def linearreg_intercept(client, symbol, range="6m", closecol="close", period=14): """This will return a dataframe of linear regression intercept for the given symbol across the given range Args: client (pyEX.Client): Client symbol (string): Ticker range (string): range to use, for pyEX.chart closecol (string): column to use to calculate period (int): period to calculate adx across Returns: DataFrame: result """ df = client.chartDF(symbol, range) linearreg = t.LINEARREG_INTERCEPT(df[closecol].values.astype(float), period) return pd.DataFrame({ closecol: df[closecol].values, "lineearreg_intercept": linearreg })
def test_LINEARREG_INTERCEPT(self): self.env.add_operator('linearreg', { 'operator': OperatorLINEARREG_INTERCEPT, }) string = 'linearreg(14, open)' gene = self.env.parse_string(string) self.assertRaises(IndexError, gene.eval, self.env, self.dates[12], self.dates[-1]) df = gene.eval(self.env, self.dates[13], self.dates[14]) ser0, ser1 = df.iloc[0], df.iloc[1] o = self.env.get_data_value('open').values res0, res1, res = [], [], [] for i in df.columns: res0.append(talib.LINEARREG_INTERCEPT(o[:14, i], timeperiod=14)[-1] == ser0[i]) res1.append(talib.LINEARREG_INTERCEPT(o[1:14+1, i], timeperiod=14)[-1] == ser1[i]) res.append(talib.LINEARREG_INTERCEPT(o[:14+1, i], timeperiod=14)[-1] == ser1[i]) self.assertTrue(all(res0) and all(res1) and all(res))
def get_linearreg_intercept(ohlc): linearreg_intercept = ta.LINEARREG_INTERCEPT(ohlc['4_close'], timeperiod=14) ohlc['linearreg_intercept'] = linearreg_intercept return ohlc
def eval(self, environment, gene, date1, date2): timeperiod = (gene.next_value(environment, date1, date2)) date1 = environment.shift_date(date1, -(timeperiod - 1), -1) df = gene.next_value(environment, date1, date2) res = df.apply(lambda x: pd.Series(talib.LINEARREG_INTERCEPT( x.values, timeperiod=timeperiod), index=df.index)) return res.iloc[timeperiod - 1:]
def LINEARREG_INTERCEPT(close, timeperiod=14): ''' Linear Regression Intercept 线性回归截距 分组: Statistic Functions 统计函数 简介: real = LINEARREG_INTERCEPT(close, timeperiod=14) ''' return talib.LINEARREG_INTERCEPT(close, timeperiod)
def _talib_LINEARREG_INTERCEPT(data, n): if n <= 1: value = np.zeros_like(data) else: try: value = talib.LINEARREG_INTERCEPT(data, timeperiod=n) ss = pd.Series(value).ffill().fillna(0) value = ss.values except Exception as e: raise Exception("[_talib_LINEARREG_INTERCEPT]", e) # print("[WARNING] _talib_LINEARREG_INTERCEPT: {}".format(e.args[0])) value = np.zeros_like(data) return value.astype(float)
def test_linreg_intercept(self): result = self.overlap.linreg(self.close, intercept=True) self.assertIsInstance(result, Series) self.assertEqual(result.name, 'LRb_14') try: expected = tal.LINEARREG_INTERCEPT(self.close) pdt.assert_series_equal(result, expected, check_names=False) except AssertionError as ae: try: corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION) self.assertGreater(corr, CORRELATION_THRESHOLD) except Exception as ex: error_analysis(result, CORRELATION, ex)
def getStatFunctions(df): high = df['High'] low = df['Low'] close = df['Close'] open = df['Open'] volume = df['Volume'] df['BETA'] = ta.BETA(high, low, timeperiod=5) df['CORREL'] = ta.CORREL(high, low, timeperiod=30) df['LINREG'] = ta.LINEARREG(close, timeperiod=14) df['LINREGANGLE'] = ta.LINEARREG_ANGLE(close, timeperiod=14) df['LINREGINTERCEPT'] = ta.LINEARREG_INTERCEPT(close, timeperiod=14) df['LINREGSLOPE'] = ta.LINEARREG_SLOPE(close, timeperiod=14) df['STDDEV'] = ta.STDDEV(close, timeperiod=5, nbdev=1) df['TSF'] = ta.TSF(close, timeperiod=14) df['VAR'] = ta.VAR(close, timeperiod=5, nbdev=1)
def handle_bar(context, bar_dict): price = history_bars(context.s1, context.PERIOD + 1, '1d', 'close') slope = talib.LINEARREG_SLOPE(price, context.PERIOD) intercept = talib.LINEARREG_INTERCEPT(price, context.PERIOD) prediction = slope * price + intercept cur_position = context.portfolio.positions[context.s1].quantity shares = context.portfolio.cash / bar_dict[context.s1].close if price[-1] < prediction[ -1] and cur_position > 0: #时间不对为何还能运行?这是因为引擎重新计算了各个值 order_target_value(context.s1, 0) if price[-1] > prediction[-1]: order_shares(context.s1, shares)
def linearreg_intercept(candles: np.ndarray, period: int = 14, source_type: str = "close", sequential: bool = False) -> \ Union[float, np.ndarray]: """ LINEARREG_INTERCEPT - Linear Regression Intercept :param candles: np.ndarray :param period: int - default: 14 :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) res = talib.LINEARREG_INTERCEPT(source, timeperiod=period) return res if sequential else res[-1]
def handle_bar(context, bar_dict): price = history_bars(context.s1, context.PERIOD * 3, '1d', 'close') #注意时间context.PERIOD*3略有不同 slope = talib.LINEARREG_SLOPE(price, context.PERIOD) #计算斜率 intercept = talib.LINEARREG_INTERCEPT(price, context.PERIOD) #计算b值 prediction = slope * price + intercept #计算预测值 residual = (price - prediction) / price #计算残差 residual_MA = ta.MA(residual, 20) #计算20日残差均值 cur_position = context.portfolio.positions[context.s1].quantity shares = context.portfolio.cash / bar_dict[context.s1].close if residual[-1] < residual_MA[-1] and cur_position > 0: order_target_value(context.s1, 0) if residual[-1] > residual_MA[-1]: order_shares(context.s1, shares)
def linearreg_intercept(candles: np.ndarray, period: int = 14, source_type: str = "close", sequential: bool = False) -> \ Union[float, np.ndarray]: """ LINEARREG_INTERCEPT - Linear Regression Intercept :param candles: np.ndarray :param period: int - default: 14 :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ warmup_candles_num = get_config('env.data.warmup_candles_num', 240) if not sequential and len(candles) > warmup_candles_num: candles = candles[-warmup_candles_num:] source = get_candle_source(candles, source_type=source_type) res = talib.LINEARREG_INTERCEPT(source, timeperiod=period) return res if sequential else res[-1]
def statistic_process(event): print(event.widget.get()) statistic = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(statistic, fontproperties='SimHei') if statistic == '线性回归': real = ta.LINEARREG(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归角度': real = ta.LINEARREG_ANGLE(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归截距': real = ta.LINEARREG_INTERCEPT(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归斜率': real = ta.LINEARREG_SLOPE(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '标准差': real = ta.STDDEV(close, timeperiod=5, nbdev=1) axes[1].plot(real, 'r-') elif statistic == '时间序列预测': real = ta.TSF(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '方差': real = ta.VAR(close, timeperiod=5, nbdev=1) axes[1].plot(real, 'r-') plt.show()
def Stat_Function(dataframe): #Statistic Functions #BETA - Beta df[f'{ratio}_BETA'] = talib.BETA(High, Low, timeperiod=5) #CORREL - Pearson's Correlation Coefficient (r) df[f'{ratio}_CORREL'] = talib.CORREL(High, Low, timeperiod=30) #LINEARREG - Linear Regression df[f'{ratio}_LINEARREG'] = talib.LINEARREG(Close, timeperiod=14) #LINEARREG_ANGLE - Linear Regression Angle df[f'{ratio}_LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(Close, timeperiod=14) #LINEARREG_INTERCEPT - Linear Regression Intercept df[f'{ratio}_LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT(Close, timeperiod=14) #LINEARREG_SLOPE - Linear Regression Slope df[f'{ratio}_LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(Close, timeperiod=14) #STDDEV - Standard Deviation df[f'{ratio}_STDDEV'] = talib.STDDEV(Close, timeperiod=5, nbdev=1) #TSF - Time Series Forecast df[f'{ratio}_TSF'] = talib.TSF(Close, timeperiod=14) #VAR - Variance df[f'{ratio}_VAR'] = talib.VAR(Close, timeperiod=5, nbdev=1) return
def calc_features(df): open = df['op'] high = df['hi'] low = df['lo'] close = df['cl'] volume = df['volume'] orig_columns = df.columns hilo = (df['hi'] + df['lo']) / 2 df['BBANDS_upperband'], df['BBANDS_middleband'], df[ 'BBANDS_lowerband'] = talib.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) df['BBANDS_upperband'] -= hilo df['BBANDS_middleband'] -= hilo df['BBANDS_lowerband'] -= hilo df['DEMA'] = talib.DEMA(close, timeperiod=30) - hilo df['EMA'] = talib.EMA(close, timeperiod=30) - hilo df['HT_TRENDLINE'] = talib.HT_TRENDLINE(close) - hilo df['KAMA'] = talib.KAMA(close, timeperiod=30) - hilo df['MA'] = talib.MA(close, timeperiod=30, matype=0) - hilo df['MIDPOINT'] = talib.MIDPOINT(close, timeperiod=14) - hilo df['SMA'] = talib.SMA(close, timeperiod=30) - hilo df['T3'] = talib.T3(close, timeperiod=5, vfactor=0) - hilo df['TEMA'] = talib.TEMA(close, timeperiod=30) - hilo df['TRIMA'] = talib.TRIMA(close, timeperiod=30) - hilo df['WMA'] = talib.WMA(close, timeperiod=30) - hilo df['ADX'] = talib.ADX(high, low, close, timeperiod=14) df['ADXR'] = talib.ADXR(high, low, close, timeperiod=14) df['APO'] = talib.APO(close, fastperiod=12, slowperiod=26, matype=0) df['AROON_aroondown'], df['AROON_aroonup'] = talib.AROON(high, low, timeperiod=14) df['AROONOSC'] = talib.AROONOSC(high, low, timeperiod=14) df['BOP'] = talib.BOP(open, high, low, close) df['CCI'] = talib.CCI(high, low, close, timeperiod=14) df['DX'] = talib.DX(high, low, close, timeperiod=14) df['MACD_macd'], df['MACD_macdsignal'], df['MACD_macdhist'] = talib.MACD( close, fastperiod=12, slowperiod=26, signalperiod=9) # skip MACDEXT MACDFIX たぶん同じなので df['MFI'] = talib.MFI(high, low, close, volume, timeperiod=14) df['MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=14) df['MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14) df['MOM'] = talib.MOM(close, timeperiod=10) df['PLUS_DI'] = talib.PLUS_DI(high, low, close, timeperiod=14) df['PLUS_DM'] = talib.PLUS_DM(high, low, timeperiod=14) df['RSI'] = talib.RSI(close, timeperiod=14) df['STOCH_slowk'], df['STOCH_slowd'] = talib.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df['STOCHF_fastk'], df['STOCHF_fastd'] = talib.STOCHF(high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0) df['STOCHRSI_fastk'], df['STOCHRSI_fastd'] = talib.STOCHRSI(close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) df['TRIX'] = talib.TRIX(close, timeperiod=30) df['ULTOSC'] = talib.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) df['WILLR'] = talib.WILLR(high, low, close, timeperiod=14) df['AD'] = talib.AD(high, low, close, volume) df['ADOSC'] = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) df['OBV'] = talib.OBV(close, volume) df['ATR'] = talib.ATR(high, low, close, timeperiod=14) df['NATR'] = talib.NATR(high, low, close, timeperiod=14) df['TRANGE'] = talib.TRANGE(high, low, close) df['HT_DCPERIOD'] = talib.HT_DCPERIOD(close) df['HT_DCPHASE'] = talib.HT_DCPHASE(close) df['HT_PHASOR_inphase'], df['HT_PHASOR_quadrature'] = talib.HT_PHASOR( close) df['HT_SINE_sine'], df['HT_SINE_leadsine'] = talib.HT_SINE(close) df['HT_TRENDMODE'] = talib.HT_TRENDMODE(close) df['BETA'] = talib.BETA(high, low, timeperiod=5) df['CORREL'] = talib.CORREL(high, low, timeperiod=30) df['LINEARREG'] = talib.LINEARREG(close, timeperiod=14) - close df['LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(close, timeperiod=14) df['LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT( close, timeperiod=14) - close df['LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(close, timeperiod=14) df['STDDEV'] = talib.STDDEV(close, timeperiod=5, nbdev=1) return df
