)
import talib as ta from forex_python.converter import CurrencyRates moving_averages_functions = { 'SMA': lambda close, time_p: ta.SMA(close, time_p), 'EMA': lambda close, time_p: ta.EMA(close, time_p), 'WMA': lambda close, time_p: ta.WMA(close, time_p), 'LINEAR_REG': lambda close, time_p: ta.LINEARREG(close, time_p), 'TRIMA': lambda close, time_p: ta.TRIMA(close, time_p), 'DEMA': lambda close, time_p: ta.DEMA(close, time_p), 'HT_TRENDLINE': lambda close, time_p: ta.HT_TRENDLINE(close, time_p), 'TSF': lambda close, time_p: ta.TSF(close, time_p) } def get_pip_value(symbol, account_currency): first_symbol = symbol[0:3] second_symbol = symbol[3:6] c = CurrencyRates() return c.convert(second_symbol, account_currency, c.convert(first_symbol, second_symbol, 1))