Пример #1
0
 def rocr_100(self,
              n: int,
              array: bool = False) -> Union[float, np.ndarray]:
     """
     ROCR100.
     """
     result = talib.ROCR100(self.close, n)
     if array:
         return result
     return result[-1]
Пример #2
0
def generate_feature(data):
    high = data.High.values
    low = data.Low.values
    close = data.Close.values

    # feature_df = pd.DataFrame(index=data.index)
    feature_df = data.copy()
    feature_df["ADX"] = ADX = talib.ADX(high, low, close, timeperiod=14)
    feature_df["ADXR"] = ADXR = talib.ADXR(high, low, close, timeperiod=14)
    feature_df["APO"] = APO = talib.APO(close,
                                        fastperiod=12,
                                        slowperiod=26,
                                        matype=0)
    feature_df["AROONOSC"] = AROONOSC = talib.AROONOSC(high,
                                                       low,
                                                       timeperiod=14)
    feature_df["CCI"] = CCI = talib.CCI(high, low, close, timeperiod=14)
    feature_df["CMO"] = CMO = talib.CMO(close, timeperiod=14)
    feature_df["DX"] = DX = talib.DX(high, low, close, timeperiod=14)
    feature_df["MINUS_DI"] = MINUS_DI = talib.MINUS_DI(high,
                                                       low,
                                                       close,
                                                       timeperiod=14)
    feature_df["MINUS_DM"] = MINUS_DM = talib.MINUS_DM(high,
                                                       low,
                                                       timeperiod=14)
    feature_df["MOM"] = MOM = talib.MOM(close, timeperiod=10)
    feature_df["PLUS_DI"] = PLUS_DI = talib.PLUS_DI(high,
                                                    low,
                                                    close,
                                                    timeperiod=14)
    feature_df["PLUS_DM"] = PLUS_DM = talib.PLUS_DM(high, low, timeperiod=14)
    feature_df["PPO"] = PPO = talib.PPO(close,
                                        fastperiod=12,
                                        slowperiod=26,
                                        matype=0)
    feature_df["ROC"] = ROC = talib.ROC(close, timeperiod=10)
    feature_df["ROCP"] = ROCP = talib.ROCP(close, timeperiod=10)
    feature_df["ROCR100"] = ROCR100 = talib.ROCR100(close, timeperiod=10)
    feature_df["RSI"] = RSI = talib.RSI(close, timeperiod=14)
    feature_df["ULTOSC"] = ULTOSC = talib.ULTOSC(high,
                                                 low,
                                                 close,
                                                 timeperiod1=7,
                                                 timeperiod2=14,
                                                 timeperiod3=28)
    feature_df["WILLR"] = WILLR = talib.WILLR(high, low, close, timeperiod=14)
    feature_df = feature_df.fillna(0.0)

    # Exclude columns you don't want
    feature_df = feature_df[feature_df.columns[
        ~feature_df.columns.isin(['Open', 'High', 'Low', 'Close'])]]
    matrix = feature_df.values

    return feature_df, matrix
Пример #3
0
def rate_of_change(close, n):
    try:
        df = pd.DataFrame()
        df['rate_of_change'] = talib.ROC(close, timeperiod=n)
        df['rate_of_change_precentage'] = talib.ROCP(close, timeperiod=n)
        df['rate_of_change_ratio'] = talib.ROCR(close, timeperiod=n)
        df['rate_of_change_ratio_100_scale'] = talib.ROCR100(close,
                                                             timeperiod=n)
        return df
    except Exception as e:
        rasie(e)
Пример #4
0
def add_ROCR100(self, timeperiod=10, type='line', color='tertiary', **kwargs):
    """Rate of Change (Ratio * 100)."""

    if not self.has_close:
        raise Exception()

    utils.kwargs_check(kwargs, VALID_TA_KWARGS)
    if 'kind' in kwargs:
        type = kwargs['kind']

    name = 'ROCR100({})'.format(str(timeperiod))
    self.sec[name] = dict(type=type, color=color)
    self.ind[name] = talib.ROCR100(self.df[self.cl].values, timeperiod)
Пример #5
0
def rocr100(client, symbol, timeframe="6m", col="close", period=14):
    """This will return a dataframe of
    Rate of change ratio 100 scale: (price/prevPrice)*100
    for the given symbol across the given timeframe

    Args:
        client (pyEX.Client): Client
        symbol (string): Ticker
        timeframe (string): timeframe to use, for pyEX.chart
        col (string): column to use to calculate
        period (int): period to calculate across

    Returns:
        DataFrame: result
    """
    df = client.chartDF(symbol, timeframe)
    return pd.DataFrame(
        {col: df[col].values, "rocr100": t.ROCR100(df[col].values, period)}
    )
Пример #6
0
def rocr100(candles: np.ndarray,
            period: int = 10,
            source_type: str = "close",
            sequential: bool = False) -> Union[float, np.ndarray]:
    """
    ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100

    :param candles: np.ndarray
    :param period: int - default: 10
    :param source_type: str - default: "close"
    :param sequential: bool - default: False

    :return: float | np.ndarray
    """
    candles = slice_candles(candles, sequential)

    source = get_candle_source(candles, source_type=source_type)
    res = talib.ROCR100(source, timeperiod=period)

    return res if sequential else res[-1]
Пример #7
0
def get_df(filename):
    tech = pd.read_csv(filename,index_col=0)
    dclose = np.array(tech.close)
    volume = np.array(tech.volume)
    tech['RSI'] = ta.RSI(np.array(tech.close))
    tech['OBV'] = ta.OBV(np.array(tech.close),np.array(tech.volume))
    tech['NATR'] = ta.NATR(np.array(tech.high),np.array(tech.low),np.array(tech.close))
    tech['upper'],tech['middle'],tech['lower'] = ta.BBANDS(np.array(tech.close), timeperiod=10, nbdevup=2, nbdevdn=2, matype=0)
    tech['DEMA'] = ta.DEMA(dclose, timeperiod=30)
    tech['EMA'] = ta.EMA(dclose, timeperiod=30)
    tech['HT_TRENDLINE'] = ta.HT_TRENDLINE(dclose)
    tech['KAMA'] = ta.KAMA(dclose, timeperiod=30)
    tech['MA'] = ta.MA(dclose, timeperiod=30, matype=0)
#    tech['mama'], tech['fama'] = ta.MAMA(dclose, fastlimit=0, slowlimit=0)
    tech['MIDPOINT'] = ta.MIDPOINT(dclose, timeperiod=14)
    tech['SMA'] = ta.SMA(dclose, timeperiod=30)
    tech['T3'] = ta.T3(dclose, timeperiod=5, vfactor=0)
    tech['TEMA'] = ta.TEMA(dclose, timeperiod=30)
    tech['TRIMA'] = ta.TRIMA(dclose, timeperiod=30)
    tech['WMA'] = ta.WMA(dclose, timeperiod=30)
    tech['APO'] = ta.APO(dclose, fastperiod=12, slowperiod=26, matype=0)
    tech['CMO'] = ta.CMO(dclose, timeperiod=14)
    tech['macd'], tech['macdsignal'], tech['macdhist'] = ta.MACD(dclose, fastperiod=12, slowperiod=26, signalperiod=9)
    tech['MOM'] = ta.MOM(dclose, timeperiod=10)
    tech['PPO'] = ta.PPO(dclose, fastperiod=12, slowperiod=26, matype=0)
    tech['ROC'] = ta.ROC(dclose, timeperiod=10)
    tech['ROCR'] = ta.ROCR(dclose, timeperiod=10)
    tech['ROCP'] = ta.ROCP(dclose, timeperiod=10)
    tech['ROCR100'] = ta.ROCR100(dclose, timeperiod=10)
    tech['RSI'] = ta.RSI(dclose, timeperiod=14)
    tech['fastk'], tech['fastd'] = ta.STOCHRSI(dclose, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
    tech['TRIX'] = ta.TRIX(dclose, timeperiod=30)
    tech['OBV'] = ta.OBV(dclose,volume)
    tech['HT_DCPHASE'] = ta.HT_DCPHASE(dclose)
    tech['inphase'], tech['quadrature'] = ta.HT_PHASOR(dclose)
    tech['sine'], tech['leadsine'] = ta.HT_SINE(dclose)
    tech['HT_TRENDMODE'] = ta.HT_TRENDMODE(dclose)
    df = tech.fillna(method='bfill')
    return df
Пример #8
0
def TKE(dataframe, *, length=14, emaperiod=5):
    """
    Source: https://www.tradingview.com/script/Pcbvo0zG/
    Author: Dr Yasar ERDINC

    The calculation is simple:
    TKE=(RSI+STOCHASTIC+ULTIMATE OSCILLATOR+MFI+WIILIAMS %R+MOMENTUM+CCI)/7
    Buy signal: when TKE crosses above 20 value
    Oversold region: under 20 value
    Overbought region: over 80 value

    Another usage of TKE is with its EMA ,
    the default value is defined as 5 bars of EMA of the TKE line,
    Go long: when TKE crosses above EMALine
    Go short: when TKE crosses below EMALine

    Usage:
        `dataframe['TKE'], dataframe['TKEema'] = TKE1(dataframe)`
    """
    import talib.abstract as ta

    df = dataframe.copy()
    # TKE=(RSI+STOCHASTIC+ULTIMATE OSCILLATOR+MFI+WIILIAMS %R+MOMENTUM+CCI)/7
    df["rsi"] = ta.RSI(df, timeperiod=length)
    df["stoch"] = (100 *
                   (df["close"] - df["low"].rolling(window=length).min()) /
                   (df["high"].rolling(window=length).max() -
                    df["low"].rolling(window=length).min()))

    df["ultosc"] = ta.ULTOSC(df, timeperiod1=7, timeperiod2=14, timeperiod3=28)
    df["mfi"] = ta.MFI(df, timeperiod=length)
    df["willr"] = ta.WILLR(df, timeperiod=length)
    df["mom"] = ta.ROCR100(df, timeperiod=length)
    df["cci"] = ta.CCI(df, timeperiod=length)
    df["TKE"] = df[["rsi", "stoch", "ultosc", "mfi", "willr", "mom",
                    "cci"]].mean(axis="columns")
    df["TKEema"] = ta.EMA(df["TKE"], timeperiod=emaperiod)
    return df["TKE"], df["TKEema"]
Пример #9
0
def create_Indicators(data):
    dfs = data

    df = dfs.copy()

    df['ADX'] = talib.ADX(df.high, df.low, df.close, timeperiod=14)
    df['ADXR'] = talib.ADXR(df.high, df.low, df.close, timeperiod=14)
    df['APO'] = talib.APO(df.close, fastperiod=12, slowperiod=26, matype=0)
    df['AROONOSC'] = talib.AROONOSC(df.high, df.low, timeperiod=14)
    df['BOP'] = talib.BOP(
        df.open, df.high, df.low,
        df.close)  #  (Close price – Open price) / (High price – Low price)
    df["CCI"] = talib.CCI(df.high, df.low, df.close, timeperiod=14)
    df["CMO"] = talib.CMO(df.close, timeperiod=14)
    df["DX"] = talib.DX(df.high, df.low, df.close, timeperiod=14)
    #df["MFI"] = talib.MFI(df.high, df.low, df.close, df.volume, timeperiod=14).pct_change()
    df["MINUS_DI"] = talib.MINUS_DI(df.high, df.low, df.close, timeperiod=14)
    df["MINUS_DM"] = talib.MINUS_DM(df.high, df.low, timeperiod=14)
    df["MOM"] = talib.MOM(df.close, timeperiod=10)
    df["PLUS_DI"] = talib.PLUS_DI(df.high, df.low, df.close, timeperiod=14)
    df["PLUS_DM"] = talib.PLUS_DM(df.high, df.low, timeperiod=14)
    #X_corr["PPO"] = PPO(df.close, fastperiod=12, sdf.lowperiod=26, matype=0)
    df["ROC"] = talib.ROC(df.close, timeperiod=10)
    df["ROCP"] = talib.ROCP(df.close, timeperiod=10)
    df["ROCR"] = talib.ROCR(df.close, timeperiod=10)
    df["ROCR100"] = talib.ROCR100(df.close, timeperiod=10)
    df["RSI"] = talib.RSI(df.close, timeperiod=14)
    #sdf.lowk, sdf.lowd = STOCH(df.high, df.low, df.close, fastk_period=5, sdf.lowk_period=3, sdf.lowk_matype=0, sdf.lowd_period=3, sdf.lowd_matype=0)
    df["TRIX"] = talib.TRIX(df.close, timeperiod=30)
    df["ULTOSC"] = talib.ULTOSC(df.high,
                                df.low,
                                df.close,
                                timeperiod1=7,
                                timeperiod2=14,
                                timeperiod3=28)
    df["WILLR"] = talib.WILLR(df.high, df.low, df.close, timeperiod=14)

    return df
Пример #10
0
def rocr100(candles: np.ndarray, period: int = 10, source_type: str = "close", sequential: bool = False) -> Union[
    float, np.ndarray]:
    """
    ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100