def calculate(self, para): self.t = self.inputdata[:, 0] self.op = self.inputdata[:, 1] self.high = self.inputdata[:, 2] self.low = self.inputdata[:, 3] self.close = self.inputdata[:, 4] #adjusted close self.close1 = self.inputdata[:, 5] self.volume = self.inputdata[:, 6] #Overlap study #Overlap Studies #Overlap Studies if para is 'BBANDS': #Bollinger Bands upperband, middleband, lowerband = ta.BBANDS(self.close, timeperiod=self.tp, nbdevup=2, nbdevdn=2, matype=0) self.output = [upperband, middleband, lowerband] elif para is 'DEMA': #Double Exponential Moving Average self.output = ta.DEMA(self.close, timeperiod=self.tp) elif para is 'EMA': #Exponential Moving Average self.output = ta.EMA(self.close, timeperiod=self.tp) elif para is 'HT_TRENDLINE': #Hilbert Transform - Instantaneous Trendline self.output = ta.HT_TRENDLINE(self.close) elif para is 'KAMA': #Kaufman Adaptive Moving Average self.output = ta.KAMA(self.close, timeperiod=self.tp) elif para is 'MA': #Moving average self.output = ta.MA(self.close, timeperiod=self.tp, matype=0) elif para is 'MAMA': #MESA Adaptive Moving Average mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0) elif para is 'MAVP': #Moving average with variable period self.output = ta.MAVP(self.close, periods=10, minperiod=self.tp, maxperiod=self.tp1, matype=0) elif para is 'MIDPOINT': #MidPoint over period self.output = ta.MIDPOINT(self.close, timeperiod=self.tp) elif para is 'MIDPRICE': #Midpoint Price over period self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp) elif para is 'SAR': #Parabolic SAR self.output = ta.SAR(self.high, self.low, acceleration=0, maximum=0) elif para is 'SAREXT': #Parabolic SAR - Extended self.output = ta.SAREXT(self.high, self.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) elif para is 'SMA': #Simple Moving Average self.output = ta.SMA(self.close, timeperiod=self.tp) elif para is 'T3': #Triple Exponential Moving Average (T3) self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0) elif para is 'TEMA': #Triple Exponential Moving Average self.output = ta.TEMA(self.close, timeperiod=self.tp) elif para is 'TRIMA': #Triangular Moving Average self.output = ta.TRIMA(self.close, timeperiod=self.tp) elif para is 'WMA': #Weighted Moving Average self.output = ta.WMA(self.close, timeperiod=self.tp) #Momentum Indicators elif para is 'ADX': #Average Directional Movement Index self.output = ta.ADX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'ADXR': #Average Directional Movement Index Rating self.output = ta.ADXR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'APO': #Absolute Price Oscillator self.output = ta.APO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'AROON': #Aroon aroondown, aroonup = ta.AROON(self.high, self.low, timeperiod=self.tp) self.output = [aroondown, aroonup] elif para is 'AROONOSC': #Aroon Oscillator self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp) elif para is 'BOP': #Balance Of Power self.output = ta.BOP(self.op, self.high, self.low, self.close) elif para is 'CCI': #Commodity Channel Index self.output = ta.CCI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'CMO': #Chande Momentum Oscillator self.output = ta.CMO(self.close, timeperiod=self.tp) elif para is 'DX': #Directional Movement Index self.output = ta.DX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MACD': #Moving Average Convergence/Divergence macd, macdsignal, macdhist = ta.MACD(self.close, fastperiod=12, slowperiod=26, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MACDEXT': #MACD with controllable MA type macd, macdsignal, macdhist = ta.MACDEXT(self.close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) self.output = [macd, macdsignal, macdhist] elif para is 'MACDFIX': #Moving Average Convergence/Divergence Fix 12/26 macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MFI': #Money Flow Index self.output = ta.MFI(self.high, self.low, self.close, self.volume, timeperiod=self.tp) elif para is 'MINUS_DI': #Minus Directional Indicator self.output = ta.MINUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MINUS_DM': #Minus Directional Movement self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'MOM': #Momentum self.output = ta.MOM(self.close, timeperiod=10) elif para is 'PLUS_DI': #Plus Directional Indicator self.output = ta.PLUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'PLUS_DM': #Plus Directional Movement self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'PPO': #Percentage Price Oscillator self.output = ta.PPO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'ROC': #Rate of change : ((price/prevPrice)-1)*100 self.output = ta.ROC(self.close, timeperiod=10) elif para is 'ROCP': #Rate of change Percentage: (price-prevPrice)/prevPrice self.output = ta.ROCP(self.close, timeperiod=10) elif para is 'ROCR': #Rate of change ratio: (price/prevPrice) self.output = ta.ROCR(self.close, timeperiod=10) elif para is 'ROCR100': #Rate of change ratio 100 scale: (price/prevPrice)*100 self.output = ta.ROCR100(self.close, timeperiod=10) elif para is 'RSI': #Relative Strength Index self.output = ta.RSI(self.close, timeperiod=self.tp) elif para is 'STOCH': #Stochastic slowk, slowd = ta.STOCH(self.high, self.low, self.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) self.output = [slowk, slowd] elif para is 'STOCHF': #Stochastic Fast fastk, fastd = ta.STOCHF(self.high, self.low, self.close, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'STOCHRSI': #Stochastic Relative Strength Index fastk, fastd = ta.STOCHRSI(self.close, timeperiod=self.tp, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'TRIX': #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA self.output = ta.TRIX(self.close, timeperiod=self.tp) elif para is 'ULTOSC': #Ultimate Oscillator self.output = ta.ULTOSC(self.high, self.low, self.close, timeperiod1=self.tp, timeperiod2=self.tp1, timeperiod3=self.tp2) elif para is 'WILLR': #Williams' %R self.output = ta.WILLR(self.high, self.low, self.close, timeperiod=self.tp) # Volume Indicators : # elif para is 'AD': #Chaikin A/D Line self.output = ta.AD(self.high, self.low, self.close, self.volume) elif para is 'ADOSC': #Chaikin A/D Oscillator self.output = ta.ADOSC(self.high, self.low, self.close, self.volume, fastperiod=3, slowperiod=10) elif para is 'OBV': #On Balance Volume self.output = ta.OBV(self.close, self.volume) # Volatility Indicators: # elif para is 'ATR': #Average True Range self.output = ta.ATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'NATR': #Normalized Average True Range self.output = ta.NATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'TRANGE': #True Range self.output = ta.TRANGE(self.high, self.low, self.close) #Price Transform : # elif para is 'AVGPRICE': #Average Price self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close) elif para is 'MEDPRICE': #Median Price self.output = ta.MEDPRICE(self.high, self.low) elif para is 'TYPPRICE': #Typical Price self.output = ta.TYPPRICE(self.high, self.low, self.close) elif para is 'WCLPRICE': #Weighted Close Price self.output = ta.WCLPRICE(self.high, self.low, self.close) #Cycle Indicators : # elif para is 'HT_DCPERIOD': #Hilbert Transform - Dominant Cycle Period self.output = ta.HT_DCPERIOD(self.close) elif para is 'HT_DCPHASE': #Hilbert Transform - Dominant Cycle Phase self.output = ta.HT_DCPHASE(self.close) elif para is 'HT_PHASOR': #Hilbert Transform - Phasor Components inphase, quadrature = ta.HT_PHASOR(self.close) self.output = [inphase, quadrature] elif para is 'HT_SINE': #Hilbert Transform - SineWave #2 sine, leadsine = ta.HT_SINE(self.close) self.output = [sine, leadsine] elif para is 'HT_TRENDMODE': #Hilbert Transform - Trend vs Cycle Mode self.integer = ta.HT_TRENDMODE(self.close) #Pattern Recognition : # elif para is 'CDL2CROWS': #Two Crows self.integer = ta.CDL2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3BLACKCROWS': #Three Black Crows self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3INSIDE': #Three Inside Up/Down self.integer = ta.CDL3INSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3LINESTRIKE': #Three-Line Strike self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low, self.close) elif para is 'CDL3OUTSIDE': #Three Outside Up/Down self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3STARSINSOUTH': #Three Stars In The South self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low, self.close) elif para is 'CDL3WHITESOLDIERS': #Three Advancing White Soldiers self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low, self.close) elif para is 'CDLABANDONEDBABY': #Abandoned Baby self.integer = ta.CDLABANDONEDBABY(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLBELTHOLD': #Belt-hold self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low, self.close) elif para is 'CDLBREAKAWAY': #Breakaway self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low, self.close) elif para is 'CDLCLOSINGMARUBOZU': #Closing Marubozu self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLCONCEALBABYSWALL': #Concealing Baby Swallow self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low, self.close) elif para is 'CDLCOUNTERATTACK': #Counterattack self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low, self.close) elif para is 'CDLDARKCLOUDCOVER': #Dark Cloud Cover self.integer = ta.CDLDARKCLOUDCOVER(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLDOJI': #Doji self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLDOJISTAR': #Doji Star self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLDRAGONFLYDOJI': #Dragonfly Doji self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLENGULFING': #Engulfing Pattern self.integer = ta.CDLENGULFING(self.op, self.high, self.low, self.close) elif para is 'CDLEVENINGDOJISTAR': #Evening Doji Star self.integer = ta.CDLEVENINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLEVENINGSTAR': #Evening Star self.integer = ta.CDLEVENINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLGAPSIDESIDEWHITE': #Up/Down-gap side-by-side white lines self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low, self.close) elif para is 'CDLGRAVESTONEDOJI': #Gravestone Doji self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLHAMMER': #Hammer self.integer = ta.CDLHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLHANGINGMAN': #Hanging Man self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMI': #Harami Pattern self.integer = ta.CDLHARAMI(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMICROSS': #Harami Cross Pattern self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low, self.close) elif para is 'CDLHIGHWAVE': #High-Wave Candle self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKE': #Hikkake Pattern self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKEMOD': #Modified Hikkake Pattern self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low, self.close) elif para is 'CDLHOMINGPIGEON': #Homing Pigeon self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low, self.close) elif para is 'CDLIDENTICAL3CROWS': #Identical Three Crows self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLINNECK': #In-Neck Pattern self.integer = ta.CDLINNECK(self.op, self.high, self.low, self.close) elif para is 'CDLINVERTEDHAMMER': #Inverted Hammer self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLKICKING': #Kicking self.integer = ta.CDLKICKING(self.op, self.high, self.low, self.close) elif para is 'CDLKICKINGBYLENGTH': #Kicking - bull/bear determined by the longer marubozu self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low, self.close) elif para is 'CDLLADDERBOTTOM': #Ladder Bottom self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLEGGEDDOJI': #Long Legged Doji self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLINE': #Long Line Candle self.integer = ta.CDLLONGLINE(self.op, self.high, self.low, self.close) elif para is 'CDLMARUBOZU': #Marubozu self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLMATCHINGLOW': #Matching Low self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low, self.close) elif para is 'CDLMATHOLD': #Mat Hold self.integer = ta.CDLMATHOLD(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGDOJISTAR': #Morning Doji Star self.integer = ta.CDLMORNINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGSTAR': #Morning Star self.integer = ta.CDLMORNINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLONNECK': #On-Neck Pattern self.integer = ta.CDLONNECK(self.op, self.high, self.low, self.close) elif para is 'CDLPIERCING': #Piercing Pattern self.integer = ta.CDLPIERCING(self.op, self.high, self.low, self.close) elif para is 'CDLRICKSHAWMAN': #Rickshaw Man self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low, self.close) elif para is 'CDLRISEFALL3METHODS': #Rising/Falling Three Methods self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low, self.close) elif para is 'CDLSEPARATINGLINES': #Separating Lines self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low, self.close) elif para is 'CDLSHOOTINGSTAR': #Shooting Star self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low, self.close) elif para is 'CDLSHORTLINE': #Short Line Candle self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low, self.close) elif para is 'CDLSPINNINGTOP': #Spinning Top self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low, self.close) elif para is 'CDLSTALLEDPATTERN': #Stalled Pattern self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low, self.close) elif para is 'CDLSTICKSANDWICH': #Stick Sandwich self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low, self.close) elif para is 'CDLTAKURI': #Takuri (Dragonfly Doji with very long lower shadow) self.integer = ta.CDLTAKURI(self.op, self.high, self.low, self.close) elif para is 'CDLTASUKIGAP': #Tasuki Gap self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low, self.close) elif para is 'CDLTHRUSTING': #Thrusting Pattern self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low, self.close) elif para is 'CDLTRISTAR': #Tristar Pattern self.integer = ta.CDLTRISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLUNIQUE3RIVER': #Unique 3 River self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low, self.close) elif para is 'CDLUPSIDEGAP2CROWS': #Upside Gap Two Crows self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLXSIDEGAP3METHODS': #Upside/Downside Gap Three Methods self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low, self.close) #Statistic Functions : # elif para is 'BETA': #Beta self.output = ta.BETA(self.high, self.low, timeperiod=5) elif para is 'CORREL': #Pearson's Correlation Coefficient (r) self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp) elif para is 'LINEARREG': #Linear Regression self.output = ta.LINEARREG(self.close, timeperiod=self.tp) elif para is 'LINEARREG_ANGLE': #Linear Regression Angle self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp) elif para is 'LINEARREG_INTERCEPT': #Linear Regression Intercept self.output = ta.LINEARREG_INTERCEPT(self.close, timeperiod=self.tp) elif para is 'LINEARREG_SLOPE': #Linear Regression Slope self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp) elif para is 'STDDEV': #Standard Deviation self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1) elif para is 'TSF': #Time Series Forecast self.output = ta.TSF(self.close, timeperiod=self.tp) elif para is 'VAR': #Variance self.output = ta.VAR(self.close, timeperiod=5, nbdev=1) else: print('You issued command:' + para)
def LINEARREG_INTERCEPT(Series, N=14): res = talib.LINEARREG_INTERCEPT(Series.values, N) return pd.Series(res, index=Series.index)
#6. #7. # # #...load data for entire time series lines = f.readlines() for i in range(time_total): list_xs.append(i) list_ys.append(float(lines[i])) list_linreg_15 = ta.LINEARREG_SLOPE(np.array(list_ys), 15) #print(ta.LINEARREG_SLOPE(np.array(ys),300)[300]) myslope = ta.LINEARREG_SLOPE(np.array(list_ys[start:end]), (end - start))[-1] myint = ta.LINEARREG_INTERCEPT(np.array(list_ys[start:end]), (end - start))[-1] #-------------------- # plt.plot(list_xs, list_ys) # plt.plot(list_xs, list_ys, 'b.') plt.plot(list_xs, list_linreg_15) plt.plot(list_xs, list_linreg_15, 'g^') abline(0, 0, 0, time_total) # abline(myslope, myint, start, end) plt.ylabel('price') plt.xlabel('time') plt.show()
def TALIB_LINEARREG_INTERCEPT(close, timeperiod=14): '''00350,2,1''' return talib.LINEARREG_INTERCEPT(close, timeperiod)
def LINEARREG_INTERCEPT(self, window=14): real = talib.LINEARREG_INTERCEPT(self.close, timeperiod=window) return real
# df['EMA']=pd.Series(pd.ewma(df['Adj Close'], span = n, min_periods = n - 1)) # Statistic Functions df['Beta'] = ta.BETA(np.array(df['High'].shift(1)), np.array(df['Low'].shift(1)), timeperiod=n) df['CORREL'] = ta.CORREL(np.array(df['High'].shift(1)), np.array(df['Low'].shift(1)), timeperiod=n) df['LINEARREG'] = ta.LINEARREG(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['LINEARREG_ANGLE'] = ta.LINEARREG_ANGLE(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['LINEARREG_INTERCEPT'] = ta.LINEARREG_INTERCEPT(np.array( df['Adj Close'].shift(1)), timeperiod=n) df['LINEARREG_SLOPE'] = ta.LINEARREG_SLOPE(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['STDDEV'] = ta.STDDEV(np.array(df['Adj Close'].shift(1)), timeperiod=n, nbdev=1) df['Time Series Forecast'] = ta.TSF(np.array(df['Adj Close'].shift(1)), timeperiod=n) df['VAR'] = ta.VAR(np.array(df['Adj Close'].shift(1)), timeperiod=n, nbdev=1) # Overlap Studies Functions df['upperband'], df['middleband'], df['lowerband'] = ta.BBANDS(np.array( df['Adj Close'].shift(1)), timeperiod=n, nbdevup=2,
CDLUNIQUE3RIVER_real = talib.CDLUNIQUE3RIVER( resorted['open'], resorted['high'], resorted['low'], resorted['close']) CDLUPSIDEGAP2CROWS_real = talib.CDLUPSIDEGAP2CROWS( resorted['open'], resorted['high'], resorted['low'], resorted['close']) CDLXSIDEGAP3METHODS_real = talib.CDLXSIDEGAP3METHODS( resorted['open'], resorted['high'], resorted['low'], resorted['close']) #stats beta_real = talib.BETA(resorted['high'], resorted['low']) correl_real = talib.CORREL(resorted['high'], resorted['low']) linearreg_real = talib.LINEARREG(resorted['close']) linearregang_real = talib.LINEARREG_ANGLE(resorted['close']) linearreginter_real = talib.LINEARREG_INTERCEPT( resorted['close']) linearregslope_real = talib.LINEARREG_SLOPE(resorted['close']) stdev_real = talib.STDDEV(resorted['close']) tsf_real = talib.TSF(resorted['close']) var_real = talib.VAR(resorted['close']) fileoutput = 'indicators-' + key1 + "-" + key2 + ".csv" try: os.remove(fileoutput) except: print('clean ' + fileoutput) with open(fileoutput, 'a', newline='') as csvfile: spamwriter = csv.writer(csvfile, delimiter=';', quotechar='|', quoting=csv.QUOTE_MINIMAL)
def LINEARREG_INTERCEPT(data, **kwargs): _check_talib_presence() prices = _extract_series(data) return talib.LINEARREG_INTERCEPT(prices, **kwargs)
def get_talib_stock_daily( stock_code, s, e, append_ori_close=False, norms=['volume', 'amount', 'ht_dcphase', 'obv', 'adosc', 'ad', 'cci']): """获取经过talib处理后的股票日线数据""" stock_data = QA.QA_fetch_stock_day_adv(stock_code, s, e) stock_df = stock_data.to_qfq().data if append_ori_close: stock_df['o_close'] = stock_data.data['close'] # stock_df['high_qfq'] = stock_data.to_qfq().data['high'] # stock_df['low_hfq'] = stock_data.to_hfq().data['low'] close = np.array(stock_df['close']) high = np.array(stock_df['high']) low = np.array(stock_df['low']) _open = np.array(stock_df['open']) _volume = np.array(stock_df['volume']) stock_df['dema'] = talib.DEMA(close) stock_df['ema'] = talib.EMA(close) stock_df['ht_tradeline'] = talib.HT_TRENDLINE(close) stock_df['kama'] = talib.KAMA(close) stock_df['ma'] = talib.MA(close) stock_df['mama'], stock_df['fama'] = talib.MAMA(close) # MAVP stock_df['midpoint'] = talib.MIDPOINT(close) stock_df['midprice'] = talib.MIDPRICE(high, low) stock_df['sar'] = talib.SAR(high, low) stock_df['sarext'] = talib.SAREXT(high, low) stock_df['sma'] = talib.SMA(close) stock_df['t3'] = talib.T3(close) stock_df['tema'] = talib.TEMA(close) stock_df['trima'] = talib.TRIMA(close) stock_df['wma'] = talib.WMA(close) stock_df['adx'] = talib.ADX(high, low, close) stock_df['adxr'] = talib.ADXR(high, low, close) stock_df['apo'] = talib.APO(close) stock_df['aroondown'], stock_df['aroonup'] = talib.AROON(high, low) stock_df['aroonosc'] = talib.AROONOSC(high, low) stock_df['bop'] = talib.BOP(_open, high, low, close) stock_df['cci'] = talib.CCI(high, low, close) stock_df['cmo'] = talib.CMO(close) stock_df['dx'] = talib.DX(high, low, close) # MACD