    :param candles: np.ndarray
    :param period: int - default=10
    :param source_type: str - default: "close"
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    warmup_candles_num = get_config('env.data.warmup_candles_num', 240)
    if not sequential and len(candles) > warmup_candles_num:
        candles = candles[-warmup_candles_num:]

    source = get_candle_source(candles, source_type=source_type)
    res = talib.ROCR100(source, timeperiod=period)

    if sequential:
        return res
    else:
        return None if np.isnan(res[-1]) else res[-1]
Пример #11
0
def TALIB_ROCR100(close, timeperiod=10):
    '''00376,2,1'''
    return talib.ROCR100(close, timeperiod)
Пример #12
0
def load_stocks_calculate_short_corr(only_latest=False):
    """
    only_latest: boolean; if True, will keep only the latest 50 days to speed up procesing
    """
    dfs, sh_int, fin_sh = dp.load_stocks(stocks=None)
    if only_latest:
        earliest = sh_int.index[-50]
        sh_int = sh_int[sh_int.index >= earliest]

    latest_stocks = []
    all_sh_stocks = []
    all_sh_stocks_full = []
    latest_date = sh_int['SPY'].index[-1]
    # TODO: make parallel
    for s in tqdm(sh_int.keys()):
        if sh_int[s].shape[0] == 0:
            print(s, 'is empty')
            continue

        if latest_date != sh_int[s].index[-1]:
            print(s, 'is old')
            continue

        if verbose:
            print(s)

        df = sh_int[s].copy()
        # create future price changes
        for i in [5, 10, 20, 40]:
            df['{}d_future_price_change'.format(
                i)] = df['Adj_Close'].pct_change(i).shift(-i)

        df['ticker'] = s

        # create short-close correlations -- TODO: deal with -1s
        # if short % is all -1 or 0, won't work.  if less than 20 samples, rolling corr with 20 period window won't work
        # also broke on DF with 22 samples
        if df['Short_%_of_Float'].mean() in [-1, 0] or df.shape[0] < 30:
            df['Short_%_of_Float_10d_EMA'] = -np.inf
            df['Adj_Close_10d_EMA'] = talib.EMA(df['Adj_Close'].values,
                                                timeperiod=10)
            df['short_close_corr_10d_EMA'] = -np.inf
            df['short_close_corr_rocr_20d'] = -np.inf
            df['short_%_rocr_20d'] = -np.inf
        else:
            df['Short_%_of_Float_10d_EMA'] = talib.EMA(
                df['Short_%_of_Float'].values, timeperiod=10)
            df['Adj_Close_10d_EMA'] = talib.EMA(df['Adj_Close'].values,
                                                timeperiod=10)

            # essentially, we want to take an arbitrary number of points, calculate correlation, and find where the correlations are largest
            # take 10 points at a time and get correlations first, then take parts that have largest correlations, and keep expanding by 5 points at a time until correlation decreases
            corr = df[['Short_%_of_Float_10d_EMA',
                       'Adj_Close_10d_EMA']].rolling(window=20).corr()
            df['short_close_corr_10d_EMA'] = corr.unstack(
                1)['Short_%_of_Float_10d_EMA']['Adj_Close_10d_EMA']
            df['short_close_corr_10d_EMA'].replace(np.inf, 1, inplace=True)
            df['short_close_corr_10d_EMA'].replace(-np.inf, -1, inplace=True)
            df['short_close_corr_10d_EMA'].clip(lower=-1,
                                                upper=1,
                                                inplace=True)

            # WARNING: things with small (< 1%) Short % of float will result in huge rocr...maybe do something about this
            df['short_close_corr_rocr_20d'] = talib.ROCR100(
                df['short_close_corr_10d_EMA'].values, timeperiod=20)
            df['short_%_rocr_20d'] = talib.ROCR100(
                df['Short_%_of_Float_10d_EMA'].values, timeperiod=20)

            # auto-detect long stretches of negative and positive correlation
            thresh = 0.7
            rolling = df['short_close_corr_10d_EMA'].rolling(window=20).min()
            df['Short_%_positive_corr_detection'] = rolling > thresh
            df['Short_%_positive_corr_detection'] = df[
                'Short_%_positive_corr_detection'].astype('int16')
            # sh_int[ticker]['Short_%_positive_corr_detection'].plot()
            # plt.show()

            df['Short_%_negative_corr_detection'] = rolling < -thresh
            df['Short_%_negative_corr_detection'] = df[
                'Short_%_negative_corr_detection'].astype('int16')

        latest_stocks.append(df.iloc[-1])
        all_sh_stocks_full.append(df)
        all_sh_stocks.append(df.dropna())

    latest_stocks_df = pd.concat(latest_stocks, axis=1).T
    latest_stocks_df.set_index('ticker', inplace=True)

    all_sh_stocks_df = pd.concat(all_sh_stocks)
    all_sh_stocks_df['market_cap'] = all_sh_stocks_df[
        'Shares_Outstanding'] * all_sh_stocks_df['Adj_Close']
    all_sh_stocks_full_df = pd.concat(all_sh_stocks_full)

    return all_sh_stocks_df, all_sh_stocks_full_df, latest_stocks_df, sh_int
def momentum_process(event):
    print(event.widget.get())
    momentum = event.widget.get()

    upperband, middleband, lowerband = ta.BBANDS(close,
                                                 timeperiod=5,
                                                 nbdevup=2,
                                                 nbdevdn=2,
                                                 matype=0)
    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(momentum, fontproperties='SimHei')

    if momentum == '绝对价格振荡器':
        real = ta.APO(close, fastperiod=12, slowperiod=26, matype=0)
        axes[1].plot(real, 'r-')
    elif momentum == '钱德动量摆动指标':
        real = ta.CMO(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif momentum == '移动平均收敛/散度':
        macd, macdsignal, macdhist = ta.MACD(close,
                                             fastperiod=12,
                                             slowperiod=26,
                                             signalperiod=9)
        axes[1].plot(macd, 'r-')
        axes[1].plot(macdsignal, 'g-')
        axes[1].plot(macdhist, 'b-')
    elif momentum == '带可控MA类型的MACD':
        macd, macdsignal, macdhist = ta.MACDEXT(close,
                                                fastperiod=12,
                                                fastmatype=0,
                                                slowperiod=26,
                                                slowmatype=0,
                                                signalperiod=9,
                                                signalmatype=0)
        axes[1].plot(macd, 'r-')
        axes[1].plot(macdsignal, 'g-')
        axes[1].plot(macdhist, 'b-')
    elif momentum == '移动平均收敛/散度 固定 12/26':
        macd, macdsignal, macdhist = ta.MACDFIX(close, signalperiod=9)
        axes[1].plot(macd, 'r-')
        axes[1].plot(macdsignal, 'g-')
        axes[1].plot(macdhist, 'b-')
    elif momentum == '动量':
        real = ta.MOM(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '比例价格振荡器':
        real = ta.PPO(close, fastperiod=12, slowperiod=26, matype=0)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率':
        real = ta.ROC(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率百分比':
        real = ta.ROCP(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率的比率':
        real = ta.ROCR(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率的比率100倍':
        real = ta.ROCR100(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '相对强弱指数':
        real = ta.RSI(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif momentum == '随机相对强弱指标':
        fastk, fastd = ta.STROCHRSI(close,
                                    timeperiod=14,
                                    fastk_period=5,
                                    fasted_period=3,
                                    fasted_matype=0)
        axes[1].plot(fastk, 'r-')
        axes[1].plot(fastd, 'r-')
    elif momentum == '三重光滑EMA的日变化率':
        real = ta.TRIX(close, timeperiod=30)
        axes[1].plot(real, 'r-')

    plt.show()
def get_technical_indicators(dataset):
    # Create 7 and 21 days Moving Average
    dataset['ma7'] = dataset['Adj Close'].rolling(window=7).mean()
    dataset['ma21'] = dataset['Adj Close'].rolling(window=21).mean()

    # Create Exponential moving average
    dataset['ema'] = dataset['Adj Close'].ewm(com=0.5).mean()

    # Create MACD
    dataset['26ema'] = dataset['Adj Close'].ewm(span=26).mean()
    dataset['12ema'] = dataset['Adj Close'].ewm(span=12).mean()
    dataset['MACD'] = (dataset['12ema'] - dataset['26ema'])

    # Create Momentum
    dataset['momentum'] = dataset['Adj Close'] - 1

    # Create Bollinger Bands
    dataset['20sd'] = dataset['Adj Close'].rolling(20).std()
    dataset['upper_band'] = dataset['ma21'] + (dataset['20sd'] * 2)
    dataset['lower_band'] = dataset['ma21'] - (dataset['20sd'] * 2)

    # Create RSI indicator
    dataset['RSI'] = ta.RSI(np.array(dataset['Adj Close']))

    #Part I: Create Cycle Indicators
    #Create HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period
    dataset['HT_DCPERIOD'] = ta.HT_DCPERIOD(np.array(dataset['Adj Close']))

    #Create HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase
    dataset['HT_DCPHASE'] = ta.HT_DCPHASE(np.array(dataset['Adj Close']))

    #HT_TRENDMODE - Hilbert Transform - Trend vs Cycle Mode
    dataset['HT_TRENDMODE'] = ta.HT_TRENDMODE(np.array(dataset['Adj Close']))

    #Part II: Create Volatility Indicators
    #Create Average True Range
    dataset['ATR'] = ta.ATR(np.array(dataset['High']),
                            np.array(dataset['Low']),
                            np.array(dataset['Adj Close']),
                            timeperiod=14)

    #Create NATR - Normalized Average True Range
    dataset['NATR'] = ta.NATR(np.array(dataset['High']),
                              np.array(dataset['Low']),
                              np.array(dataset['Adj Close']),
                              timeperiod=14)

    #Create TRANGE - True Range
    dataset['TRANGE'] = ta.TRANGE(np.array(dataset['High']),
                                  np.array(dataset['Low']),
                                  np.array(dataset['Adj Close']))

    #Part III Overlap Studies
    #Create DEMA - Double Exponential Moving Average
    dataset['DEMA'] = ta.DEMA(np.array(dataset['Adj Close']), timeperiod=30)

    #Create HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
    dataset['HT_TRENDLINE'] = ta.HT_TRENDLINE(np.array(dataset['Adj Close']))

    #Create KAMA - Kaufman Adaptive Moving Average
    dataset['KAMA'] = ta.KAMA(np.array(dataset['Adj Close']), timeperiod=30)

    #Create MIDPOINT - MidPoint over period
    dataset['MIDPOINT'] = ta.MIDPOINT(np.array(dataset['Adj Close']),
                                      timeperiod=14)

    #Create MIDPRICE - Midpoint Price over period
    dataset['MIDPRICE'] = ta.MIDPRICE(np.array(dataset['High']),
                                      np.array(dataset['Low']),
                                      timeperiod=14)

    #Create SAR - Parabolic SAR
    dataset['SAR'] = ta.SAR(np.array(dataset['High']),
                            np.array(dataset['Low']),
                            acceleration=0,
                            maximum=0)

    #Create SMA - Simple Moving Average
    dataset['SMA10'] = ta.SMA(np.array(dataset['Adj Close']), timeperiod=10)

    #Create T3 - Triple Exponential Moving Average (T3)
    dataset['T3'] = ta.T3(np.array(dataset['Adj Close']),
                          timeperiod=5,
                          vfactor=0)

    #Create TRIMA - Triangular Moving Average
    dataset['TRIMA'] = ta.TRIMA(np.array(dataset['Adj Close']), timeperiod=30)

    #Create WMA - Weighted Moving Average
    dataset['WMA'] = ta.WMA(np.array(dataset['Adj Close']), timeperiod=30)

    #PART IV Momentum Indicators
    #Create ADX - Average Directional Movement Index
    dataset['ADX14'] = ta.ADX(np.array(dataset['High']),
                              np.array(dataset['Low']),
                              np.array(dataset['Adj Close']),
                              timeperiod=14)
    dataset['ADX20'] = ta.ADX(np.array(dataset['High']),
                              np.array(dataset['Low']),
                              np.array(dataset['Adj Close']),
                              timeperiod=20)

    #Create ADXR - Average Directional Movement Index Rating
    dataset['ADXR'] = ta.ADXR(np.array(dataset['High']),
                              np.array(dataset['Low']),
                              np.array(dataset['Adj Close']),
                              timeperiod=14)

    #Create APO - Absolute Price Oscillator
    dataset['APO'] = ta.APO(np.array(dataset['Adj Close']),
                            fastperiod=12,
                            slowperiod=26,
                            matype=0)

    #Create AROONOSC - Aroon Oscillator
    dataset['AROONOSC'] = ta.AROONOSC(np.array(dataset['High']),
                                      np.array(dataset['Low']),
                                      timeperiod=14)

    #Create BOP - Balance Of Power
    dataset['BOP'] = ta.BOP(np.array(dataset['Open']),
                            np.array(dataset['High']),
                            np.array(dataset['Low']),
                            np.array(dataset['Adj Close']))

    #Create CCI - Commodity Channel Index
    dataset['CCI3'] = ta.CCI(np.array(dataset['High']),
                             np.array(dataset['Low']),
                             np.array(dataset['Adj Close']),
                             timeperiod=3)
    dataset['CCI5'] = ta.CCI(np.array(dataset['High']),
                             np.array(dataset['Low']),
                             np.array(dataset['Adj Close']),
                             timeperiod=5)
    dataset['CCI10'] = ta.CCI(np.array(dataset['High']),
                              np.array(dataset['Low']),
                              np.array(dataset['Adj Close']),
                              timeperiod=10)
    dataset['CCI14'] = ta.CCI(np.array(dataset['High']),
                              np.array(dataset['Low']),
                              np.array(dataset['Adj Close']),
                              timeperiod=14)

    #Create CMO - Chande Momentum Oscillator
    dataset['CMO'] = ta.CMO(np.array(dataset['Adj Close']), timeperiod=14)

    #Create DX - Directional Movement Index
    dataset['DX'] = ta.DX(np.array(dataset['High']),
                          np.array(dataset['Low']),
                          np.array(dataset['Adj Close']),
                          timeperiod=14)