stock_df['macd'], stock_df['macdsignal'], stock_df[ 'macdhist'] = talib.MACDEXT(close) # MACDFIX stock_df['mfi'] = talib.MFI(high, low, close, _volume) stock_df['minus_di'] = talib.MINUS_DI(high, low, close) stock_df['minus_dm'] = talib.MINUS_DM(high, low) stock_df['mom'] = talib.MOM(close) stock_df['plus_di'] = talib.PLUS_DI(high, low, close) stock_df['plus_dm'] = talib.PLUS_DM(high, low) stock_df['ppo'] = talib.PPO(close) stock_df['roc'] = talib.ROC(close) stock_df['rocp'] = talib.ROCP(close) stock_df['rocr'] = talib.ROCR(close) stock_df['rocr100'] = talib.ROCR100(close) stock_df['rsi'] = talib.RSI(close) stock_df['slowk'], stock_df['slowd'] = talib.STOCH(high, low, close) stock_df['fastk'], stock_df['fastd'] = talib.STOCHF(high, low, close) # STOCHRSI - Stochastic Relative Strength Index stock_df['trix'] = talib.TRIX(close) stock_df['ultosc'] = talib.ULTOSC(high, low, close) stock_df['willr'] = talib.WILLR(high, low, close) stock_df['ad'] = talib.AD(high, low, close, _volume) stock_df['adosc'] = talib.ADOSC(high, low, close, _volume) stock_df['obv'] = talib.OBV(close, _volume) stock_df['ht_dcperiod'] = talib.HT_DCPERIOD(close) stock_df['ht_dcphase'] = talib.HT_DCPHASE(close) stock_df['inphase'], stock_df['quadrature'] = talib.HT_PHASOR(close) stock_df['sine'], stock_df['leadsine'] = talib.HT_PHASOR(close) stock_df['ht_trendmode'] = talib.HT_TRENDMODE(close) stock_df['avgprice'] = talib.AVGPRICE(_open, high, low, close) stock_df['medprice'] = talib.MEDPRICE(high, low) stock_df['typprice'] = talib.TYPPRICE(high, low, close) stock_df['wclprice'] = talib.WCLPRICE(high, low, close) stock_df['atr'] = talib.ATR(high, low, close) stock_df['natr'] = talib.NATR(high, low, close) stock_df['trange'] = talib.TRANGE(high, low, close) stock_df['beta'] = talib.BETA(high, low) stock_df['correl'] = talib.CORREL(high, low) stock_df['linearreg'] = talib.LINEARREG(close) stock_df['linearreg_angle'] = talib.LINEARREG_ANGLE(close) stock_df['linearreg_intercept'] = talib.LINEARREG_INTERCEPT(close) stock_df['linearreg_slope'] = talib.LINEARREG_SLOPE(close) stock_df['stddev'] = talib.STDDEV(close) stock_df['tsf'] = talib.TSF(close) stock_df['var'] = talib.VAR(close) stock_df = stock_df.reset_index().set_index('date') if norms: x = stock_df[norms].values # returns a numpy array x_scaled = MinMaxScaler().fit_transform(x) stock_df = stock_df.drop(columns=norms).join( pd.DataFrame(x_scaled, columns=norms, index=stock_df.index)) # stock_df = stock_df.drop(columns=['code', 'open', 'high', 'low']) stock_df = stock_df.dropna() stock_df = stock_df.drop(columns=['code']) return stock_df
def handle_statistic_functions(args, axes, i, klines_df, close_times, display_count): # talib if args.BETA: name = 'BETA' real = talib.BETA(klines_df["high"], klines_df["low"], timeperiod=5) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.CORREL: name = 'CORREL' real = talib.CORREL(klines_df["high"], klines_df["low"], timeperiod=30) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.LINEARREG: name = 'LINEARREG' real = talib.LINEARREG(klines_df["close"], timeperiod=14) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.LINEARREG_ANGLE: name = 'LINEARREG_ANGLE' real = talib.LINEARREG_ANGLE(klines_df["close"], timeperiod=14) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.LINEARREG_INTERCEPT: name = 'LINEARREG_INTERCEPT' real = talib.LINEARREG_INTERCEPT(klines_df["close"], timeperiod=14) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.LINEARREG_SLOPE: name = 'LINEARREG_SLOPE' real = talib.LINEARREG_SLOPE(klines_df["close"], timeperiod=14) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.STDDEV: name = 'STDDEV' real = talib.STDDEV(klines_df["close"], timeperiod=5, nbdev=1) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.VAR: name = 'VAR' real = talib.VAR(klines_df["close"], timeperiod=5, nbdev=1) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name)
def LINEARREG_INTERCEPT(raw_df, timeperiod=14): # Linear Regression Intercept # extract necessary data from raw dataframe (close) return ta.LINEARREG_INTERCEPT(raw_df.Close.values, timeperiod)
async def indicators(exchange: str, symbol: str, interval: str = '30m', limit: int = 100): exchange = getattr(ccxt, exchange)() kline = exchange.fetch_ohlcv(symbol, interval, limit=int(limit)) df = pd.DataFrame( np.array(kline), columns=['open_time', 'open', 'high', 'low', 'close', 'volume'], dtype='float64') op = df['open'] hi = df['high'] lo = df['low'] cl = df['close'] vl = df['volume'] adx = talib.ADX(hi.values, lo.values, cl.values, timeperiod=14) rsi = talib.RSI(cl.values, timeperiod=14) plus_di = talib.PLUS_DI(hi.values, lo.values, cl.values, timeperiod=14) minus_di = talib.MINUS_DI(hi.values, lo.values, cl.values, timeperiod=14) sma = talib.SMA(cl.values, timeperiod=30) sma_5 = talib.SMA(cl.values, timeperiod=5) sma_10 = talib.SMA(cl.values, timeperiod=10) sma_dir = convert_number(round(sma[-1], 8) - round(sma_10[-1], 8)) macd, macdsignal, macdhist = talib.MACD(cl.values, fastperiod=12, slowperiod=26, signalperiod=14) macd = convert_number(macd[-1]) macdsignal = convert_number(macdsignal[-1]) ma_50 = convert_number(talib.MA(cl.values, timeperiod=50, matype=0)[-1]) ma_100 = convert_number(talib.MA(cl.values, timeperiod=100, matype=0)[-1]) obv = talib.OBV(cl.values, vl.values) rsi_obv = convert_number(talib.RSI(obv, timeperiod=14)[-1]) linear_regression = talib.LINEARREG(cl.values, timeperiod=14)[-1] linear_angle = convert_number( talib.LINEARREG_ANGLE(cl.values, timeperiod=14)[-1]) linear_intercept = convert_number( talib.LINEARREG_INTERCEPT(cl.values, timeperiod=14)[-1]) linear_slope = convert_number( talib.LINEARREG_SLOPE(cl.values, timeperiod=14)[-1]) return { "adx": adx[-1], "rsi": rsi[-1], "plus_di": plus_di[-1], "minus_di": minus_di[-1], "sma": round(sma[-1], 8), "sma_10": round(sma_10[-1], 8), "sma_5": round(sma_5[-1], 8), "sma_dir": sma_dir, "macd": macd, "macdsignal": macdsignal, "ma_50": ma_50, "ma_100": ma_100, "rsi_obv": rsi_obv, "linear_regression": linear_regression, "linear_angle": linear_angle, "linear_intercept": linear_intercept, "linear_slope": linear_slope }
def add_ta_features(df, ta_settings): """Add technial analysis features from typical financial dataset that typically include columns such as "open", "high", "low", "price" and "volume". http://mrjbq7.github.io/ta-lib/ Args: df(pandas.DataFrame): original DataFrame. ta_settings(dict): configuration. Returns: pandas.DataFrame: DataFrame with new features included. """ open = df['open'] high = df['high'] low = df['low'] close = df['price'] volume = df['volume'] if ta_settings['overlap']: df['ta_overlap_bbands_upper'], df['ta_overlap_bbands_middle'], df[ 'ta_overlap_bbands_lower'] = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) df['ta_overlap_dema'] = ta.DEMA( close, timeperiod=15) # NOTE: Changed to avoid a lot of Nan values df['ta_overlap_ema'] = ta.EMA(close, timeperiod=30) df['ta_overlap_kama'] = ta.KAMA(close, timeperiod=30) df['ta_overlap_ma'] = ta.MA(close, timeperiod=30, matype=0) df['ta_overlap_mama_mama'], df['ta_overlap_mama_fama'] = ta.MAMA(close) period = np.random.randint(10, 20, size=len(close)).astype(float) df['ta_overlap_mavp'] = ta.MAVP(close, period, minperiod=2, maxperiod=30, matype=0) df['ta_overlap_midpoint'] = ta.MIDPOINT(close, timeperiod=14) df['ta_overlap_midprice'] = ta.MIDPRICE(high, low, timeperiod=14) df['ta_overlap_sar'] = ta.SAR(high, low, acceleration=0, maximum=0) df['ta_overlap_sarext'] = ta.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) df['ta_overlap_sma'] = ta.SMA(close, timeperiod=30) df['ta_overlap_t3'] = ta.T3(close, timeperiod=5, vfactor=0) df['ta_overlap_tema'] = ta.TEMA( close, timeperiod=12) # NOTE: Changed to avoid a lot of Nan values df['ta_overlap_trima'] = ta.TRIMA(close, timeperiod=30) df['ta_overlap_wma'] = ta.WMA(close, timeperiod=30) # NOTE: Commented to avoid a lot of Nan values # df['ta_overlap_ht_trendline'] = ta.HT_TRENDLINE(close) if ta_settings['momentum']: df['ta_momentum_adx'] = ta.ADX(high, low, close, timeperiod=14) df['ta_momentum_adxr'] = ta.ADXR(high, low, close, timeperiod=14) df['ta_momentum_apo'] = ta.APO(close, fastperiod=12, slowperiod=26, matype=0) df['ta_momentum_aroondown'], df['ta_momentum_aroonup'] = ta.AROON( high, low, timeperiod=14) df['ta_momentum_aroonosc'] = ta.AROONOSC(high, low, timeperiod=14) df['ta_momentum_bop'] = ta.BOP(open, high, low, close) df['ta_momentum_cci'] = ta.CCI(high, low, close, timeperiod=14) df['ta_momentum_cmo'] = ta.CMO(close, timeperiod=14) df['ta_momentum_dx'] = ta.DX(high, low, close, timeperiod=14) df['ta_momentum_macd_macd'], df['ta_momentum_macd_signal'], df[ 'ta_momentum_macd_hist'] = ta.MACD(close, fastperiod=12, slowperiod=26, signalperiod=9) df['ta_momentum_macdext_macd'], df['ta_momentum_macdext_signal'], df[ 'ta_momentum_macdext_hist'] = ta.MACDEXT(close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) df['ta_momentum_macdfix_macd'], df['ta_momentum_macdfix_signal'], df[ 'ta_momentum_macdfix_hist'] = ta.MACDFIX(close, signalperiod=9) df['ta_momentum_mfi'] = ta.MFI(high, low, close, volume, timeperiod=14) df['ta_momentum_minus_di'] = ta.MINUS_DI(high, low, close, timeperiod=14) df['ta_momentum_minus_dm'] = ta.MINUS_DM(high, low, timeperiod=14) df['ta_momentum_mom'] = ta.MOM(close, timeperiod=10) df['ta_momentum_plus_di'] = ta.PLUS_DI(high, low, close, timeperiod=14) df['ta_momentum_plus_dm'] = ta.PLUS_DM(high, low, timeperiod=14) df['ta_momentum_ppo'] = ta.PPO(close, fastperiod=12, slowperiod=26, matype=0) df['ta_momentum_roc'] = ta.ROC(close, timeperiod=10) df['ta_momentum_rocp'] = ta.ROCP(close, timeperiod=10) df['ta_momentum_rocr'] = ta.ROCR(close, timeperiod=10) df['ta_momentum_rocr100'] = ta.ROCR100(close, timeperiod=10) df['ta_momentum_rsi'] = ta.RSI(close, timeperiod=14) df['ta_momentum_slowk'], df['ta_momentum_slowd'] = ta.STOCH( high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHF( high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0) df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHRSI( close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) df['ta_momentum_trix'] = ta.TRIX( close, timeperiod=12) # NOTE: Changed to avoid a lot of Nan values df['ta_momentum_ultosc'] = ta.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) df['ta_momentum_willr'] = ta.WILLR(high, low, close, timeperiod=14) if ta_settings['volume']: df['ta_volume_ad'] = ta.AD(high, low, close, volume) df['ta_volume_adosc'] = ta.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) df['ta_volume_obv'] = ta.OBV(close, volume) if ta_settings['volatility']: df['ta_volatility_atr'] = ta.ATR(high, low, close, timeperiod=14) df['ta_volatility_natr'] = ta.NATR(high, low, close, timeperiod=14) df['ta_volatility_trange'] = ta.TRANGE(high, low, close) if ta_settings['price']: df['ta_price_avgprice'] = ta.AVGPRICE(open, high, low, close) df['ta_price_medprice'] = ta.MEDPRICE(high, low) df['ta_price_typprice'] = ta.TYPPRICE(high, low, close) df['ta_price_wclprice'] = ta.WCLPRICE(high, low, close) if ta_settings['cycle']: df['ta_cycle_ht_dcperiod'] = ta.HT_DCPERIOD(close) df['ta_cycle_ht_phasor_inphase'], df[ 'ta_cycle_ht_phasor_quadrature'] = ta.HT_PHASOR(close) df['ta_cycle_ht_trendmode'] = ta.HT_TRENDMODE(close) # NOTE: Commented to avoid a lot of Nan values # df['ta_cycle_ht_dcphase'] = ta.HT_DCPHASE(close) # df['ta_cycle_ht_sine_sine'], df['ta_cycle_ht_sine_leadsine'] = ta.HT_SINE(close) if ta_settings['pattern']: df['ta_pattern_cdl2crows'] = ta.CDL2CROWS(open, high, low, close) df['ta_pattern_cdl3blackrows'] = ta.CDL3BLACKCROWS( open, high, low, close) df['ta_pattern_cdl3inside'] = ta.CDL3INSIDE(open, high, low, close) df['ta_pattern_cdl3linestrike'] = ta.CDL3LINESTRIKE( open, high, low, close) df['ta_pattern_cdl3outside'] = ta.CDL3OUTSIDE(open, high, low, close) df['ta_pattern_cdl3starsinsouth'] = ta.CDL3STARSINSOUTH( open, high, low, close) df['ta_pattern_cdl3whitesoldiers'] = ta.CDL3WHITESOLDIERS( open, high, low, close) df['ta_pattern_cdlabandonedbaby'] = ta.CDLABANDONEDBABY(open, high, low, close, penetration=0) df['ta_pattern_cdladvanceblock'] = ta.CDLADVANCEBLOCK( open, high, low, close) df['ta_pattern_cdlbelthold'] = ta.CDLBELTHOLD(open, high, low, close) df['ta_pattern_cdlbreakaway'] = ta.CDLBREAKAWAY(open, high, low, close) df['ta_pattern_cdlclosingmarubozu'] = ta.CDLCLOSINGMARUBOZU( open, high, low, close) df['ta_pattern_cdlconcealbabyswall'] = ta.CDLCONCEALBABYSWALL( open, high, low, close) df['ta_pattern_cdlcounterattack'] = ta.CDLCOUNTERATTACK( open, high, low, close) df['ta_pattern_cdldarkcloudcover'] = ta.CDLDARKCLOUDCOVER( open, high, low, close, penetration=0) df['ta_pattern_cdldoji'] = ta.CDLDOJI(open, high, low, close) df['ta_pattern_cdldojistar'] = ta.CDLDOJISTAR(open, high, low, close) df['ta_pattern_cdldragonflydoji'] = ta.CDLDRAGONFLYDOJI( open, high, low, close) df['ta_pattern_cdlengulfing'] = ta.CDLENGULFING(open, high, low, close) df['ta_pattern_cdleveningdojistar'] = ta.CDLEVENINGDOJISTAR( open, high, low, close, penetration=0) df['ta_pattern_cdleveningstar'] = ta.CDLEVENINGSTAR(open, high, low, close, penetration=0) df['ta_pattern_cdlgapsidesidewhite'] = ta.CDLGAPSIDESIDEWHITE( open, high, low, close) df['ta_pattern_cdlgravestonedoji'] = ta.CDLGRAVESTONEDOJI( open, high, low, close) df['ta_pattern_cdlhammer'] = ta.CDLHAMMER(open, high, low, close) df['ta_pattern_cdlhangingman'] = ta.CDLHANGINGMAN( open, high, low, close) df['ta_pattern_cdlharami'] = ta.CDLHARAMI(open, high, low, close) df['ta_pattern_cdlharamicross'] = ta.CDLHARAMICROSS( open, high, low, close) df['ta_pattern_cdlhighwave'] = ta.CDLHIGHWAVE(open, high, low, close) df['ta_pattern_cdlhikkake'] = ta.CDLHIKKAKE(open, high, low, close) df['ta_pattern_cdlhikkakemod'] = ta.CDLHIKKAKEMOD( open, high, low, close) df['ta_pattern_cdlhomingpigeon'] = ta.CDLHOMINGPIGEON( open, high, low, close) df['ta_pattern_cdlidentical3crows'] = ta.CDLIDENTICAL3CROWS( open, high, low, close) df['ta_pattern_cdlinneck'] = ta.CDLINNECK(open, high, low, close) df['ta_pattern_cdlinvertedhammer'] = ta.CDLINVERTEDHAMMER( open, high, low, close) df['ta_pattern_cdlkicking'] = ta.CDLKICKING(open, high, low, close) df['ta_pattern_cdlkickingbylength'] = ta.CDLKICKINGBYLENGTH( open, high, low, close) df['ta_pattern_cdlladderbottom'] = ta.CDLLADDERBOTTOM( open, high, low, close) df['ta_pattern_cdllongleggeddoji'] = ta.CDLLONGLEGGEDDOJI( open, high, low, close) df['ta_pattern_cdllongline'] = ta.CDLLONGLINE(open, high, low, close) df['ta_pattern_cdlmarubozu'] = ta.CDLMARUBOZU(open, high, low, close) df['ta_pattern_cdlmatchinglow'] = ta.CDLMATCHINGLOW( open, high, low, close) df['ta_pattern_cdlmathold'] = ta.CDLMATHOLD(open, high, low, close, penetration=0) df['ta_pattern_cdlmorningdojistar'] = ta.CDLMORNINGDOJISTAR( open, high, low, close, penetration=0) df['ta_pattern_cdlmorningstar'] = ta.CDLMORNINGSTAR(open, high, low, close, penetration=0) df['ta_pattern_cdllonneck'] = ta.CDLONNECK(open, high, low, close) df['ta_pattern_cdlpiercing'] = ta.CDLPIERCING(open, high, low, close) df['ta_pattern_cdlrickshawman'] = ta.CDLRICKSHAWMAN( open, high, low, close) df['ta_pattern_cdlrisefall3methods'] = ta.CDLRISEFALL3METHODS( open, high, low, close) df['ta_pattern_cdlseparatinglines'] = ta.CDLSEPARATINGLINES( open, high, low, close) df['ta_pattern_cdlshootingstar'] = ta.CDLSHOOTINGSTAR( open, high, low, close) df['ta_pattern_cdlshortline'] = ta.CDLSHORTLINE(open, high, low, close) df['ta_pattern_cdlspinningtop'] = ta.CDLSPINNINGTOP( open, high, low, close) df['ta_pattern_cdlstalledpattern'] = ta.CDLSTALLEDPATTERN( open, high, low, close) df['ta_pattern_cdlsticksandwich'] = ta.CDLSTICKSANDWICH( open, high, low, close) df['ta_pattern_cdltakuri'] = ta.CDLTAKURI(open, high, low, close) df['ta_pattern_cdltasukigap'] = ta.CDLTASUKIGAP(open, high, low, close) df['ta_pattern_cdlthrusting'] = ta.CDLTHRUSTING(open, high, low, close) df['ta_pattern_cdltristar'] = ta.CDLTRISTAR(open, high, low, close) df['ta_pattern_cdlunique3river'] = ta.CDLUNIQUE3RIVER( open, high, low, close) df['ta_pattern_cdlupsidegap2crows'] = ta.CDLUPSIDEGAP2CROWS( open, high, low, close) df['ta_pattern_cdlxsidegap3methods'] = ta.CDLXSIDEGAP3METHODS( open, high, low, close) if ta_settings['statistic']: df['ta_statistic_beta'] = ta.BETA(high, low, timeperiod=5) df['ta_statistic_correl'] = ta.CORREL(high, low, timeperiod=30) df['ta_statistic_linearreg'] = ta.LINEARREG(close, timeperiod=14) df['ta_statistic_linearreg_angle'] = ta.LINEARREG_ANGLE(close, timeperiod=14) df['ta_statistic_linearreg_intercept'] = ta.LINEARREG_INTERCEPT( close, timeperiod=14) df['ta_statistic_linearreg_slope'] = ta.LINEARREG_SLOPE(close, timeperiod=14) df['ta_statistic_stddev'] = ta.STDDEV(close, timeperiod=5, nbdev=1) df['ta_statistic_tsf'] = ta.TSF(close, timeperiod=14) df['ta_statistic_var'] = ta.VAR(close, timeperiod=5, nbdev=1) if ta_settings['math_transforms']: df['ta_math_transforms_atan'] = ta.ATAN(close) df['ta_math_transforms_ceil'] = ta.CEIL(close) df['ta_math_transforms_cos'] = ta.COS(close) df['ta_math_transforms_floor'] = ta.FLOOR(close) df['ta_math_transforms_ln'] = ta.LN(close) df['ta_math_transforms_log10'] = ta.LOG10(close) df['ta_math_transforms_sin'] = ta.SIN(close) df['ta_math_transforms_sqrt'] = ta.SQRT(close) df['ta_math_transforms_tan'] = ta.TAN(close) if ta_settings['math_operators']: df['ta_math_operators_add'] = ta.ADD(high, low) df['ta_math_operators_div'] = ta.DIV(high, low) df['ta_math_operators_min'], df['ta_math_operators_max'] = ta.MINMAX( close, timeperiod=30) df['ta_math_operators_minidx'], df[ 'ta_math_operators_maxidx'] = ta.MINMAXINDEX(close, timeperiod=30) df['ta_math_operators_mult'] = ta.MULT(high, low) df['ta_math_operators_sub'] = ta.SUB(high, low) df['ta_math_operators_sum'] = ta.SUM(close, timeperiod=30) return df
def _extract_feature(candle, params, candle_type, target_dt): ''' 前に余分に必要なデータ量: {(stockf_fastk_period_l + stockf_fastk_period_l) * 最大分足 (min)} + window_size = (12 + 12) * 5 + 5 = 125 (min) ''' o = candle.open h = candle.high l = candle.low c = candle.close v = candle.volume # OHLCV features = pd.DataFrame() features['open'] = o features['high'] = h features['low'] = l features['close'] = c features['volume'] = v #################################### # # Momentum Indicator Functions # #################################### # ADX = SUM((+DI - (-DI)) / (+DI + (-DI)), N) / N # N — 計算期間 # SUM (..., N) — N期間の合計 # +DI — プラスの価格変動の値(positive directional index) # -DI — マイナスの価格変動の値(negative directional index) # rsi_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要 features['adx_s'] = ta.ADX(h, l, c, timeperiod=params['adx_timeperiod_s']) features['adx_m'] = ta.ADX(h, l, c, timeperiod=params['adx_timeperiod_m']) features['adx_l'] = ta.ADX(h, l, c, timeperiod=params['adx_timeperiod_l']) features['adxr_s'] = ta.ADXR(h, l, c, timeperiod=params['adxr_timeperiod_s']) features['adxr_m'] = ta.ADXR(h, l, c, timeperiod=params['adxr_timeperiod_m']) features['adxr_l'] = ta.ADXR(h, l, c, timeperiod=params['adxr_timeperiod_l']) # APO = Shorter Period EMA – Longer Period EMA features['apo_s'] = ta.APO(c, fastperiod=params['apo_fastperiod_s'], slowperiod=params['apo_slowperiod_s'], matype=ta.MA_Type.EMA) features['apo_m'] = ta.APO(c, fastperiod=params['apo_fastperiod_m'], slowperiod=params['apo_slowperiod_m'], matype=ta.MA_Type.EMA) # AroonUp = (N - 過去N日間の最高値からの経過期間) ÷ N × 100 # AroonDown = (N - 過去N日間の最安値からの経過期間) ÷ N × 100 # aroon_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要 #features['aroondown_s'], features['aroonup_s'] = ta.AROON(h, l, timeperiod=params['aroon_timeperiod_s']) #features['aroondown_m'], features['aroonup_m'] = ta.AROON(h, l, timeperiod=params['aroon_timeperiod_m']) #features['aroondown_l'], features['aroonup_l'] = ta.AROON(h, l, timeperiod=params['aroon_timeperiod_l']) # Aronnオシレーター = AroonUp - AroonDown # aroonosc_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要 features['aroonosc_s'] = ta.AROONOSC(h, l, timeperiod=params['aroonosc_timeperiod_s']) features['aroonosc_m'] = ta.AROONOSC(h, l, timeperiod=params['aroonosc_timeperiod_m']) features['aroonosc_l'] = ta.AROONOSC(h, l, timeperiod=params['aroonosc_timeperiod_l']) # BOP = (close - open) / (high - low) features['bop'] = ta.BOP(o, h, l, c) # CCI = (TP - MA) / (0.015 * MD) # TP: (高値+安値+終値) / 3 # MA: TPの移動平均 # MD: 平均偏差 = ((MA - TP1) + (MA - TP2) + ...) / N features['cci_s'] = ta.CCI(h, l, c, timeperiod=params['cci_timeperiod_s']) features['cci_m'] = ta.CCI(h, l, c, timeperiod=params['cci_timeperiod_m']) features['cci_l'] = ta.CCI(h, l, c, timeperiod=params['cci_timeperiod_l']) # CMO - Chande Momentum Oscillator #features['cmo_s'] = ta.CMO(c, timeperiod=params['cmo_timeperiod_s']) #features['cmo_m'] = ta.CMO(c, timeperiod=params['cmo_timeperiod_m']) #features['cmo_l'] = ta.CMO(c, timeperiod=params['cmo_timeperiod_l']) # DX - Directional Movement Index features['dx_s'] = ta.DX(h, l, c, timeperiod=params['dx_timeperiod_s']) features['dx_m'] = ta.DX(h, l, c, timeperiod=params['dx_timeperiod_m']) features['dx_l'] = ta.DX(h, l, c, timeperiod=params['dx_timeperiod_l']) # MACD=基準線-相対線 # 基準線(EMA):過去12日(週・月)間の終値指数平滑平均 # 