    #Create MINUS_DI - Minus Directional Indicator
    dataset['MINUS_DI'] = ta.MINUS_DI(np.array(dataset['High']),
                                      np.array(dataset['Low']),
                                      np.array(dataset['Adj Close']),
                                      timeperiod=14)

    #Create MINUS_DM - Minus Directional Movement
    dataset['MINUS_DM'] = ta.MINUS_DM(np.array(dataset['High']),
                                      np.array(dataset['Low']),
                                      timeperiod=14)

    #Create MOM - Momentum
    dataset['MOM3'] = ta.MOM(np.array(dataset['Adj Close']), timeperiod=3)
    dataset['MOM5'] = ta.MOM(np.array(dataset['Adj Close']), timeperiod=5)
    dataset['MOM10'] = ta.MOM(np.array(dataset['Adj Close']), timeperiod=10)

    #Create PLUS_DI - Plus Directional Indicator
    dataset['PLUS_DI'] = ta.PLUS_DI(np.array(dataset['High']),
                                    np.array(dataset['Low']),
                                    np.array(dataset['Adj Close']),
                                    timeperiod=14)

    #Create PLUS_DM - Plus Directional Movement
    dataset['PLUS_DM'] = ta.PLUS_DM(np.array(dataset['High']),
                                    np.array(dataset['Low']),
                                    timeperiod=14)

    #Create PPO - Percentage Price Oscillator
    dataset['PPO'] = ta.PPO(np.array(dataset['Adj Close']),
                            fastperiod=12,
                            slowperiod=26,
                            matype=0)

    #Create ROC - Rate of change : ((price/prevPrice)-1)*100
    dataset['ROC'] = ta.ROC(np.array(dataset['Adj Close']), timeperiod=10)

    #Create ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
    dataset['ROCP'] = ta.ROCP(np.array(dataset['Adj Close']), timeperiod=10)

    #Create ROCR - Rate of change ratio: (price/prevPrice)
    dataset['ROCR'] = ta.ROCR(np.array(dataset['Adj Close']), timeperiod=10)

    #Create ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
    dataset['ROCR100'] = ta.ROCR100(np.array(dataset['Adj Close']),
                                    timeperiod=10)

    #Create RSI - Relative Strength Index
    dataset['RSI5'] = ta.RSI(np.array(dataset['Adj Close']), timeperiod=5)
    dataset['RSI10'] = ta.RSI(np.array(dataset['Adj Close']), timeperiod=10)
    dataset['RSI14'] = ta.RSI(np.array(dataset['Adj Close']), timeperiod=14)

    #Create TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    dataset['TRIX'] = ta.TRIX(np.array(dataset['Adj Close']), timeperiod=30)

    #Create ULTOSC - Ultimate Oscillator
    dataset['ULTOSC'] = ta.ULTOSC(np.array(dataset['High']),
                                  np.array(dataset['Low']),
                                  np.array(dataset['Adj Close']),
                                  timeperiod1=7,
                                  timeperiod2=14,
                                  timeperiod3=28)

    #Create WILLR - Williams' %R
    dataset['WILLR'] = ta.WILLR(np.array(dataset['High']),
                                np.array(dataset['Low']),
                                np.array(dataset['Adj Close']),
                                timeperiod=14)

    #Part V Pattern Recognition
    #Create  CDL2CROWS - Two Crows
    dataset['CDL2CROWS'] = ta.CDL2CROWS(np.array(dataset['Open']),
                                        np.array(dataset['High']),
                                        np.array(dataset['Low']),
                                        np.array(dataset['Adj Close']))

    #Create CDL3BLACKCROWS - Three Black Crows
    dataset['CDL3BLACKCROWS'] = ta.CDL3BLACKCROWS(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDL3INSIDE - Three Inside Up/Down
    dataset['CDL3INSIDE'] = ta.CDL3INSIDE(np.array(dataset['Open']),
                                          np.array(dataset['High']),
                                          np.array(dataset['Low']),
                                          np.array(dataset['Adj Close']))

    #Create CDL3LINESTRIKE - Three-Line Strike
    dataset['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDL3OUTSIDE - Three Outside Up/Down
    dataset['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(np.array(dataset['Open']),
                                            np.array(dataset['High']),
                                            np.array(dataset['Low']),
                                            np.array(dataset['Adj Close']))

    #Create CDL3STARSINSOUTH - Three Stars In The South
    dataset['CDL3STARSINSOUTH '] = ta.CDL3STARSINSOUTH(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDL3WHITESOLDIERS - Three Advancing White Soldiers
    dataset['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLABANDONEDBABY - Abandoned Baby
    dataset['CDLABANDONEDBABY'] = ta.CDLABANDONEDBABY(
        np.array(dataset['Open']),
        np.array(dataset['High']),
        np.array(dataset['Low']),
        np.array(dataset['Adj Close']),
        penetration=0)

    #Create CDLADVANCEBLOCK - Advance Block
    dataset['CDLADVANCEBLOCK'] = ta.CDLADVANCEBLOCK(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLBELTHOLD - Belt-hold
    dataset['CDLBELTHOLD'] = ta.CDLBELTHOLD(np.array(dataset['Open']),
                                            np.array(dataset['High']),
                                            np.array(dataset['Low']),
                                            np.array(dataset['Adj Close']))

    #Create CDLBREAKAWAY - Breakaway
    dataset['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(np.array(dataset['Open']),
                                              np.array(dataset['High']),
                                              np.array(dataset['Low']),
                                              np.array(dataset['Adj Close']))

    #Create CDLCLOSINGMARUBOZU - Closing Marubozu
    dataset['CDLCLOSINGMARUBOZU'] = ta.CDLCLOSINGMARUBOZU(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLCONCEALBABYSWALL - Concealing Baby Swalnp.array(dataset['Low'])
    dataset['CDLCONCEALBABYSWALL'] = ta.CDLCONCEALBABYSWALL(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLCOUNTERATTACK - Counterattack
    dataset['CDLCOUNTERATTACK'] = ta.CDLCOUNTERATTACK(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLDARKCLOUDCOVER - Dark Cloud Cover
    dataset['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(
        np.array(dataset['Open']),
        np.array(dataset['High']),
        np.array(dataset['Low']),
        np.array(dataset['Adj Close']),
        penetration=0)

    #Create CDLDOJI - Doji
    dataset['CDLDOJI'] = ta.CDLDOJI(np.array(dataset['Open']),
                                    np.array(dataset['High']),
                                    np.array(dataset['Low']),
                                    np.array(dataset['Adj Close']))

    #Create CDLDOJISTAR - Doji Star
    dataset['CDLDOJISTAR'] = ta.CDLDOJISTAR(np.array(dataset['Open']),
                                            np.array(dataset['High']),
                                            np.array(dataset['Low']),
                                            np.array(dataset['Adj Close']))

    #Create CDLDRAGONFLYDOJI - Dragonfly Doji
    dataset['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLENGULFING - Engulfing Pattern
    dataset['CDLENGULFING'] = ta.CDLENGULFING(np.array(dataset['Open']),
                                              np.array(dataset['High']),
                                              np.array(dataset['Low']),
                                              np.array(dataset['Adj Close']))

    #Create CDLEVENINGDOJISTAR - Evening Doji Star
    dataset['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(
        np.array(dataset['Open']),
        np.array(dataset['High']),
        np.array(dataset['Low']),
        np.array(dataset['Adj Close']),
        penetration=0)

    #Create CDLEVENINGSTAR - Evening Star
    dataset['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(np.array(dataset['Open']),
                                                  np.array(dataset['High']),
                                                  np.array(dataset['Low']),
                                                  np.array(
                                                      dataset['Adj Close']),
                                                  penetration=0)

    #Create CDLGAPSIDESIDEWHITE - Up/Down-gap side-by-side white lines
    dataset['CDLGAPSIDESIDEWHITE'] = ta.CDLGAPSIDESIDEWHITE(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLGRAVESTONEDOJI - Gravestone Doji
    dataset['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLHAMMER - Hammer
    dataset['CDLHAMMER'] = ta.CDLHAMMER(np.array(dataset['Open']),
                                        np.array(dataset['High']),
                                        np.array(dataset['Low']),
                                        np.array(dataset['Adj Close']))

    #Create CDLHANGINGMAN - Hanging Man
    dataset['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(np.array(dataset['Open']),
                                                np.array(dataset['High']),
                                                np.array(dataset['Low']),
                                                np.array(dataset['Adj Close']))

    #Create CDLHARAMI - Harami Pattern
    dataset['CDLHARAMI'] = ta.CDLHARAMI(np.array(dataset['Open']),
                                        np.array(dataset['High']),
                                        np.array(dataset['Low']),
                                        np.array(dataset['Adj Close']))

    #Create CDLHARAMICROSS - Harami Cross Pattern
    dataset['CDLHARAMICROSS'] = ta.CDLHARAMICROSS(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLHIGHWAVE - High-Wave Candle
    dataset['CDLHIGHWAVE'] = ta.CDLHIGHWAVE(np.array(dataset['Open']),
                                            np.array(dataset['High']),
                                            np.array(dataset['Low']),
                                            np.array(dataset['Adj Close']))

    #Create CDLHIKKAKE - Hikkake Pattern
    dataset['CDLHIKKAKE'] = ta.CDLHIKKAKE(np.array(dataset['Open']),
                                          np.array(dataset['High']),
                                          np.array(dataset['Low']),
                                          np.array(dataset['Adj Close']))

    #Create CDLHIKKAKEMOD - Modified Hikkake Pattern
    dataset['CDLHIKKAKEMOD'] = ta.CDLHIKKAKEMOD(np.array(dataset['Open']),
                                                np.array(dataset['High']),
                                                np.array(dataset['Low']),
                                                np.array(dataset['Adj Close']))

    #Create CDLHOMINGPIGEON - Homing Pigeon
    dataset['CDLHOMINGPIGEON'] = ta.CDLHOMINGPIGEON(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLIDENTICAL3CROWS - Identical Three Crows
    dataset['CDLIDENTICAL3CROWS'] = ta.CDLIDENTICAL3CROWS(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLINNECK - In-Neck Pattern
    dataset['CDLINNECK'] = ta.CDLINNECK(np.array(dataset['Open']),
                                        np.array(dataset['High']),
                                        np.array(dataset['Low']),
                                        np.array(dataset['Adj Close']))

    #Create CDLINVERTEDHAMMER - Inverted Hammer
    dataset['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLKICKING - Kicking
    dataset['CDLKICKING'] = ta.CDLKICKING(np.array(dataset['Open']),
                                          np.array(dataset['High']),
                                          np.array(dataset['Low']),
                                          np.array(dataset['Adj Close']))

    #Create CDLKICKINGBYLENGTH - Kicking - bull/bear determined by the longer marubozu
    dataset['CDLKICKINGBYLENGTH'] = ta.CDLKICKINGBYLENGTH(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLLADDERBOTTOM - Ladder Bottom
    dataset['CDLLADDERBOTTOM'] = ta.CDLLADDERBOTTOM(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLLONGLEGGEDDOJI - Long Legged Doji
    dataset['CDLLONGLEGGEDDOJI'] = ta.CDLLONGLEGGEDDOJI(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLLONGLINE - Long Line Candle
    dataset['CDLLONGLINE'] = ta.CDLLONGLINE(np.array(dataset['Open']),
                                            np.array(dataset['High']),
                                            np.array(dataset['Low']),
                                            np.array(dataset['Adj Close']))

    #Create CDLMARUBOZU - Marubozu
    dataset['CDLMARUBOZU'] = ta.CDLMARUBOZU(np.array(dataset['Open']),
                                            np.array(dataset['High']),
                                            np.array(dataset['Low']),
                                            np.array(dataset['Adj Close']))

    #Create CDLMATCHINGLOW - Matching Low
    dataset['CDLMATCHINGLOW'] = ta.CDLMATCHINGLOW(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLMATHOLD - Mat Hold
    dataset['CDLMATHOLD'] = ta.CDLMATHOLD(np.array(dataset['Open']),
                                          np.array(dataset['High']),
                                          np.array(dataset['Low']),
                                          np.array(dataset['Adj Close']),
                                          penetration=0)

    #Create CDLMORNINGDOJISTAR - Morning Doji Star
    dataset['CDLMORNINGDOJISTAR'] = ta.CDLMORNINGDOJISTAR(
        np.array(dataset['Open']),
        np.array(dataset['High']),
        np.array(dataset['Low']),
        np.array(dataset['Adj Close']),
        penetration=0)

    #Create CDLMORNINGSTAR - Morning Star
    dataset['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(np.array(dataset['Open']),
                                                  np.array(dataset['High']),
                                                  np.array(dataset['Low']),
                                                  np.array(
                                                      dataset['Adj Close']),
                                                  penetration=0)

    #Create CDLONNECK - On-Neck Pattern
    dataset['CDLONNECK'] = ta.CDLONNECK(np.array(dataset['Open']),
                                        np.array(dataset['High']),
                                        np.array(dataset['Low']),
                                        np.array(dataset['Adj Close']))

    #Create CDLPIERCING - Piercing Pattern
    dataset['CDLPIERCING'] = ta.CDLPIERCING(np.array(dataset['Open']),
                                            np.array(dataset['High']),
                                            np.array(dataset['Low']),
                                            np.array(dataset['Adj Close']))

    #Create CDLRICKSHAWMAN - Rickshaw Man
    dataset['CDLRICKSHAWMAN'] = ta.CDLRICKSHAWMAN(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLRISEFALL3METHODS - Rising/Falling Three Methods
    dataset['CDLRISEFALL3METHODS'] = ta.CDLRISEFALL3METHODS(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLSEPARATINGLINES - Separating Lines
    dataset['CDLSEPARATINGLINES'] = ta.CDLSEPARATINGLINES(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLSHOOTINGSTAR - Shooting Star
    dataset['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLSHORTLINE - Short Line Candle
    dataset['CDLSHORTLINE'] = ta.CDLSHORTLINE(np.array(dataset['Open']),
                                              np.array(dataset['High']),
                                              np.array(dataset['Low']),
                                              np.array(dataset['Adj Close']))

    #Create CDLSPINNINGTOP - Spinning Top
    dataset['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLSTALLEDPATTERN - Stalled Pattern
    dataset['CDLSTALLEDPATTERN'] = ta.CDLSTALLEDPATTERN(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLSTICKSANDWICH - Stick Sandwich
    dataset['CDLSTICKSANDWICH'] = ta.CDLSTICKSANDWICH(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLTAKURI - Takuri (Dragonfly Doji with very long np.array(dataset['Low'])er shadow)
    dataset['CDLTAKURI'] = ta.CDLTAKURI(np.array(dataset['Open']),
                                        np.array(dataset['High']),
                                        np.array(dataset['Low']),
                                        np.array(dataset['Adj Close']))

    #Create CDLTASUKIGAP - Tasuki Gap
    dataset['CDLTASUKIGAP'] = ta.CDLTASUKIGAP(np.array(dataset['Open']),
                                              np.array(dataset['High']),
                                              np.array(dataset['Low']),
                                              np.array(dataset['Adj Close']))

    #Create CDLTHRUSTING - Thrusting Pattern
    dataset['CDLTHRUSTING'] = ta.CDLTHRUSTING(np.array(dataset['Open']),
                                              np.array(dataset['High']),
                                              np.array(dataset['Low']),
                                              np.array(dataset['Adj Close']))

    #Create CDLTRISTAR - Tristar Pattern
    dataset['CDLTRISTAR'] = ta.CDLTRISTAR(np.array(dataset['Open']),
                                          np.array(dataset['High']),
                                          np.array(dataset['Low']),
                                          np.array(dataset['Adj Close']))

    #Create CDLUNIQUE3RIVER - Unique 3 River
    dataset['CDLUNIQUE3RIVER'] = ta.CDLUNIQUE3RIVER(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLUPSIDEGAP2CROWS - Upside Gap Two Crows
    dataset['CDLUPSIDEGAP2CROWS'] = ta.CDLUPSIDEGAP2CROWS(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    #Create CDLXSIDEGAP3METHODS - Upside/Downside Gap Three Methods
    dataset['CDLXSIDEGAP3METHODS'] = ta.CDLXSIDEGAP3METHODS(
        np.array(dataset['Open']), np.array(dataset['High']),
        np.array(dataset['Low']), np.array(dataset['Adj Close']))

    return dataset
df['MOM'] = ta.MOM(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['PLUS_DI'] = ta.PLUS_DI(np.array(df['High'].shift(1)),
                           np.array(df['Low'].shift(1)),
                           np.array(df['Adj Close'].shift(1)),
                           timeperiod=n)
df['PLUS_DM'] = ta.PLUS_DM(np.array(df['High'].shift(1)),
                           np.array(df['Low'].shift(1)),
                           timeperiod=n)
df['PPO'] = ta.PPO(np.array(df['Adj Close'].shift(1)),
                   fastperiod=12,
                   slowperiod=26,
                   matype=0)
df['ROC'] = ta.ROC(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['ROCP'] = ta.ROCP(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['ROCR'] = ta.ROCR(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['ROCR100'] = ta.ROCR100(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['slowk'], df['slowd'] = ta.STOCH(np.array(df['High'].shift(1)),
                                    np.array(df['Low'].shift(1)),
                                    np.array(df['Adj Close']),
                                    fastk_period=5,
                                    slowk_period=3,
                                    slowk_matype=0,
                                    slowd_period=3,
                                    slowd_matype=0)
df['fastk'], df['fastd'] = ta.STOCHF(np.array(df['High'].shift(1)),
                                     np.array(df['Low'].shift(1)),
                                     np.array(df['Adj Close']),
                                     fastk_period=5,
                                     fastd_period=3,
                                     fastd_matype=0)
# df['fastk'], df['fastd'] =ta.STOCHRIS(np.array(df['Adj Close'].shift(1)), timeperiod=N, fastk_period=5, fastd_period=3, fastd_matype=0)
Пример #16
0
def Set_indicators(data, period):
    """
    :param data: dataframe containing ohlcv prices and indexed with date
    :param period: period used to calculate indicators
    :return: dataframe of Technical indicators of specefic timeframe

    """

    df = pd.DataFrame(index=data.index)
    df["mom" + str(period)] = talib.MOM(data[USED_CLOSE_PRICE],
                                        timeperiod=period)
    #change it later
    df["slowk" + str(period)], df["slowd" + str(period)] = talib.STOCH(
        data["High"],
        data["Low"],
        data[USED_CLOSE_PRICE],
        fastk_period=period,
        slowk_period=period,
        slowk_matype=0,
        slowd_period=period,
        slowd_matype=0)

    #WILLR
    df["willr" + str(period)] = talib.WILLR(data["High"],
                                            data["Low"],
                                            data[USED_CLOSE_PRICE],
                                            timeperiod=period)

    #MACDFIX - Moving Average Convergence/Divergence Fix 12/26
    df["macd" + str(period)], df["macdsignal" +
                                 str(period)], df["macdhist" +
                                                  str(period)] = talib.MACDFIX(
                                                      data[USED_CLOSE_PRICE],
                                                      signalperiod=period)

    #CCI
    df["cci" + str(period)] = talib.CCI(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #Bollinger Bands
    df["upperband" +
       str(period)], df["middleband" +
                        str(period)], df["lowerband" +
                                         str(period)] = talib.BBANDS(
                                             data[USED_CLOSE_PRICE],
                                             timeperiod=period,
                                             nbdevup=2,
                                             nbdevdn=2,
                                             matype=0)

    #HIGH SMA
    df["smaHigh" + str(period)] = talib.SMA(data["High"], timeperiod=period)

    # SMA Adj Prices
    df["sma" + str(period)] = talib.SMA(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    df["smaHighLow" + str(period)] = talib.SMA(talib.MEDPRICE(
        data["High"], data["Low"]),
                                               timeperiod=period)

    #DEMA - Double Exponential Moving Average
    df["DEMA" + str(period)] = talib.DEMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #EMA - Exponential Moving Average
    df["EMA" + str(period)] = talib.EMA(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
    df["HT_TRENDLINE" + str(period)] = talib.HT_TRENDLINE(
        data[USED_CLOSE_PRICE])

    #KAMA - Kaufman Adaptive Moving Average
    df["KAMA" + str(period)] = talib.KAMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #T3 - Triple Exponential Moving Average (T3)
    df["T3-" + str(period)] = talib.T3(data[USED_CLOSE_PRICE],
                                       timeperiod=period,
                                       vfactor=0)

    #TEMA - Triple Exponential Moving Average
    df["TEMA" + str(period)] = talib.TEMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #TRIMA - Triangular Moving Average
    df["TRIMA" + str(period)] = talib.TRIMA(data[USED_CLOSE_PRICE],
                                            timeperiod=period)

    #WMA - Weighted Moving Average
    df["TRIMA" + str(period)] = talib.WMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    ##########

    #ADX - Average Directional Movement Index
    df["ADX" + str(period)] = talib.ADX(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #ADXR - Average Directional Movement Index Rating
    df["ADXR" + str(period)] = talib.ADXR(data["High"],
                                          data["Low"],
                                          data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #AROON - Aroon
    df["aroondown" + str(period)], df["aroonup" + str(period)] = talib.AROON(
        data["High"], data["Low"], timeperiod=period)

    #AROONOSC - Aroon Oscillator
    df["aroondown" + str(period)] = talib.AROONOSC(data["High"],
                                                   data["Low"],
                                                   timeperiod=period)

    #CMO - Chande Momentum Oscillator
    df["CMO" + str(period)] = talib.CMO(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #DX - Directional Movement Index
    df["DX" + str(period)] = talib.DX(data["High"],
                                      data["Low"],
                                      data[USED_CLOSE_PRICE],
                                      timeperiod=period)

    #MINUS_DI - Minus Directional Indicator
    df["MINUS_DI" + str(period)] = talib.MINUS_DI(data["High"],
                                                  data["Low"],
                                                  data[USED_CLOSE_PRICE],
                                                  timeperiod=period)

    #MINUS_DM - Minus Directional Movement
    df["MINUS_DM" + str(period)] = talib.MINUS_DM(data["High"],
                                                  data["Low"],
                                                  timeperiod=period)

    #PLUS_DI - Plus Directional Indicator
    df["PLUS_DI" + str(period)] = talib.PLUS_DI(data["High"],
                                                data["Low"],
                                                data[USED_CLOSE_PRICE],
                                                timeperiod=period)

    #PLUS_DM - Plus Directional Movement
    df["PLUS_DM" + str(period)] = talib.PLUS_DM(data["High"],
                                                data["Low"],
                                                timeperiod=period)

    #ROC - Rate of change : ((price/prevPrice)-1)*100
    df["roc" + str(period)] = talib.ROC(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
    df["ROCP" + str(period)] = talib.ROCP(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #ROCR - Rate of change ratio: (price/prevPrice)
    df["ROCR" + str(period)] = talib.ROCR(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
    df["ROCR100-" + str(period)] = talib.ROCR100(data[USED_CLOSE_PRICE],
                                                 timeperiod=period)

    #RSI - Relative Strength Index
    df["RSI-" + str(period)] = talib.RSI(data[USED_CLOSE_PRICE],
                                         timeperiod=period)

    #TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    df["TRIX" + str(period)] = talib.TRIX(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #MFI - Money Flow Index
    df["MFI" + str(period)] = talib.MFI(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        data["Volume"],
                                        timeperiod=period)

    #ADOSC - Chaikin A/D Oscillator set periods later please
    df["ADOSC" + str(period)] = talib.ADOSC(data["High"],
                                            data["Low"],
                                            data[USED_CLOSE_PRICE],
                                            data["Volume"],
                                            fastperiod=np.round(period / 3),
                                            slowperiod=period)

    return df
    df['PLUS_DI'] = talib.PLUS_DI(df["High"],
                                  df["Low"],
                                  df["Close"],
                                  timeperiod=14)
    # PLUS_DM - Plus Directional Movement
    df['PLUS_DM'] = talib.PLUS_DM(df["High"], df["Low"], timeperiod=14)
    print('Time #7 batch TI: ' + str(time.time() - start_time) + ' seconds')
    start_time = time.time()
    # PPO - Percentage Price Oscillator
    df['PPO'] = talib.PPO(df["Close"], fastperiod=12, slowperiod=26, matype=0)
    # ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
    df['ROCP'] = talib.ROCP(df["Close"], timeperiod=10)
    # ROCR - Rate of change ratio: (price/prevPrice)
    df['ROCR'] = talib.ROCR(df["Close"], timeperiod=10)
    # ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
    df['ROCR100'] = talib.ROCR100(df["Close"], timeperiod=10)
    # RSI - Relative Strength Index
    df['RSI'] = talib.RSI(df["Close"], timeperiod=14)
    # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    df['TRIX'] = talib.TRIX(df["Close"], timeperiod=30)
    # ULTOSC - Ultimate Oscillator
    df['ULTOSC'] = talib.ULTOSC(df["High"],
                                df["Low"],
                                df["Close"],
                                timeperiod1=7,
                                timeperiod2=14,
                                timeperiod3=28)

    # ######################## Volume Indicators ############################
    # AD - Chaikin A/D Line
    df['AD'] = talib.AD(df["High"], df["Low"], df["Close"], df["Volume"])
Пример #18
0
B=ta.abstract.MA(data, 2, price='600036.SH').tail()

'''
data['SMA'] = ta.abstract.MA(data, 20, price='600036.SH') #普通均线与ta.abstract.MA一样
#data['SMA2'] = ta.abstract.SMA(data, 20, price='600036.SH') #与上面完全一样,普通均线
data['WMA'] = ta.abstract.WMA(data, 20, price='600036.SH') #权重均线(突出中间,用于周期分析)
data['TRIMA'] = ta.abstract.TRIMA(data, 20, price='600036.SH') #指数移动平均线
data['EMA']  = ta.abstract.EMA(data, 20, price='600036.SH')  #指数移动平均线
data['DEMA'] = ta.abstract.DEMA(data, 20, price='600036.SH')  #突出EMA(减小了EMA的滞后)
data['KAMA'] = ta.abstract.KAMA(data, 20, price='600036.SH')  #KAMA表示自适应均线
data_B= ta.abstract.BBANDS(data, timeperiod=20, price='600036.SH')  #ta.abstract.BBANDS计算布林带通道

upperband = ta.abstract.MAX(stock, 20, price='high') #求20日最高价(针对high列)
lowerband = ta.abstract.MIN(stock, 20, price='low')  #求20日最低价(针对low列)