相対線(EMA):過去26日(週・月)間の終値指数平滑平均 # https://www.sevendata.co.jp/shihyou/technical/macd.html # macd_slowperiod_m = 30 の場合30分足で((30 + macd_signalperiod_m) * 30)/ 60 = 16.5時間必要(macd_signalperiod_m=3の時) macd, macdsignal, macdhist = ta.MACDEXT(c, fastperiod=params['macd_fastperiod_s'], slowperiod=params['macd_slowperiod_s'], signalperiod=params['macd_signalperiod_s'], fastmatype=ta.MA_Type.EMA, slowmatype=ta.MA_Type.EMA, signalmatype=ta.MA_Type.EMA) change_macd = calc_change(macd, macdsignal) change_macd.index = macd.index features['macd_s'] = macd features['macdsignal_s'] = macdsignal features['macdhist_s'] = macdhist features['change_macd_s'] = change_macd macd, macdsignal, macdhist = ta.MACDEXT(c, fastperiod=params['macd_fastperiod_m'], slowperiod=params['macd_slowperiod_m'], signalperiod=params['macd_signalperiod_m'], fastmatype=ta.MA_Type.EMA, slowmatype=ta.MA_Type.EMA, signalmatype=ta.MA_Type.EMA) change_macd = calc_change(macd, macdsignal) change_macd.index = macd.index features['macd_m'] = macd features['macdsignal_m'] = macdsignal features['macdhist_m'] = macdhist features['change_macd_m'] = change_macd # MFI - Money Flow Index features['mfi_s'] = ta.MFI(h, l, c, v, timeperiod=params['mfi_timeperiod_s']) features['mfi_m'] = ta.MFI(h, l, c, v, timeperiod=params['mfi_timeperiod_m']) features['mfi_l'] = ta.MFI(h, l, c, v, timeperiod=params['mfi_timeperiod_l']) # MINUS_DI - Minus Directional Indicator features['minus_di_s'] = ta.MINUS_DI(h, l, c, timeperiod=params['minus_di_timeperiod_s']) features['minus_di_m'] = ta.MINUS_DI(h, l, c, timeperiod=params['minus_di_timeperiod_m']) features['minus_di_l'] = ta.MINUS_DI(h, l, c, timeperiod=params['minus_di_timeperiod_l']) # MINUS_DM - Minus Directional Movement features['minus_dm_s'] = ta.MINUS_DM(h, l, timeperiod=params['minus_dm_timeperiod_s']) features['minus_dm_m'] = ta.MINUS_DM(h, l, timeperiod=params['minus_dm_timeperiod_m']) features['minus_dm_l'] = ta.MINUS_DM(h, l, timeperiod=params['minus_dm_timeperiod_l']) # MOM - Momentum features['mom_s'] = ta.MOM(c, timeperiod=params['mom_timeperiod_s']) features['mom_m'] = ta.MOM(c, timeperiod=params['mom_timeperiod_m']) features['mom_l'] = ta.MOM(c, timeperiod=params['mom_timeperiod_l']) # PLUS_DI - Minus Directional Indicator features['plus_di_s'] = ta.PLUS_DI(h, l, c, timeperiod=params['plus_di_timeperiod_s']) features['plus_di_m'] = ta.PLUS_DI(h, l, c, timeperiod=params['plus_di_timeperiod_m']) features['plus_di_l'] = ta.PLUS_DI(h, l, c, timeperiod=params['plus_di_timeperiod_l']) # PLUS_DM - Minus Directional Movement features['plus_dm_s'] = ta.PLUS_DM(h, l, timeperiod=params['plus_dm_timeperiod_s']) features['plus_dm_m'] = ta.PLUS_DM(h, l, timeperiod=params['plus_dm_timeperiod_m']) features['plus_dm_l'] = ta.PLUS_DM(h, l, timeperiod=params['plus_dm_timeperiod_l']) # PPO - Percentage Price Oscillator #features['ppo_s'] = ta.PPO(c, fastperiod=params['ppo_fastperiod_s'], slowperiod=params['ppo_slowperiod_s'], matype=ta.MA_Type.EMA) #features['ppo_m'] = ta.PPO(c, fastperiod=params['ppo_fastperiod_m'], slowperiod=params['ppo_slowperiod_m'], matype=ta.MA_Type.EMA) # ROC - Rate of change : ((price/prevPrice)-1)*100 features['roc_s'] = ta.ROC(c, timeperiod=params['roc_timeperiod_s']) features['roc_m'] = ta.ROC(c, timeperiod=params['roc_timeperiod_m']) features['roc_l'] = ta.ROC(c, timeperiod=params['roc_timeperiod_l']) # ROCP = (price-prevPrice) / prevPrice # http://www.tadoc.org/indicator/ROCP.htm # rocp_timeperiod_l = 30 の場合、30分足で(30 * 30) / 60 = 15時間必要 rocp = ta.ROCP(c, timeperiod=params['rocp_timeperiod_s']) change_rocp = calc_change(rocp, pd.Series(np.zeros(len(candle)), index=candle.index)) change_rocp.index = rocp.index features['rocp_s'] = rocp features['change_rocp_s'] = change_rocp rocp = ta.ROCP(c, timeperiod=params['rocp_timeperiod_m']) change_rocp = calc_change(rocp, pd.Series(np.zeros(len(candle)), index=candle.index)) change_rocp.index = rocp.index features['rocp_m'] = rocp features['change_rocp_m'] = change_rocp rocp = ta.ROCP(c, timeperiod=params['rocp_timeperiod_l']) change_rocp = calc_change(rocp, pd.Series(np.zeros(len(candle)), index=candle.index)) change_rocp.index = rocp.index features['rocp_l'] = rocp features['change_rocp_l'] = change_rocp # ROCR - Rate of change ratio: (price/prevPrice) features['rocr_s'] = ta.ROCR(c, timeperiod=params['rocr_timeperiod_s']) features['rocr_m'] = ta.ROCR(c, timeperiod=params['rocr_timeperiod_m']) features['rocr_l'] = ta.ROCR(c, timeperiod=params['rocr_timeperiod_l']) # ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100 features['rocr100_s'] = ta.ROCR100(c, timeperiod=params['rocr100_timeperiod_s']) features['rocr100_m'] = ta.ROCR100(c, timeperiod=params['rocr100_timeperiod_m']) features['rocr100_l'] = ta.ROCR100(c, timeperiod=params['rocr100_timeperiod_l']) # RSI = (100 * a) / (a + b) (a: x日間の値上がり幅の合計, b: x日間の値下がり幅の合計) # https://www.sevendata.co.jp/shihyou/technical/rsi.html # rsi_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要 #features['rsi_s'] = ta.RSI(c, timeperiod=params['rsi_timeperiod_s']) #features['rsi_m'] = ta.RSI(c, timeperiod=params['rsi_timeperiod_m']) #features['rsi_l'] = ta.RSI(c, timeperiod=params['rsi_timeperiod_l']) # FASTK(KPeriod) = 100 * (Today's Close - LowestLow) / (HighestHigh - LowestLow) # FASTD(FastDperiod) = MA Smoothed FASTK over FastDperiod # http://www.tadoc.org/indicator/STOCHF.htm # stockf_fastk_period_l=30の場合30分足で、(((30 + 30) * 30) / 60(min)) = 30時間必要 (LowestLowが移動平均の30分余分に必要なので60period余分に計算する) fastk, fastd = ta.STOCHF(h, l, c, fastk_period=params['stockf_fastk_period_s'], fastd_period=params['stockf_fastd_period_s'], fastd_matype=ta.MA_Type.EMA) change_stockf = calc_change(fastk, fastd) change_stockf.index = fastk.index features['fastk_s'] = fastk features['fastd_s'] = fastd features['fast_change_s'] = change_stockf fastk, fastd = ta.STOCHF(h, l, c, fastk_period=params['stockf_fastk_period_m'], fastd_period=params['stockf_fastd_period_m'], fastd_matype=ta.MA_Type.EMA) change_stockf = calc_change(fastk, fastd) change_stockf.index = fastk.index features['fastk_m'] = fastk features['fastd_m'] = fastd features['fast_change_m'] = change_stockf fastk, fastd = ta.STOCHF(h, l, c, fastk_period=params['stockf_fastk_period_l'], fastd_period=params['stockf_fastk_period_l'], fastd_matype=ta.MA_Type.EMA) change_stockf = calc_change(fastk, fastd) change_stockf.index = fastk.index features['fastk_l'] = fastk features['fastd_l'] = fastd features['fast_change_l'] = change_stockf # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA features['trix_s'] = ta.TRIX(c, timeperiod=params['trix_timeperiod_s']) features['trix_m'] = ta.TRIX(c, timeperiod=params['trix_timeperiod_m']) features['trix_l'] = ta.TRIX(c, timeperiod=params['trix_timeperiod_l']) # ULTOSC - Ultimate Oscillator features['ultosc_s'] = ta.ULTOSC(h, l, c, timeperiod1=params['ultosc_timeperiod_s1'], timeperiod2=params['ultosc_timeperiod_s2'], timeperiod3=params['ultosc_timeperiod_s3']) # WILLR = (当日終値 - N日間の最高値) / (N日間の最高値 - N日間の最安値)× 100 # https://inet-sec.co.jp/study/technical-manual/williamsr/ # willr_timeperiod_l=30の場合30分足で、(30 * 30 / 60) = 15時間必要 features['willr_s'] = ta.WILLR(h, l, c, timeperiod=params['willr_timeperiod_s']) features['willr_m'] = ta.WILLR(h, l, c, timeperiod=params['willr_timeperiod_m']) features['willr_l'] = ta.WILLR(h, l, c, timeperiod=params['willr_timeperiod_l']) #################################### # # Volume Indicator Functions # #################################### # Volume Indicator Functions # slowperiod_adosc_s = 10の場合、30分足で(10 * 30) / 60 = 5時間必要 features['ad'] = ta.AD(h, l, c, v) features['adosc_s'] = ta.ADOSC(h, l, c, v, fastperiod=params['fastperiod_adosc_s'], slowperiod=params['slowperiod_adosc_s']) features['obv'] = ta.OBV(c, v) #################################### # # Volatility Indicator Functions # #################################### # ATR - Average True Range features['atr_s'] = ta.ATR(h, l, c, timeperiod=params['atr_timeperiod_s']) features['atr_m'] = ta.ATR(h, l, c, timeperiod=params['atr_timeperiod_m']) features['atr_l'] = ta.ATR(h, l, c, timeperiod=params['atr_timeperiod_l']) # NATR - Normalized Average True Range #features['natr_s'] = ta.NATR(h, l, c, timeperiod=params['natr_timeperiod_s']) #features['natr_m'] = ta.NATR(h, l, c, timeperiod=params['natr_timeperiod_m']) #features['natr_l'] = ta.NATR(h, l, c, timeperiod=params['natr_timeperiod_l']) # TRANGE - True Range features['trange'] = ta.TRANGE(h, l, c) #################################### # # Price Transform Functions # #################################### features['avgprice'] = ta.AVGPRICE(o, h, l, c) features['medprice'] = ta.MEDPRICE(h, l) #features['typprice'] = ta.TYPPRICE(h, l, c) #features['wclprice'] = ta.WCLPRICE(h, l, c) #################################### # # Cycle Indicator Functions # #################################### #features['ht_dcperiod'] = ta.HT_DCPERIOD(c) #features['ht_dcphase'] = ta.HT_DCPHASE(c) #features['inphase'], features['quadrature'] = ta.HT_PHASOR(c) #features['sine'], features['leadsine'] = ta.HT_SINE(c) features['integer'] = ta.HT_TRENDMODE(c) #################################### # # Statistic Functions # #################################### # BETA - Beta features['beta_s'] = ta.BETA(h, l, timeperiod=params['beta_timeperiod_s']) features['beta_m'] = ta.BETA(h, l, timeperiod=params['beta_timeperiod_m']) features['beta_l'] = ta.BETA(h, l, timeperiod=params['beta_timeperiod_l']) # CORREL - Pearson's Correlation Coefficient (r) #features['correl_s'] = ta.CORREL(h, l, timeperiod=params['correl_timeperiod_s']) #features['correl_m'] = ta.CORREL(h, l, timeperiod=params['correl_timeperiod_m']) #features['correl_l'] = ta.CORREL(h, l, timeperiod=params['correl_timeperiod_l']) # LINEARREG - Linear Regression #features['linearreg_s'] = ta.LINEARREG(c, timeperiod=params['linearreg_timeperiod_s']) #features['linearreg_m'] = ta.LINEARREG(c, timeperiod=params['linearreg_timeperiod_m']) #features['linearreg_l'] = ta.LINEARREG(c, timeperiod=params['linearreg_timeperiod_l']) # LINEARREG_ANGLE - Linear Regression Angle features['linearreg_angle_s'] = ta.LINEARREG_ANGLE(c, timeperiod=params['linearreg_angle_timeperiod_s']) features['linearreg_angle_m'] = ta.LINEARREG_ANGLE(c, timeperiod=params['linearreg_angle_timeperiod_m']) features['linearreg_angle_l'] = ta.LINEARREG_ANGLE(c, timeperiod=params['linearreg_angle_timeperiod_l']) # LINEARREG_INTERCEPT - Linear Regression Intercept