A=ta.ROCR100(value.values,20) #表示计算动量
macd = ta.abstract.MACD(data, price='600036.SH') #蓝色线代表macd,红色线代表macdsignal(均线),两者相减就是macdhist表示macd的变化速度
RSI= ta.abstract.RSI(data,20, price='600036.SH')
RSI = talib.RSI(price, 20) #一样,好像都可以
k,d = ta.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) #KDJ的计算
KDJ = pd.concat([pd.Series(k,index=data.index), pd.Series(d,index=data.index)], axis=1, keys=['slowk','slowd']) #KDJ的计算

adv10 = ta.abstract.MA(volume, 10, price='600036.SH') #观察下这种计算方式!求成交量均线
adv20 = ta.abstract.MA(volume, 20, price='600036.SH')

OBV= pd.Series(ta.OBV(Close, Volume), index=close.index)
AD = pd.Series(ta.AD(High, Low, Close, Volume), index=close.index)
VWAP = talib.SUM(denominator,context.PERIOD)/talib.SUM(volume,context.PERIOD) #talib.SUM是加总函数
MOM_MOM = Momentum(MOM_RS) #Momentum是计算变化率的函数

slope = ta.abstract.LINEARREG_SLOPE(data, 60, price='000001.SZ') #线性回归求K值
Пример #19
0
#1.计算并作图
#step1 Momentum: ROCR100的计算并作图
def change_index(df):
    df.index = pd.Index(
        map(lambda x: datetime.strptime(str(x), "%Y%m%d"), df.index))
    return df


data = change_index(dv.get_ts('close_adj').loc[20170105:])

#!!!注意下这个表达,通过字典生成式读取数据   最后一行是典型的字典读取数据并转换为dataframe格式
symbol = ['000001.SZ', '600036.SH', '600050.SH', '000008.SZ', '000009.SZ']
price_dict = {name: data[name]
              for name in symbol}  #name成为字典的key,data[name]成为key对应的元素
data_mom = pd.DataFrame(
    {item: ta.ROCR100(value.values, 20)
     for item, value in price_dict.items()},
    index=data.index).dropna(axis=0)
#dropna()表示删除为空的行,ta.ROCR100(value.values,20)表示计算动量,原式可为:A=ta.ROCR100(price_dict['000001.SZ'],20) (ta.ROCR100在talib中比较特殊)

fig = plt.figure(figsize=(15, 7))  #图片大小
plt.plot(data_mom)
plt.hlines(100,
           data_mom.index[0],
           data_mom.index[-1],
           linestyles='dashed',
           alpha=0.5)
# !!! plt.hlines表示画一条虚线,100为虚线的位置(高度),data_mom.index[0],data_mom.index[-1]表示宽度,linestyles='dashed'表示虚线
plt.legend(data_mom.columns,
           loc='upper left')  #data_mom.columns为列名,plt.legend表示给线条依次命名
plt.show()
Пример #20
0
def get_rocr100(ohlc):
    rocr100 = ta.ROCR100(ohlc['4_close'], timeperiod=10)

    ohlc['rocr100'] = rocr100
    return ohlc
Пример #21
0
def get_talib_stock_daily(
        stock_code,
        s,
        e,
        append_ori_close=False,
        norms=['volume', 'amount', 'ht_dcphase', 'obv', 'adosc', 'ad', 'cci']):
    """获取经过talib处理后的股票日线数据"""
    stock_data = QA.QA_fetch_stock_day_adv(stock_code, s, e)
    stock_df = stock_data.to_qfq().data
    if append_ori_close:
        stock_df['o_close'] = stock_data.data['close']
    # stock_df['high_qfq'] = stock_data.to_qfq().data['high']
    # stock_df['low_hfq'] = stock_data.to_hfq().data['low']

    close = np.array(stock_df['close'])
    high = np.array(stock_df['high'])
    low = np.array(stock_df['low'])
    _open = np.array(stock_df['open'])
    _volume = np.array(stock_df['volume'])

    stock_df['dema'] = talib.DEMA(close)
    stock_df['ema'] = talib.EMA(close)
    stock_df['ht_tradeline'] = talib.HT_TRENDLINE(close)
    stock_df['kama'] = talib.KAMA(close)
    stock_df['ma'] = talib.MA(close)
    stock_df['mama'], stock_df['fama'] = talib.MAMA(close)
    # MAVP
    stock_df['midpoint'] = talib.MIDPOINT(close)
    stock_df['midprice'] = talib.MIDPRICE(high, low)
    stock_df['sar'] = talib.SAR(high, low)
    stock_df['sarext'] = talib.SAREXT(high, low)
    stock_df['sma'] = talib.SMA(close)
    stock_df['t3'] = talib.T3(close)
    stock_df['tema'] = talib.TEMA(close)
    stock_df['trima'] = talib.TRIMA(close)
    stock_df['wma'] = talib.WMA(close)

    stock_df['adx'] = talib.ADX(high, low, close)
    stock_df['adxr'] = talib.ADXR(high, low, close)
    stock_df['apo'] = talib.APO(close)

    stock_df['aroondown'], stock_df['aroonup'] = talib.AROON(high, low)
    stock_df['aroonosc'] = talib.AROONOSC(high, low)
    stock_df['bop'] = talib.BOP(_open, high, low, close)
    stock_df['cci'] = talib.CCI(high, low, close)
    stock_df['cmo'] = talib.CMO(close)
    stock_df['dx'] = talib.DX(high, low, close)
    # MACD
    stock_df['macd'], stock_df['macdsignal'], stock_df[
        'macdhist'] = talib.MACDEXT(close)
    # MACDFIX
    stock_df['mfi'] = talib.MFI(high, low, close, _volume)
    stock_df['minus_di'] = talib.MINUS_DI(high, low, close)
    stock_df['minus_dm'] = talib.MINUS_DM(high, low)
    stock_df['mom'] = talib.MOM(close)
    stock_df['plus_di'] = talib.PLUS_DI(high, low, close)
    stock_df['plus_dm'] = talib.PLUS_DM(high, low)
    stock_df['ppo'] = talib.PPO(close)
    stock_df['roc'] = talib.ROC(close)
    stock_df['rocp'] = talib.ROCP(close)
    stock_df['rocr'] = talib.ROCR(close)
    stock_df['rocr100'] = talib.ROCR100(close)
    stock_df['rsi'] = talib.RSI(close)
    stock_df['slowk'], stock_df['slowd'] = talib.STOCH(high, low, close)
    stock_df['fastk'], stock_df['fastd'] = talib.STOCHF(high, low, close)
    # STOCHRSI - Stochastic Relative Strength Index
    stock_df['trix'] = talib.TRIX(close)
    stock_df['ultosc'] = talib.ULTOSC(high, low, close)
    stock_df['willr'] = talib.WILLR(high, low, close)

    stock_df['ad'] = talib.AD(high, low, close, _volume)
    stock_df['adosc'] = talib.ADOSC(high, low, close, _volume)
    stock_df['obv'] = talib.OBV(close, _volume)

    stock_df['ht_dcperiod'] = talib.HT_DCPERIOD(close)
    stock_df['ht_dcphase'] = talib.HT_DCPHASE(close)
    stock_df['inphase'], stock_df['quadrature'] = talib.HT_PHASOR(close)
    stock_df['sine'], stock_df['leadsine'] = talib.HT_PHASOR(close)
    stock_df['ht_trendmode'] = talib.HT_TRENDMODE(close)

    stock_df['avgprice'] = talib.AVGPRICE(_open, high, low, close)
    stock_df['medprice'] = talib.MEDPRICE(high, low)
    stock_df['typprice'] = talib.TYPPRICE(high, low, close)
    stock_df['wclprice'] = talib.WCLPRICE(high, low, close)

    stock_df['atr'] = talib.ATR(high, low, close)
    stock_df['natr'] = talib.NATR(high, low, close)
    stock_df['trange'] = talib.TRANGE(high, low, close)

    stock_df['beta'] = talib.BETA(high, low)
    stock_df['correl'] = talib.CORREL(high, low)
    stock_df['linearreg'] = talib.LINEARREG(close)
    stock_df['linearreg_angle'] = talib.LINEARREG_ANGLE(close)
    stock_df['linearreg_intercept'] = talib.LINEARREG_INTERCEPT(close)
    stock_df['linearreg_slope'] = talib.LINEARREG_SLOPE(close)
    stock_df['stddev'] = talib.STDDEV(close)
    stock_df['tsf'] = talib.TSF(close)
    stock_df['var'] = talib.VAR(close)

    stock_df = stock_df.reset_index().set_index('date')

    if norms:
        x = stock_df[norms].values  # returns a numpy array
        x_scaled = MinMaxScaler().fit_transform(x)
        stock_df = stock_df.drop(columns=norms).join(
            pd.DataFrame(x_scaled, columns=norms, index=stock_df.index))

    # stock_df = stock_df.drop(columns=['code', 'open', 'high', 'low'])
    stock_df = stock_df.dropna()
    stock_df = stock_df.drop(columns=['code'])
    return stock_df
Пример #22
0
def add_ta_features(df, ta_settings):
    """Add technial analysis features from typical financial dataset that
    typically include columns such as "open", "high", "low", "price" and
    "volume".

    http://mrjbq7.github.io/ta-lib/

    Args:
        df(pandas.DataFrame): original DataFrame.
        ta_settings(dict): configuration.
    Returns:
        pandas.DataFrame: DataFrame with new features included.
    """

    open = df['open']
    high = df['high']
    low = df['low']
    close = df['price']
    volume = df['volume']

    if ta_settings['overlap']:

        df['ta_overlap_bbands_upper'], df['ta_overlap_bbands_middle'], df[
            'ta_overlap_bbands_lower'] = ta.BBANDS(close,
                                                   timeperiod=5,
                                                   nbdevup=2,
                                                   nbdevdn=2,
                                                   matype=0)
        df['ta_overlap_dema'] = ta.DEMA(
            close, timeperiod=15)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_overlap_ema'] = ta.EMA(close, timeperiod=30)
        df['ta_overlap_kama'] = ta.KAMA(close, timeperiod=30)
        df['ta_overlap_ma'] = ta.MA(close, timeperiod=30, matype=0)
        df['ta_overlap_mama_mama'], df['ta_overlap_mama_fama'] = ta.MAMA(close)
        period = np.random.randint(10, 20, size=len(close)).astype(float)
        df['ta_overlap_mavp'] = ta.MAVP(close,
                                        period,
                                        minperiod=2,
                                        maxperiod=30,
                                        matype=0)
        df['ta_overlap_midpoint'] = ta.MIDPOINT(close, timeperiod=14)
        df['ta_overlap_midprice'] = ta.MIDPRICE(high, low, timeperiod=14)
        df['ta_overlap_sar'] = ta.SAR(high, low, acceleration=0, maximum=0)
        df['ta_overlap_sarext'] = ta.SAREXT(high,
                                            low,
                                            startvalue=0,
                                            offsetonreverse=0,
                                            accelerationinitlong=0,
                                            accelerationlong=0,
                                            accelerationmaxlong=0,
                                            accelerationinitshort=0,
                                            accelerationshort=0,
                                            accelerationmaxshort=0)
        df['ta_overlap_sma'] = ta.SMA(close, timeperiod=30)
        df['ta_overlap_t3'] = ta.T3(close, timeperiod=5, vfactor=0)
        df['ta_overlap_tema'] = ta.TEMA(
            close, timeperiod=12)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_overlap_trima'] = ta.TRIMA(close, timeperiod=30)
        df['ta_overlap_wma'] = ta.WMA(close, timeperiod=30)

        # NOTE: Commented to avoid a lot of Nan values
        # df['ta_overlap_ht_trendline'] = ta.HT_TRENDLINE(close)

    if ta_settings['momentum']:

        df['ta_momentum_adx'] = ta.ADX(high, low, close, timeperiod=14)
        df['ta_momentum_adxr'] = ta.ADXR(high, low, close, timeperiod=14)
        df['ta_momentum_apo'] = ta.APO(close,
                                       fastperiod=12,
                                       slowperiod=26,
                                       matype=0)
        df['ta_momentum_aroondown'], df['ta_momentum_aroonup'] = ta.AROON(
            high, low, timeperiod=14)
        df['ta_momentum_aroonosc'] = ta.AROONOSC(high, low, timeperiod=14)
        df['ta_momentum_bop'] = ta.BOP(open, high, low, close)
        df['ta_momentum_cci'] = ta.CCI(high, low, close, timeperiod=14)
        df['ta_momentum_cmo'] = ta.CMO(close, timeperiod=14)
        df['ta_momentum_dx'] = ta.DX(high, low, close, timeperiod=14)
        df['ta_momentum_macd_macd'], df['ta_momentum_macd_signal'], df[
            'ta_momentum_macd_hist'] = ta.MACD(close,
                                               fastperiod=12,
                                               slowperiod=26,
                                               signalperiod=9)
        df['ta_momentum_macdext_macd'], df['ta_momentum_macdext_signal'], df[
            'ta_momentum_macdext_hist'] = ta.MACDEXT(close,
                                                     fastperiod=12,
                                                     fastmatype=0,
                                                     slowperiod=26,
                                                     slowmatype=0,
                                                     signalperiod=9,
                                                     signalmatype=0)
        df['ta_momentum_macdfix_macd'], df['ta_momentum_macdfix_signal'], df[
            'ta_momentum_macdfix_hist'] = ta.MACDFIX(close, signalperiod=9)
        df['ta_momentum_mfi'] = ta.MFI(high, low, close, volume, timeperiod=14)
        df['ta_momentum_minus_di'] = ta.MINUS_DI(high,
                                                 low,
                                                 close,
                                                 timeperiod=14)
        df['ta_momentum_minus_dm'] = ta.MINUS_DM(high, low, timeperiod=14)
        df['ta_momentum_mom'] = ta.MOM(close, timeperiod=10)
        df['ta_momentum_plus_di'] = ta.PLUS_DI(high, low, close, timeperiod=14)
        df['ta_momentum_plus_dm'] = ta.PLUS_DM(high, low, timeperiod=14)
        df['ta_momentum_ppo'] = ta.PPO(close,
                                       fastperiod=12,
                                       slowperiod=26,
                                       matype=0)
        df['ta_momentum_roc'] = ta.ROC(close, timeperiod=10)
        df['ta_momentum_rocp'] = ta.ROCP(close, timeperiod=10)
        df['ta_momentum_rocr'] = ta.ROCR(close, timeperiod=10)
        df['ta_momentum_rocr100'] = ta.ROCR100(close, timeperiod=10)
        df['ta_momentum_rsi'] = ta.RSI(close, timeperiod=14)
        df['ta_momentum_slowk'], df['ta_momentum_slowd'] = ta.STOCH(
            high,
            low,
            close,
            fastk_period=5,
            slowk_period=3,
            slowk_matype=0,
            slowd_period=3,
            slowd_matype=0)
        df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHF(
            high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0)
        df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHRSI(
            close,
            timeperiod=14,
            fastk_period=5,
            fastd_period=3,
            fastd_matype=0)
        df['ta_momentum_trix'] = ta.TRIX(
            close, timeperiod=12)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_momentum_ultosc'] = ta.ULTOSC(high,
                                             low,
                                             close,
                                             timeperiod1=7,
                                             timeperiod2=14,
                                             timeperiod3=28)
        df['ta_momentum_willr'] = ta.WILLR(high, low, close, timeperiod=14)