features['linearreg_intercept_s'] = ta.LINEARREG_INTERCEPT(c, timeperiod=params['linearreg_intercept_timeperiod_s']) features['linearreg_intercept_m'] = ta.LINEARREG_INTERCEPT(c, timeperiod=params['linearreg_intercept_timeperiod_m']) features['linearreg_intercept_l'] = ta.LINEARREG_INTERCEPT(c, timeperiod=params['linearreg_intercept_timeperiod_l']) # LINEARREG_SLOPE - Linear Regression Slope features['linearreg_slope_s'] = ta.LINEARREG_SLOPE(c, timeperiod=params['linearreg_slope_timeperiod_s']) features['linearreg_slope_m'] = ta.LINEARREG_SLOPE(c, timeperiod=params['linearreg_slope_timeperiod_m']) features['linearreg_slope_l'] = ta.LINEARREG_SLOPE(c, timeperiod=params['linearreg_slope_timeperiod_l']) # STDDEV - Standard Deviation features['stddev_s'] = ta.STDDEV(c, timeperiod=params['stddev_timeperiod_s'], nbdev=1) features['stddev_m'] = ta.STDDEV(c, timeperiod=params['stddev_timeperiod_m'], nbdev=1) features['stddev_l'] = ta.STDDEV(c, timeperiod=params['stddev_timeperiod_l'], nbdev=1) # TSF - Time Series Forecast features['tsf_s'] = ta.TSF(c, timeperiod=params['tsf_timeperiod_s']) features['tsf_m'] = ta.TSF(c, timeperiod=params['tsf_timeperiod_m']) features['tsf_l'] = ta.TSF(c, timeperiod=params['tsf_timeperiod_l']) # VAR - Variance #features['var_s'] = ta.VAR(c, timeperiod=params['var_timeperiod_s'], nbdev=1) #features['var_m'] = ta.VAR(c, timeperiod=params['var_timeperiod_m'], nbdev=1) #features['var_l'] = ta.VAR(c, timeperiod=params['var_timeperiod_l'], nbdev=1) # ボリンジャーバンド # bbands_timeperiod_l = 30の場合、30分足で(30 * 30) / 60 = 15時間必要 bb_upper, bb_middle, bb_lower = ta.BBANDS(c, timeperiod=params['bbands_timeperiod_s'], nbdevup=params['bbands_nbdevup_s'], nbdevdn=params['bbands_nbdevdn_s'], matype=ta.MA_Type.EMA) bb_trend1 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend1[c > bb_upper] = 1 bb_trend1[c < bb_lower] = -1 bb_trend2 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend2[c > bb_middle] = 1 bb_trend2[c < bb_middle] = -1 features['bb_upper_s'] = bb_upper features['bb_middle_s'] = bb_middle features['bb_lower_s'] = bb_lower features['bb_trend1_s'] = bb_trend1 features['bb_trend2_s'] = bb_trend2 bb_upper, bb_middle, bb_lower = ta.BBANDS(c, timeperiod=params['bbands_timeperiod_m'], nbdevup=params['bbands_nbdevup_m'], nbdevdn=params['bbands_nbdevdn_m'], matype=ta.MA_Type.EMA) bb_trend1 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend1[c > bb_upper] = 1 bb_trend1[c < bb_lower] = -1 bb_trend2 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend2[c > bb_middle] = 1 bb_trend2[c < bb_middle] = -1 features['bb_upper_m'] = bb_upper features['bb_middle_m'] = bb_middle features['bb_lower_m'] = bb_lower features['bb_trend1_m'] = bb_trend1 features['bb_trend2_m'] = bb_trend2 bb_upper, bb_middle, bb_lower = ta.BBANDS(c, timeperiod=params['bbands_timeperiod_l'], nbdevup=params['bbands_nbdevup_l'], nbdevdn=params['bbands_nbdevdn_l'], matype=ta.MA_Type.EMA) bb_trend1 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend1[c > bb_upper] = 1 bb_trend1[c < bb_lower] = -1 bb_trend2 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend2[c > bb_middle] = 1 bb_trend2[c < bb_middle] = -1 features['bb_upper_l'] = bb_upper features['bb_middle_l'] = bb_middle features['bb_lower_l'] = bb_lower features['bb_trend1_l'] = bb_trend1 features['bb_trend2_l'] = bb_trend2 # ローソク足 features['CDL2CROWS'] = ta.CDL2CROWS(o, h, l, c) features['CDL3BLACKCROWS'] = ta.CDL3BLACKCROWS(o, h, l, c) features['CDL3INSIDE'] = ta.CDL3INSIDE(o, h, l, c) features['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(o, h, l, c) features['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(o, h, l, c) features['CDL3STARSINSOUTH'] = ta.CDL3STARSINSOUTH(o, h, l, c) features['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(o, h, l, c) features['CDLABANDONEDBABY'] = ta.CDLABANDONEDBABY(o, h, l, c, penetration=0) features['CDLADVANCEBLOCK'] = ta.CDLADVANCEBLOCK(o, h, l, c) features['CDLBELTHOLD'] = ta.CDLBELTHOLD(o, h, l, c) features['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(o, h, l, c) features['CDLCLOSINGMARUBOZU'] = ta.CDLCLOSINGMARUBOZU(o, h, l, c) features['CDLCONCEALBABYSWALL'] = ta.CDLCONCEALBABYSWALL(o, h, l, c) features['CDLCOUNTERATTACK'] = ta.CDLCOUNTERATTACK(o, h, l, c) features['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(o, h, l, c, penetration=0) #features['CDLDOJI'] = ta.CDLDOJI(o, h, l, c) features['CDLDOJISTAR'] = ta.CDLDOJISTAR(o, h, l, c) features['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(o, h, l, c) features['CDLENGULFING'] = ta.CDLENGULFING(o, h, l, c) features['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(o, h, l, c, penetration=0) features['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(o, h, l, c, penetration=0) #features['CDLGAPSIDESIDEWHITE'] = ta.CDLGAPSIDESIDEWHITE(o, h, l, c) features['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(o, h, l, c) features['CDLHAMMER'] = ta.CDLHAMMER(o, h, l, c) #features['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(o, h, l, c) features['CDLHARAMI'] = ta.CDLHARAMI(o, h, l, c) features['CDLHARAMICROSS'] = ta.CDLHARAMICROSS(o, h, l, c) features['CDLHIGHWAVE'] = ta.CDLHIGHWAVE(o, h, l, c) #features['CDLHIKKAKE'] = ta.CDLHIKKAKE(o, h, l, c) features['CDLHIKKAKEMOD'] = ta.CDLHIKKAKEMOD(o, h, l, c) features['CDLHOMINGPIGEON'] = ta.CDLHOMINGPIGEON(o, h, l, c) #features['CDLIDENTICAL3CROWS'] = ta.CDLIDENTICAL3CROWS(o, h, l, c) features['CDLINNECK'] = ta.CDLINNECK(o, h, l, c) #features['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(o, h, l, c) features['CDLKICKING'] = ta.CDLKICKING(o, h, l, c) features['CDLKICKINGBYLENGTH'] = ta.CDLKICKINGBYLENGTH(o, h, l, c) features['CDLLADDERBOTTOM'] = ta.CDLLADDERBOTTOM(o, h, l, c) #features['CDLLONGLEGGEDDOJI'] = ta.CDLLONGLEGGEDDOJI(o, h, l, c) features['CDLMARUBOZU'] = ta.CDLMARUBOZU(o, h, l, c) #features['CDLMATCHINGLOW'] = ta.CDLMATCHINGLOW(o, h, l, c) features['CDLMATHOLD'] = ta.CDLMATHOLD(o, h, l, c, penetration=0) features['CDLMORNINGDOJISTAR'] = ta.CDLMORNINGDOJISTAR(o, h, l, c, penetration=0) features['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(o, h, l, c, penetration=0) features['CDLONNECK'] = ta.CDLONNECK(o, h, l, c) features['CDLPIERCING'] = ta.CDLPIERCING(o, h, l, c) features['CDLRICKSHAWMAN'] = ta.CDLRICKSHAWMAN(o, h, l, c) features['CDLRISEFALL3METHODS'] = ta.CDLRISEFALL3METHODS(o, h, l, c) features['CDLSEPARATINGLINES'] = ta.CDLSEPARATINGLINES(o, h, l, c) #features['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(o, h, l, c) features['CDLSHORTLINE'] = ta.CDLSHORTLINE(o, h, l, c) #features['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(o, h, l, c) features['CDLSTALLEDPATTERN'] = ta.CDLSTALLEDPATTERN(o, h, l, c) features['CDLSTICKSANDWICH'] = ta.CDLSTICKSANDWICH(o, h, l, c) features['CDLTAKURI'] = ta.CDLTAKURI(o, h, l, c) features['CDLTASUKIGAP'] = ta.CDLTASUKIGAP(o, h, l, c) features['CDLTHRUSTING'] = ta.CDLTHRUSTING(o, h, l, c) features['CDLTRISTAR'] = ta.CDLTRISTAR(o, h, l, c) features['CDLUNIQUE3RIVER'] = ta.CDLUNIQUE3RIVER(o, h, l, c) features['CDLUPSIDEGAP2CROWS'] = ta.CDLUPSIDEGAP2CROWS(o, h, l, c) features['CDLXSIDEGAP3METHODS'] = ta.CDLXSIDEGAP3METHODS(o, h, l, c) ''' # トレンドライン for dt in datetimerange(candle.index[0], candle.index[-1] + timedelta(minutes=1)): start_dt = (dt - timedelta(minutes=130)).strftime('%Y-%m-%d %H:%M:%S') end_dt = dt.strftime('%Y-%m-%d %H:%M:%S') tmp = candle.loc[(start_dt <= candle.index) & (candle.index <= end_dt)] for w_size, stride in [(15, 5), (30, 10), (60, 10), (120, 10)]: # for w_size, stride in [(120, 10)]: trendlines = calc_trendlines(tmp, w_size, stride) if len(trendlines) == 0: continue trendline_feature = calc_trendline_feature(tmp, trendlines) print('{}-{} {} {} {}'.format(dt - timedelta(minutes=130), dt, trendline_feature['high_a'], trendline_feature['high_b'], trendline_feature['high_diff'])) features.loc[features.index == end_dt, 'trendline_high_a_{}'.format(w_size)] = trendline_feature['high_a'] features.loc[features.index == end_dt, 'trendline_high_b_{}'.format(w_size)] = trendline_feature['high_b'] features.loc[features.index == end_dt, 'trendline_high_diff_{}'.format(w_size)] = trendline_feature['high_diff'] features.loc[features.index == end_dt, 'trendline_low_a_{}'.format(w_size)] = trendline_feature['low_a'] features.loc[features.index == end_dt, 'trendline_low_b_{}'.format(w_size)] = trendline_feature['low_b'] features.loc[features.index == end_dt, 'trendline_low_diff_{}'.format(w_size)] = trendline_feature['low_diff'] ''' window = 5 features_ext = features for w in range(window): tmp = features.shift(periods=60 * (w + 1), freq='S') tmp.columns = [c + '_' + str(w + 1) + 'w' for c in features.columns] features_ext = pd.concat([features_ext, tmp], axis=1) if candle_type == '5min': features_ext = features_ext.shift(periods=300, freq='S') features_ext = features_ext.fillna(method='ffill') features_ext = features_ext[features_ext.index == target_dt] return features_ext
def ta(name, price_h, price_l, price_c, price_v, price_o): # function 'MAX'/'MAXINDEX'/'MIN'/'MININDEX'/'MINMAX'/'MINMAXINDEX'/'SUM' is missing if name == 'AD': return talib.AD(np.array(price_h), np.array(price_l), np.array(price_c), np.asarray(price_v, dtype='float')) if name == 'ADOSC': return talib.ADOSC(np.array(price_h), np.array(price_l), np.array(price_c), np.asarray(price_v, dtype='float'), fastperiod=2, slowperiod=10) if name == 'ADX': return talib.ADX(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'ADXR': return talib.ADXR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'APO': return talib.APO(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, matype=0) if name == 'AROON': AROON_DWON, AROON2_UP = talib.AROON(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=90) return (AROON_DWON, AROON2_UP) if name == 'AROONOSC': return talib.AROONOSC(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14) if name == 'ATR': return talib.ATR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'AVGPRICE': return talib.AVGPRICE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'BBANDS': BBANDS1, BBANDS2, BBANDS3 = talib.BBANDS(np.asarray(price_c, dtype='float'), matype=MA_Type.T3) return BBANDS1 if name == 'BETA': return talib.BETA(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=5) if name == 'BOP': return talib.BOP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CCI': return talib.CCI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'CDL2CROWS': return talib.CDL2CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3BLACKCROWS': return talib.CDL3BLACKCROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3INSIDE': return talib.CDL3INSIDE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3LINESTRIKE': return