    if ta_settings['volume']:

        df['ta_volume_ad'] = ta.AD(high, low, close, volume)
        df['ta_volume_adosc'] = ta.ADOSC(high,
                                         low,
                                         close,
                                         volume,
                                         fastperiod=3,
                                         slowperiod=10)
        df['ta_volume_obv'] = ta.OBV(close, volume)

    if ta_settings['volatility']:

        df['ta_volatility_atr'] = ta.ATR(high, low, close, timeperiod=14)
        df['ta_volatility_natr'] = ta.NATR(high, low, close, timeperiod=14)
        df['ta_volatility_trange'] = ta.TRANGE(high, low, close)

    if ta_settings['price']:

        df['ta_price_avgprice'] = ta.AVGPRICE(open, high, low, close)
        df['ta_price_medprice'] = ta.MEDPRICE(high, low)
        df['ta_price_typprice'] = ta.TYPPRICE(high, low, close)
        df['ta_price_wclprice'] = ta.WCLPRICE(high, low, close)

    if ta_settings['cycle']:

        df['ta_cycle_ht_dcperiod'] = ta.HT_DCPERIOD(close)
        df['ta_cycle_ht_phasor_inphase'], df[
            'ta_cycle_ht_phasor_quadrature'] = ta.HT_PHASOR(close)
        df['ta_cycle_ht_trendmode'] = ta.HT_TRENDMODE(close)

        # NOTE: Commented to avoid a lot of Nan values
        # df['ta_cycle_ht_dcphase'] = ta.HT_DCPHASE(close)
        # df['ta_cycle_ht_sine_sine'], df['ta_cycle_ht_sine_leadsine'] = ta.HT_SINE(close)

    if ta_settings['pattern']:

        df['ta_pattern_cdl2crows'] = ta.CDL2CROWS(open, high, low, close)
        df['ta_pattern_cdl3blackrows'] = ta.CDL3BLACKCROWS(
            open, high, low, close)
        df['ta_pattern_cdl3inside'] = ta.CDL3INSIDE(open, high, low, close)
        df['ta_pattern_cdl3linestrike'] = ta.CDL3LINESTRIKE(
            open, high, low, close)
        df['ta_pattern_cdl3outside'] = ta.CDL3OUTSIDE(open, high, low, close)
        df['ta_pattern_cdl3starsinsouth'] = ta.CDL3STARSINSOUTH(
            open, high, low, close)
        df['ta_pattern_cdl3whitesoldiers'] = ta.CDL3WHITESOLDIERS(
            open, high, low, close)
        df['ta_pattern_cdlabandonedbaby'] = ta.CDLABANDONEDBABY(open,
                                                                high,
                                                                low,
                                                                close,
                                                                penetration=0)
        df['ta_pattern_cdladvanceblock'] = ta.CDLADVANCEBLOCK(
            open, high, low, close)
        df['ta_pattern_cdlbelthold'] = ta.CDLBELTHOLD(open, high, low, close)
        df['ta_pattern_cdlbreakaway'] = ta.CDLBREAKAWAY(open, high, low, close)
        df['ta_pattern_cdlclosingmarubozu'] = ta.CDLCLOSINGMARUBOZU(
            open, high, low, close)
        df['ta_pattern_cdlconcealbabyswall'] = ta.CDLCONCEALBABYSWALL(
            open, high, low, close)
        df['ta_pattern_cdlcounterattack'] = ta.CDLCOUNTERATTACK(
            open, high, low, close)
        df['ta_pattern_cdldarkcloudcover'] = ta.CDLDARKCLOUDCOVER(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdldoji'] = ta.CDLDOJI(open, high, low, close)
        df['ta_pattern_cdldojistar'] = ta.CDLDOJISTAR(open, high, low, close)
        df['ta_pattern_cdldragonflydoji'] = ta.CDLDRAGONFLYDOJI(
            open, high, low, close)
        df['ta_pattern_cdlengulfing'] = ta.CDLENGULFING(open, high, low, close)
        df['ta_pattern_cdleveningdojistar'] = ta.CDLEVENINGDOJISTAR(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdleveningstar'] = ta.CDLEVENINGSTAR(open,
                                                            high,
                                                            low,
                                                            close,
                                                            penetration=0)
        df['ta_pattern_cdlgapsidesidewhite'] = ta.CDLGAPSIDESIDEWHITE(
            open, high, low, close)
        df['ta_pattern_cdlgravestonedoji'] = ta.CDLGRAVESTONEDOJI(
            open, high, low, close)
        df['ta_pattern_cdlhammer'] = ta.CDLHAMMER(open, high, low, close)
        df['ta_pattern_cdlhangingman'] = ta.CDLHANGINGMAN(
            open, high, low, close)
        df['ta_pattern_cdlharami'] = ta.CDLHARAMI(open, high, low, close)
        df['ta_pattern_cdlharamicross'] = ta.CDLHARAMICROSS(
            open, high, low, close)
        df['ta_pattern_cdlhighwave'] = ta.CDLHIGHWAVE(open, high, low, close)
        df['ta_pattern_cdlhikkake'] = ta.CDLHIKKAKE(open, high, low, close)
        df['ta_pattern_cdlhikkakemod'] = ta.CDLHIKKAKEMOD(
            open, high, low, close)
        df['ta_pattern_cdlhomingpigeon'] = ta.CDLHOMINGPIGEON(
            open, high, low, close)
        df['ta_pattern_cdlidentical3crows'] = ta.CDLIDENTICAL3CROWS(
            open, high, low, close)
        df['ta_pattern_cdlinneck'] = ta.CDLINNECK(open, high, low, close)
        df['ta_pattern_cdlinvertedhammer'] = ta.CDLINVERTEDHAMMER(
            open, high, low, close)
        df['ta_pattern_cdlkicking'] = ta.CDLKICKING(open, high, low, close)
        df['ta_pattern_cdlkickingbylength'] = ta.CDLKICKINGBYLENGTH(
            open, high, low, close)
        df['ta_pattern_cdlladderbottom'] = ta.CDLLADDERBOTTOM(
            open, high, low, close)
        df['ta_pattern_cdllongleggeddoji'] = ta.CDLLONGLEGGEDDOJI(
            open, high, low, close)
        df['ta_pattern_cdllongline'] = ta.CDLLONGLINE(open, high, low, close)
        df['ta_pattern_cdlmarubozu'] = ta.CDLMARUBOZU(open, high, low, close)
        df['ta_pattern_cdlmatchinglow'] = ta.CDLMATCHINGLOW(
            open, high, low, close)
        df['ta_pattern_cdlmathold'] = ta.CDLMATHOLD(open,
                                                    high,
                                                    low,
                                                    close,
                                                    penetration=0)
        df['ta_pattern_cdlmorningdojistar'] = ta.CDLMORNINGDOJISTAR(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdlmorningstar'] = ta.CDLMORNINGSTAR(open,
                                                            high,
                                                            low,
                                                            close,
                                                            penetration=0)
        df['ta_pattern_cdllonneck'] = ta.CDLONNECK(open, high, low, close)
        df['ta_pattern_cdlpiercing'] = ta.CDLPIERCING(open, high, low, close)
        df['ta_pattern_cdlrickshawman'] = ta.CDLRICKSHAWMAN(
            open, high, low, close)
        df['ta_pattern_cdlrisefall3methods'] = ta.CDLRISEFALL3METHODS(
            open, high, low, close)
        df['ta_pattern_cdlseparatinglines'] = ta.CDLSEPARATINGLINES(
            open, high, low, close)
        df['ta_pattern_cdlshootingstar'] = ta.CDLSHOOTINGSTAR(
            open, high, low, close)
        df['ta_pattern_cdlshortline'] = ta.CDLSHORTLINE(open, high, low, close)
        df['ta_pattern_cdlspinningtop'] = ta.CDLSPINNINGTOP(
            open, high, low, close)
        df['ta_pattern_cdlstalledpattern'] = ta.CDLSTALLEDPATTERN(
            open, high, low, close)
        df['ta_pattern_cdlsticksandwich'] = ta.CDLSTICKSANDWICH(
            open, high, low, close)
        df['ta_pattern_cdltakuri'] = ta.CDLTAKURI(open, high, low, close)
        df['ta_pattern_cdltasukigap'] = ta.CDLTASUKIGAP(open, high, low, close)
        df['ta_pattern_cdlthrusting'] = ta.CDLTHRUSTING(open, high, low, close)
        df['ta_pattern_cdltristar'] = ta.CDLTRISTAR(open, high, low, close)
        df['ta_pattern_cdlunique3river'] = ta.CDLUNIQUE3RIVER(
            open, high, low, close)
        df['ta_pattern_cdlupsidegap2crows'] = ta.CDLUPSIDEGAP2CROWS(
            open, high, low, close)
        df['ta_pattern_cdlxsidegap3methods'] = ta.CDLXSIDEGAP3METHODS(
            open, high, low, close)

    if ta_settings['statistic']:

        df['ta_statistic_beta'] = ta.BETA(high, low, timeperiod=5)
        df['ta_statistic_correl'] = ta.CORREL(high, low, timeperiod=30)
        df['ta_statistic_linearreg'] = ta.LINEARREG(close, timeperiod=14)
        df['ta_statistic_linearreg_angle'] = ta.LINEARREG_ANGLE(close,
                                                                timeperiod=14)
        df['ta_statistic_linearreg_intercept'] = ta.LINEARREG_INTERCEPT(
            close, timeperiod=14)
        df['ta_statistic_linearreg_slope'] = ta.LINEARREG_SLOPE(close,
                                                                timeperiod=14)
        df['ta_statistic_stddev'] = ta.STDDEV(close, timeperiod=5, nbdev=1)
        df['ta_statistic_tsf'] = ta.TSF(close, timeperiod=14)
        df['ta_statistic_var'] = ta.VAR(close, timeperiod=5, nbdev=1)

    if ta_settings['math_transforms']:

        df['ta_math_transforms_atan'] = ta.ATAN(close)
        df['ta_math_transforms_ceil'] = ta.CEIL(close)
        df['ta_math_transforms_cos'] = ta.COS(close)
        df['ta_math_transforms_floor'] = ta.FLOOR(close)
        df['ta_math_transforms_ln'] = ta.LN(close)
        df['ta_math_transforms_log10'] = ta.LOG10(close)
        df['ta_math_transforms_sin'] = ta.SIN(close)
        df['ta_math_transforms_sqrt'] = ta.SQRT(close)
        df['ta_math_transforms_tan'] = ta.TAN(close)

    if ta_settings['math_operators']:

        df['ta_math_operators_add'] = ta.ADD(high, low)
        df['ta_math_operators_div'] = ta.DIV(high, low)
        df['ta_math_operators_min'], df['ta_math_operators_max'] = ta.MINMAX(
            close, timeperiod=30)
        df['ta_math_operators_minidx'], df[
            'ta_math_operators_maxidx'] = ta.MINMAXINDEX(close, timeperiod=30)
        df['ta_math_operators_mult'] = ta.MULT(high, low)
        df['ta_math_operators_sub'] = ta.SUB(high, low)
        df['ta_math_operators_sum'] = ta.SUM(close, timeperiod=30)

    return df
Пример #23
0
def Momentum_Indicators(dataframe):
	"""
	Momentum Indicators:

	ADX                  Average Directional Movement Index
	ADXR                 Average Directional Movement Index Rating
	APO                  Absolute Price Oscillator
	AROON                Aroon
	AROONOSC             Aroon Oscillator
	BOP                  Balance Of Power
	CCI                  Commodity Channel Index
	CMO                  Chande Momentum Oscillator
	DX                   Directional Movement Index
	MACD                 Moving Average Convergence/Divergence
	MACDEXT              MACD with controllable MA type
	MACDFIX              Moving Average Convergence/Divergence Fix 12/26
	MFI                  Money FLow Index
	MINUS_DI             Minus Directional Indicator
	MINUS_DM             Minus Directional Movement
	MOM                  Momentum
	PLUS_DI              Plus Directional Indicator
	PLUS_DM              Plus Directional Movement
	PPO                  Percentage Price Oscillator
	ROC                  Rate of change : ((price/prevPrice)-1)*100
	ROCP                 Rate of change Percentage: (price-prevPrice)/prevPrice
	ROCR                 Rate of change ratio: (price/prevPrice)
	ROCR100              Rate of change ratio 100 scale: (price/prevPrice)*100
	RSI                  Relative Strength Index
	STOCH                Stochastic
	STOCHF               Stochastic Fast
	STOCHRSI             Stochastic Relative Strength Index
	TRIX                 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
	ULTOSC               Ultimate Oscillator
	WILLR                Williams' %R
	"""
	#ADX - Average Directional Movement Index
	df[f'{ratio}_ADX'] = talib.ADX(High, Low, Close, timeperiod=14)
	#ADXR - Average Directional Movement Index Rating
	df[f'{ratio}_ADXR'] = talib.ADXR(High, Low, Close, timeperiod=14)
	#APO - Absolute Price Oscillator
	#df[f'{ratio}_APO'] = talib.APO(Close, fastperiod=12, sLowperiod=26, matype=0)
	#AROON - Aroon
	aroondown, aroonup = talib.AROON(High, Low, timeperiod=14)
	#AROONOSC - Aroon Oscillator
	df[f'{ratio}_AROONOSC'] = talib.AROONOSC(High, Low, timeperiod=14)
	#BOP - Balance Of Power
	df[f'{ratio}_BOP'] = talib.BOP(Open, High, Low, Close)
	#CCI - Commodity Channel Index
	df[f'{ratio}_CCI'] = talib.CCI(High, Low, Close, timeperiod=14)
	#CMO - Chande Momentum Oscillator
	df[f'{ratio}_CMO'] = talib.CMO(Close, timeperiod=14)
	#DX - Directional Movement Index
	df[f'{ratio}_DX'] = talib.DX(High, Low, Close, timeperiod=14)
	
	#MACD - Moving Average Convergence/Divergence
	#macd, macdsignal, macdhist = talib.MACD(Close, fastperiod=12, sLowperiod=26, signalperiod=9)
	#MACDEXT - MACD with controllable MA type
	#macd, macdsignal, macdhist = talib.MACDEXT(Close, fastperiod=12, fastmatype=0, sLowperiod=26, sLowmatype=0, signalperiod=9, signalmatype=0)
	#MACDFIX - Moving Average Convergence/Divergence Fix 12/26
	#macd, macdsignal, macdhist = talib.MACDFIX(Close, signalperiod=9)
	#MFI - Money FLow Index
	#df[f'{ratio}_MFI'] = talib.MFI(High, Low, Close, volume, timeperiod=14)
	
	#MINUS_DI - Minus Directional Indicator
	df[f'{ratio}_MINUS_DI'] = talib.MINUS_DI(High, Low, Close, timeperiod=14) 
	#MINUS_DM - Minus Directional Movement
	df[f'{ratio}_MINUS_DM'] = talib.MINUS_DM(High, Low, timeperiod=14)
	#Minus Directional Movement 
	#MOM - Momentum
	df[f'{ratio}_MOM'] = talib.MOM(Close, timeperiod=10) 
	#PLUS_DI - Plus Directional Indicator
	df[f'{ratio}_PLUS_DI'] = talib.PLUS_DI(High, Low, Close, timeperiod=14)
	#PLUS_DM - Plus Directional Movement
	df[f'{ratio}_PLUS_DM'] = talib.PLUS_DM(High, Low, timeperiod=14) 
	
	#PPO - Percentage Price Oscillator
	#df[f'{ratio}_PPO'] = talib.PPO(Close, fastperiod=12, sLowperiod=26, matype=0)
	#ROC - Rate of change : ((price/prevPrice)-1)*100
	df[f'{ratio}_ROC'] = talib.ROC(Close, timeperiod=10)
	#ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
	df[f'{ratio}_ROCP'] = talib.ROCP(Close, timeperiod=10)
	#ROCR - Rate of change ratio: (price/prevPrice)
	df[f'{ratio}_ROCR'] = talib.ROCR(Close, timeperiod=10)
	#ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
	df[f'{ratio}_ROCR100'] = talib.ROCR100(Close, timeperiod=10)
	#RSI - Relative Strength Index
	#NOTE: The RSI function has an unstable period.
	df[f'{ratio}_RSI'] = talib.RSI(Close, timeperiod=14)
	
	#STOCH - Stochastic
	#sLowk, sLowd = talib.STOCH(High, Low, Close, fastk_period=5, sLowk_period=3, sLowk_matype=0, sLowd_period=3, sLowd_matype=0)
	#STOCHF - Stochastic Fast
	fastk, fastd = talib.STOCHF(High, Low, Close, fastk_period=5, fastd_period=3, fastd_matype=0)
	#STOCHRSI - Stochastic Relative Strength Index
	fastk, fastd = talib.STOCHRSI(Close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
	#TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
	df[f'{ratio}_TRIX'] = talib.TRIX(Close, timeperiod=30)
	#ULTOSC - Ultimate Oscillator
	df[f'{ratio}_ULTOSC'] = talib.ULTOSC(High, Low, Close, timeperiod1=7, timeperiod2=14, timeperiod3=28)
	#WILLR - Williams' %R
	df[f'{ratio}_ULTOSC'] = talib.WILLR(High, Low, Close, timeperiod=14)

	return
def ta(name, price_h, price_l, price_c, price_v, price_o):
    # function 'MAX'/'MAXINDEX'/'MIN'/'MININDEX'/'MINMAX'/'MINMAXINDEX'/'SUM' is missing
    if name == 'AD':
        return talib.AD(np.array(price_h), np.array(price_l),
                        np.array(price_c), np.asarray(price_v, dtype='float'))
    if name == 'ADOSC':
        return talib.ADOSC(np.array(price_h),
                           np.array(price_l),
                           np.array(price_c),
                           np.asarray(price_v, dtype='float'),
                           fastperiod=2,
                           slowperiod=10)
    if name == 'ADX':
        return talib.ADX(np.array(price_h),
                         np.array(price_l),
                         np.asarray(price_c, dtype='float'),
                         timeperiod=14)
    if name == 'ADXR':
        return talib.ADXR(np.array(price_h),
                          np.array(price_l),
                          np.asarray(price_c, dtype='float'),
                          timeperiod=14)
    if name == 'APO':
        return talib.APO(np.asarray(price_c, dtype='float'),
                         fastperiod=12,
                         slowperiod=26,
                         matype=0)
    if name == 'AROON':
        AROON_DWON, AROON2_UP = talib.AROON(np.array(price_h),
                                            np.asarray(price_l, dtype='float'),
                                            timeperiod=90)
        return (AROON_DWON, AROON2_UP)
    if name == 'AROONOSC':
        return talib.AROONOSC(np.array(price_h),
                              np.asarray(price_l, dtype='float'),
                              timeperiod=14)
    if name == 'ATR':
        return talib.ATR(np.array(price_h),
                         np.array(price_l),
                         np.asarray(price_c, dtype='float'),
                         timeperiod=14)
    if name == 'AVGPRICE':
        return talib.AVGPRICE(np.array(price_o), np.array(price_h),
                              np.array(price_l),
                              np.asarray(price_c, dtype='float'))
    if name == 'BBANDS':
        BBANDS1, BBANDS2, BBANDS3 = talib.BBANDS(np.asarray(price_c,
                                                            dtype='float'),
                                                 matype=MA_Type.T3)
        return BBANDS1
    if name == 'BETA':
        return talib.BETA(np.array(price_h),
                          np.asarray(price_l, dtype='float'),
                          timeperiod=5)
    if name == 'BOP':
        return talib.BOP(np.array(price_o), np.array(price_h),
                         np.array(price_l), np.asarray(price_c, dtype='float'))
    if name == 'CCI':
        return talib.CCI(np.array(price_h),
                         np.array(price_l),
                         np.asarray(price_c, dtype='float'),
                         timeperiod=14)
    if name == 'CDL2CROWS':
        return talib.CDL2CROWS(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDL3BLACKCROWS':
        return talib.CDL3BLACKCROWS(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDL3INSIDE':
        return talib.CDL3INSIDE(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDL3LINESTRIKE':
        return talib.CDL3LINESTRIKE(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDL3OUTSIDE':
        return talib.CDL3OUTSIDE(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDL3STARSINSOUTH':
        return talib.CDL3STARSINSOUTH(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDL3WHITESOLDIERS':
        return talib.CDL3WHITESOLDIERS(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLABANDONEDBABY':
        return talib.CDLABANDONEDBABY(np.array(price_o),
                                      np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'),
                                      penetration=0)
    if name == 'CDLADVANCEBLOCK':
        return talib.CDLADVANCEBLOCK(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLBELTHOLD':
        return talib.CDLBELTHOLD(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLBREAKAWAY':
        return talib.CDLBREAKAWAY(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLCLOSINGMARUBOZU':
        return talib.CDLCLOSINGMARUBOZU(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLCONCEALBABYSWALL':
        return talib.CDLCONCEALBABYSWALL(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CDLCOUNTERATTACK':
        return talib.CDLCOUNTERATTACK(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDLDARKCLOUDCOVER':
        return talib.CDLDARKCLOUDCOVER(np.array(price_o),
                                       np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'),
                                       penetration=0)
    if name == 'CDLDOJI':
        return talib.CDLDOJI(np.array(price_o), np.array(price_h),
                             np.array(price_l),
                             np.asarray(price_c, dtype='float'))
    if name == 'CDLDOJISTAR':
        return talib.CDLDOJISTAR(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLDRAGONFLYDOJI':
        return talib.CDLDRAGONFLYDOJI(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDLENGULFING':
        return talib.CDLENGULFING(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLEVENINGDOJISTAR':
        return talib.CDLEVENINGDOJISTAR(np.array(price_o),
                                        np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'),
                                        penetration=0)
    if name == 'CDLEVENINGSTAR':
        return talib.CDLEVENINGSTAR(np.array(price_o),
                                    np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'),
                                    penetration=0)
    if name == 'CDLGAPSIDESIDEWHITE':
        return talib.CDLGAPSIDESIDEWHITE(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CDLGRAVESTONEDOJI':
        return talib.CDLGRAVESTONEDOJI(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLHAMMER':
        return talib.CDLHAMMER(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLHANGINGMAN':
        return talib.CDLHANGINGMAN(np.array(price_o), np.array(price_h),
                                   np.array(price_l),
                                   np.asarray(price_c, dtype='float'))
    if name == 'CDLHARAMI':
        return talib.CDLHARAMI(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLHARAMICROSS':
        return talib.CDLHARAMICROSS(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLHIGHWAVE':
        return talib.CDLHIGHWAVE(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLHIKKAKE':
        return talib.CDLHIKKAKE(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLHIKKAKEMOD':
        return talib.CDLHIKKAKEMOD(np.array(price_o), np.array(price_h),
                                   np.array(price_l),
                                   np.asarray(price_c, dtype='float'))
    if name == 'CDLHOMINGPIGEON':
        return talib.CDLHOMINGPIGEON(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLIDENTICAL3CROWS':
        return talib.CDLIDENTICAL3CROWS(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLINNECK':
        return talib.CDLINNECK(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLINVERTEDHAMMER':
        return talib.CDLINVERTEDHAMMER(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLKICKING':
        return talib.CDLKICKING(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLKICKINGBYLENGTH':
        return talib.CDLKICKINGBYLENGTH(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))