talib.CDL3LINESTRIKE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3OUTSIDE': return talib.CDL3OUTSIDE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3STARSINSOUTH': return talib.CDL3STARSINSOUTH(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3WHITESOLDIERS': return talib.CDL3WHITESOLDIERS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLABANDONEDBABY': return talib.CDLABANDONEDBABY(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLADVANCEBLOCK': return talib.CDLADVANCEBLOCK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLBELTHOLD': return talib.CDLBELTHOLD(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLBREAKAWAY': return talib.CDLBREAKAWAY(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLCLOSINGMARUBOZU': return talib.CDLCLOSINGMARUBOZU(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLCONCEALBABYSWALL': return talib.CDLCONCEALBABYSWALL(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLCOUNTERATTACK': return talib.CDLCOUNTERATTACK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLDARKCLOUDCOVER': return talib.CDLDARKCLOUDCOVER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLDOJI': return talib.CDLDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLDOJISTAR': return talib.CDLDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLDRAGONFLYDOJI': return talib.CDLDRAGONFLYDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLENGULFING': return talib.CDLENGULFING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLEVENINGDOJISTAR': return talib.CDLEVENINGDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLEVENINGSTAR': return talib.CDLEVENINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLGAPSIDESIDEWHITE': return talib.CDLGAPSIDESIDEWHITE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLGRAVESTONEDOJI': return talib.CDLGRAVESTONEDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHAMMER': return talib.CDLHAMMER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHANGINGMAN': return talib.CDLHANGINGMAN(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHARAMI': return talib.CDLHARAMI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHARAMICROSS': return talib.CDLHARAMICROSS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHIGHWAVE': return talib.CDLHIGHWAVE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHIKKAKE': return talib.CDLHIKKAKE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHIKKAKEMOD': return talib.CDLHIKKAKEMOD(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHOMINGPIGEON': return talib.CDLHOMINGPIGEON(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLIDENTICAL3CROWS': return talib.CDLIDENTICAL3CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLINNECK': return talib.CDLINNECK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLINVERTEDHAMMER': return talib.CDLINVERTEDHAMMER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLKICKING': return talib.CDLKICKING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLKICKINGBYLENGTH': return talib.CDLKICKINGBYLENGTH(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLLADDERBOTTOM': return talib.CDLLADDERBOTTOM(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLLONGLEGGEDDOJI': return talib.CDLLONGLEGGEDDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLLONGLINE': return talib.CDLLONGLINE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMARUBOZU': return talib.CDLMARUBOZU(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMATCHINGLOW': return talib.CDLMATCHINGLOW(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMATHOLD': return talib.CDLMATHOLD(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMORNINGDOJISTAR': return talib.CDLMORNINGDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLMORNINGSTAR': return talib.CDLMORNINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLONNECK': return talib.CDLONNECK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLPIERCING': return talib.CDLPIERCING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLRICKSHAWMAN': return talib.CDLRICKSHAWMAN(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLRISEFALL3METHODS': return talib.CDLRISEFALL3METHODS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSEPARATINGLINES': return talib.CDLSEPARATINGLINES(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSHOOTINGSTAR': return talib.CDLSHOOTINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSHORTLINE': return talib.CDLSHORTLINE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSPINNINGTOP': return talib.CDLSPINNINGTOP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSTALLEDPATTERN': return talib.CDLSTALLEDPATTERN(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSTICKSANDWICH': return talib.CDLSTICKSANDWICH(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTAKURI': return talib.CDLTAKURI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTASUKIGAP': return talib.CDLTASUKIGAP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTHRUSTING': return talib.CDLTHRUSTING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTRISTAR': return talib.CDLTRISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLUNIQUE3RIVER': return talib.CDLUNIQUE3RIVER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLUPSIDEGAP2CROWS': return talib.CDLUPSIDEGAP2CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLXSIDEGAP3METHODS': return talib.CDLXSIDEGAP3METHODS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CMO': return talib.CMO(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'CORREL': return talib.CORREL(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=30) if name == 'DEMA': return talib.DEMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'DX': return talib.DX(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'EMA': return talib.EMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'HT_DCPERIOD': return talib.HT_DCPERIOD(np.asarray(price_c, dtype='float')) if name == 'HT_DCPHASE': return talib.HT_DCPHASE(np.asarray(price_c, dtype='float')) if name == 'HT_PHASOR': HT_PHASOR1, HT_PHASOR2 = talib.HT_PHASOR( np.asarray(price_c, dtype='float') ) # use HT_PHASOR1 for the indication of up and down return HT_PHASOR1 if name == 'HT_SINE': HT_SINE1, HT_SINE2 = talib.HT_SINE(np.asarray(price_c, dtype='float')) return HT_SINE1 if name == 'HT_TRENDLINE': return talib.HT_TRENDLINE(np.asarray(price_c, dtype='float')) if name == 'HT_TRENDMODE': return talib.HT_TRENDMODE(np.asarray(price_c, dtype='float')) if name == 'KAMA': return talib.KAMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'LINEARREG': return talib.LINEARREG(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'LINEARREG_ANGLE': return talib.LINEARREG_ANGLE(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'LINEARREG_INTERCEPT': return talib.LINEARREG_INTERCEPT(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'LINEARREG_SLOPE': return talib.LINEARREG_SLOPE(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'MA': return talib.MA(np.asarray(price_c, dtype='float'), timeperiod=30, matype=0) if name == 'MACD': MACD1, MACD2, MACD3 = talib.MACD(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, signalperiod=9) return MACD1 if nam == 'MACDEXT': return talib.MACDEXT(np.asarray(price_c, dtype='float'), fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) if name == 'MACDFIX': MACDFIX1, MACDFIX2, MACDFIX3 = talib.MACDFIX(np.asarray(price_c, dtype='float'), signalperiod=9) return MACDFIX1 if name == 'MAMA': MAMA1, MAMA2 = talib.MAMA(np.asarray(price_c, dtype='float'), fastlimit=0, slowlimit=0) return MAMA1 if name == 'MEDPRICE': return talib.MEDPRICE(np.array(price_h), np.asarray(price_l, dtype='float')) if name == 'MINUS_DI': return talib.MINUS_DI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'MINUS_DM': return talib.MINUS_DM(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14) if name == 'MOM': return talib.MOM(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'NATR': return talib.NATR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'OBV': return talib.OBV(np.array(price_c), np.asarray(price_v, dtype='float')) if name == 'PLUS_DI': return talib.PLUS_DI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'PLUS_DM': return talib.PLUS_DM(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14) if name == 'PPO': return talib.PPO(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, matype=0) if name == 'ROC': return talib.ROC(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'ROCP': return talib.ROCP(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'ROCR100': return talib.ROCR100(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'RSI': return talib.RSI(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'SAR': return talib.SAR(np.array(price_h), np.asarray(price_l, dtype='float'), acceleration=0, maximum=0) if name == 'SAREXT': return talib.SAREXT(np.array(price_h), np.asarray(price_l, dtype='float'), startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) if name == 'SMA': return talib.SMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'STDDEV': return talib.STDDEV(np.asarray(price_c, dtype='float'), timeperiod=5, nbdev=1) if name == 'STOCH': STOCH1, STOCH2 = talib.STOCH(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) return STOCH1 if name == 'STOCHF': STOCHF1, STOCHF2 = talib.STOCHF(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), fastk_period=5, fastd_period=3, fastd_matype=0) return STOCHF1 if name == 'STOCHRSI': STOCHRSI1, STOCHRSI2 = talib.STOCHRSI(np.asarray(price_c, dtype='float'), timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) return STOCHRSI1 if name == 'T3': return talib.T3(np.asarray(price_c, dtype='float'), timeperiod=5, vfactor=0) if name == 'TEMA': return talib.TEMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'TRANGE': return talib.TRANGE(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'TRIMA': return talib.TRIMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'TRIX': return talib.TRIX(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'TSF': return talib.TSF(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'TYPPRICE': return talib.TYPPRICE(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'ULTOSC': return talib.ULTOSC(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod1=7, timeperiod2=14, timeperiod3=28) if name == 'VAR': return talib.VAR(np.asarray(price_c, dtype='float'), timeperiod=5, nbdev=1) if name == 'WCLPRICE': return talib.WCLPRICE(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'WILLR': return talib.WILLR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'WMA': return talib.WMA(np.asarray(price_c, dtype='float'), timeperiod=30)