    if name == 'CDLLADDERBOTTOM':
        return talib.CDLLADDERBOTTOM(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLLONGLEGGEDDOJI':
        return talib.CDLLONGLEGGEDDOJI(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLLONGLINE':
        return talib.CDLLONGLINE(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLMARUBOZU':
        return talib.CDLMARUBOZU(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLMATCHINGLOW':
        return talib.CDLMATCHINGLOW(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLMATHOLD':
        return talib.CDLMATHOLD(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLMORNINGDOJISTAR':
        return talib.CDLMORNINGDOJISTAR(np.array(price_o),
                                        np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'),
                                        penetration=0)
    if name == 'CDLMORNINGSTAR':
        return talib.CDLMORNINGSTAR(np.array(price_o),
                                    np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'),
                                    penetration=0)
    if name == 'CDLONNECK':
        return talib.CDLONNECK(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLPIERCING':
        return talib.CDLPIERCING(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLRICKSHAWMAN':
        return talib.CDLRICKSHAWMAN(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLRISEFALL3METHODS':
        return talib.CDLRISEFALL3METHODS(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CDLSEPARATINGLINES':
        return talib.CDLSEPARATINGLINES(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLSHOOTINGSTAR':
        return talib.CDLSHOOTINGSTAR(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLSHORTLINE':
        return talib.CDLSHORTLINE(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLSPINNINGTOP':
        return talib.CDLSPINNINGTOP(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLSTALLEDPATTERN':
        return talib.CDLSTALLEDPATTERN(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLSTICKSANDWICH':
        return talib.CDLSTICKSANDWICH(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDLTAKURI':
        return talib.CDLTAKURI(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLTASUKIGAP':
        return talib.CDLTASUKIGAP(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLTHRUSTING':
        return talib.CDLTHRUSTING(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLTRISTAR':
        return talib.CDLTRISTAR(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLUNIQUE3RIVER':
        return talib.CDLUNIQUE3RIVER(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLUPSIDEGAP2CROWS':
        return talib.CDLUPSIDEGAP2CROWS(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLXSIDEGAP3METHODS':
        return talib.CDLXSIDEGAP3METHODS(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CMO':
        return talib.CMO(np.asarray(price_c, dtype='float'), timeperiod=14)
    if name == 'CORREL':
        return talib.CORREL(np.array(price_h),
                            np.asarray(price_l, dtype='float'),
                            timeperiod=30)
    if name == 'DEMA':
        return talib.DEMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'DX':
        return talib.DX(np.array(price_h),
                        np.array(price_l),
                        np.asarray(price_c, dtype='float'),
                        timeperiod=14)
    if name == 'EMA':
        return talib.EMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'HT_DCPERIOD':
        return talib.HT_DCPERIOD(np.asarray(price_c, dtype='float'))
    if name == 'HT_DCPHASE':
        return talib.HT_DCPHASE(np.asarray(price_c, dtype='float'))
    if name == 'HT_PHASOR':
        HT_PHASOR1, HT_PHASOR2 = talib.HT_PHASOR(
            np.asarray(price_c, dtype='float')
        )  # use HT_PHASOR1 for the indication of up and down
        return HT_PHASOR1
    if name == 'HT_SINE':
        HT_SINE1, HT_SINE2 = talib.HT_SINE(np.asarray(price_c, dtype='float'))
        return HT_SINE1
    if name == 'HT_TRENDLINE':
        return talib.HT_TRENDLINE(np.asarray(price_c, dtype='float'))
    if name == 'HT_TRENDMODE':
        return talib.HT_TRENDMODE(np.asarray(price_c, dtype='float'))
    if name == 'KAMA':
        return talib.KAMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'LINEARREG':
        return talib.LINEARREG(np.asarray(price_c, dtype='float'),
                               timeperiod=14)
    if name == 'LINEARREG_ANGLE':
        return talib.LINEARREG_ANGLE(np.asarray(price_c, dtype='float'),
                                     timeperiod=14)
    if name == 'LINEARREG_INTERCEPT':
        return talib.LINEARREG_INTERCEPT(np.asarray(price_c, dtype='float'),
                                         timeperiod=14)
    if name == 'LINEARREG_SLOPE':
        return talib.LINEARREG_SLOPE(np.asarray(price_c, dtype='float'),
                                     timeperiod=14)
    if name == 'MA':
        return talib.MA(np.asarray(price_c, dtype='float'),
                        timeperiod=30,
                        matype=0)
    if name == 'MACD':
        MACD1, MACD2, MACD3 = talib.MACD(np.asarray(price_c, dtype='float'),
                                         fastperiod=12,
                                         slowperiod=26,
                                         signalperiod=9)
        return MACD1
    if nam == 'MACDEXT':
        return talib.MACDEXT(np.asarray(price_c, dtype='float'),
                             fastperiod=12,
                             fastmatype=0,
                             slowperiod=26,
                             slowmatype=0,
                             signalperiod=9,
                             signalmatype=0)
    if name == 'MACDFIX':
        MACDFIX1, MACDFIX2, MACDFIX3 = talib.MACDFIX(np.asarray(price_c,
                                                                dtype='float'),
                                                     signalperiod=9)
        return MACDFIX1
    if name == 'MAMA':
        MAMA1, MAMA2 = talib.MAMA(np.asarray(price_c, dtype='float'),
                                  fastlimit=0,
                                  slowlimit=0)
        return MAMA1
    if name == 'MEDPRICE':
        return talib.MEDPRICE(np.array(price_h),
                              np.asarray(price_l, dtype='float'))
    if name == 'MINUS_DI':
        return talib.MINUS_DI(np.array(price_h),
                              np.array(price_l),
                              np.asarray(price_c, dtype='float'),
                              timeperiod=14)
    if name == 'MINUS_DM':
        return talib.MINUS_DM(np.array(price_h),
                              np.asarray(price_l, dtype='float'),
                              timeperiod=14)
    if name == 'MOM':
        return talib.MOM(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'NATR':
        return talib.NATR(np.array(price_h),
                          np.array(price_l),
                          np.asarray(price_c, dtype='float'),
                          timeperiod=14)
    if name == 'OBV':
        return talib.OBV(np.array(price_c), np.asarray(price_v, dtype='float'))
    if name == 'PLUS_DI':
        return talib.PLUS_DI(np.array(price_h),
                             np.array(price_l),
                             np.asarray(price_c, dtype='float'),
                             timeperiod=14)
    if name == 'PLUS_DM':
        return talib.PLUS_DM(np.array(price_h),
                             np.asarray(price_l, dtype='float'),
                             timeperiod=14)
    if name == 'PPO':
        return talib.PPO(np.asarray(price_c, dtype='float'),
                         fastperiod=12,
                         slowperiod=26,
                         matype=0)
    if name == 'ROC':
        return talib.ROC(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'ROCP':
        return talib.ROCP(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'ROCR100':
        return talib.ROCR100(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'RSI':
        return talib.RSI(np.asarray(price_c, dtype='float'), timeperiod=14)
    if name == 'SAR':
        return talib.SAR(np.array(price_h),
                         np.asarray(price_l, dtype='float'),
                         acceleration=0,
                         maximum=0)
    if name == 'SAREXT':
        return talib.SAREXT(np.array(price_h),
                            np.asarray(price_l, dtype='float'),
                            startvalue=0,
                            offsetonreverse=0,
                            accelerationinitlong=0,
                            accelerationlong=0,
                            accelerationmaxlong=0,
                            accelerationinitshort=0,
                            accelerationshort=0,
                            accelerationmaxshort=0)
    if name == 'SMA':
        return talib.SMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'STDDEV':
        return talib.STDDEV(np.asarray(price_c, dtype='float'),
                            timeperiod=5,
                            nbdev=1)
    if name == 'STOCH':
        STOCH1, STOCH2 = talib.STOCH(np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'),
                                     fastk_period=5,
                                     slowk_period=3,
                                     slowk_matype=0,
                                     slowd_period=3,
                                     slowd_matype=0)
        return STOCH1
    if name == 'STOCHF':
        STOCHF1, STOCHF2 = talib.STOCHF(np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'),
                                        fastk_period=5,
                                        fastd_period=3,
                                        fastd_matype=0)
        return STOCHF1
    if name == 'STOCHRSI':
        STOCHRSI1, STOCHRSI2 = talib.STOCHRSI(np.asarray(price_c,
                                                         dtype='float'),
                                              timeperiod=14,
                                              fastk_period=5,
                                              fastd_period=3,
                                              fastd_matype=0)
        return STOCHRSI1
    if name == 'T3':
        return talib.T3(np.asarray(price_c, dtype='float'),
                        timeperiod=5,
                        vfactor=0)
    if name == 'TEMA':
        return talib.TEMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'TRANGE':
        return talib.TRANGE(np.array(price_h), np.array(price_l),
                            np.asarray(price_c, dtype='float'))
    if name == 'TRIMA':
        return talib.TRIMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'TRIX':
        return talib.TRIX(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'TSF':
        return talib.TSF(np.asarray(price_c, dtype='float'), timeperiod=14)
    if name == 'TYPPRICE':
        return talib.TYPPRICE(np.array(price_h), np.array(price_l),
                              np.asarray(price_c, dtype='float'))
    if name == 'ULTOSC':
        return talib.ULTOSC(np.array(price_h),
                            np.array(price_l),
                            np.asarray(price_c, dtype='float'),
                            timeperiod1=7,
                            timeperiod2=14,
                            timeperiod3=28)
    if name == 'VAR':
        return talib.VAR(np.asarray(price_c, dtype='float'),
                         timeperiod=5,
                         nbdev=1)
    if name == 'WCLPRICE':
        return talib.WCLPRICE(np.array(price_h), np.array(price_l),
                              np.asarray(price_c, dtype='float'))
    if name == 'WILLR':
        return talib.WILLR(np.array(price_h),
                           np.array(price_l),
                           np.asarray(price_c, dtype='float'),
                           timeperiod=14)
    if name == 'WMA':
        return talib.WMA(np.asarray(price_c, dtype='float'), timeperiod=30)
        plus_dm = ta.PLUS_DM(high, low, timeperiod=14)

        #PPO - Percentage Price Oscillator
        ppo = ta.PPO(close, fastperiod=12, slowperiod=26, matype=0)

        #ROC - Rate of change : ((price/prevPrice)-1)*100
        roc = ta.ROC(close, timeperiod=10)

        #ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
        rocp = ta.ROCP(close, timeperiod=10)

        #ROCR - Rate of change ratio: (price/prevPrice)
        rocr = ta.ROCR(close, timeperiod=10)

        #ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
        rocr100 = ta.ROCR100(close, timeperiod=10)

        #RSI - Relative Strength Index
        rsi = ta.RSI(close, timeperiod=14)

        #STOCH - Stochastic
        slowk, slowd = ta.STOCH(high,
                                low,
                                close,
                                fastk_period=5,
                                slowk_period=3,
                                slowk_matype=0,
                                slowd_period=3,
                                slowd_matype=0)

        #STOCHF - Stochastic Fast
Пример #26
0
def ROCR100(data, **kwargs):
    _check_talib_presence()
    prices = _extract_series(data)
    return talib.ROCR100(prices, **kwargs)
Пример #27
0
    def calculate(self, para):

        self.t = self.inputdata[:, 0]
        self.op = self.inputdata[:, 1]
        self.high = self.inputdata[:, 2]
        self.low = self.inputdata[:, 3]
        self.close = self.inputdata[:, 4]
        #adjusted close
        self.close1 = self.inputdata[:, 5]
        self.volume = self.inputdata[:, 6]
        #Overlap study

        #Overlap Studies
        #Overlap Studies
        if para is 'BBANDS':  #Bollinger Bands
            upperband, middleband, lowerband = ta.BBANDS(self.close,
                                                         timeperiod=self.tp,
                                                         nbdevup=2,
                                                         nbdevdn=2,
                                                         matype=0)
            self.output = [upperband, middleband, lowerband]

        elif para is 'DEMA':  #Double Exponential Moving Average
            self.output = ta.DEMA(self.close, timeperiod=self.tp)

        elif para is 'EMA':  #Exponential Moving Average
            self.output = ta.EMA(self.close, timeperiod=self.tp)

        elif para is 'HT_TRENDLINE':  #Hilbert Transform - Instantaneous Trendline
            self.output = ta.HT_TRENDLINE(self.close)

        elif para is 'KAMA':  #Kaufman Adaptive Moving Average
            self.output = ta.KAMA(self.close, timeperiod=self.tp)

        elif para is 'MA':  #Moving average
            self.output = ta.MA(self.close, timeperiod=self.tp, matype=0)

        elif para is 'MAMA':  #MESA Adaptive Moving Average
            mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0)

        elif para is 'MAVP':  #Moving average with variable period
            self.output = ta.MAVP(self.close,
                                  periods=10,
                                  minperiod=self.tp,
                                  maxperiod=self.tp1,
                                  matype=0)

        elif para is 'MIDPOINT':  #MidPoint over period
            self.output = ta.MIDPOINT(self.close, timeperiod=self.tp)

        elif para is 'MIDPRICE':  #Midpoint Price over period
            self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp)

        elif para is 'SAR':  #Parabolic SAR
            self.output = ta.SAR(self.high,
                                 self.low,
                                 acceleration=0,
                                 maximum=0)

        elif para is 'SAREXT':  #Parabolic SAR - Extended
            self.output = ta.SAREXT(self.high,
                                    self.low,
                                    startvalue=0,
                                    offsetonreverse=0,
                                    accelerationinitlong=0,
                                    accelerationlong=0,
                                    accelerationmaxlong=0,
                                    accelerationinitshort=0,
                                    accelerationshort=0,
                                    accelerationmaxshort=0)

        elif para is 'SMA':  #Simple Moving Average
            self.output = ta.SMA(self.close, timeperiod=self.tp)

        elif para is 'T3':  #Triple Exponential Moving Average (T3)
            self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0)

        elif para is 'TEMA':  #Triple Exponential Moving Average
            self.output = ta.TEMA(self.close, timeperiod=self.tp)

        elif para is 'TRIMA':  #Triangular Moving Average
            self.output = ta.TRIMA(self.close, timeperiod=self.tp)

        elif para is 'WMA':  #Weighted Moving Average
            self.output = ta.WMA(self.close, timeperiod=self.tp)

        #Momentum Indicators
        elif para is 'ADX':  #Average Directional Movement Index
            self.output = ta.ADX(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'ADXR':  #Average Directional Movement Index Rating
            self.output = ta.ADXR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'APO':  #Absolute Price Oscillator
            self.output = ta.APO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'AROON':  #Aroon
            aroondown, aroonup = ta.AROON(self.high,
                                          self.low,
                                          timeperiod=self.tp)
            self.output = [aroondown, aroonup]

        elif para is 'AROONOSC':  #Aroon Oscillator
            self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp)

        elif para is 'BOP':  #Balance Of Power
            self.output = ta.BOP(self.op, self.high, self.low, self.close)

        elif para is 'CCI':  #Commodity Channel Index
            self.output = ta.CCI(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'CMO':  #Chande Momentum Oscillator
            self.output = ta.CMO(self.close, timeperiod=self.tp)

        elif para is 'DX':  #Directional Movement Index
            self.output = ta.DX(self.high,
                                self.low,
                                self.close,
                                timeperiod=self.tp)

        elif para is 'MACD':  #Moving Average Convergence/Divergence
            macd, macdsignal, macdhist = ta.MACD(self.close,
                                                 fastperiod=12,
                                                 slowperiod=26,
                                                 signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDEXT':  #MACD with controllable MA type
            macd, macdsignal, macdhist = ta.MACDEXT(self.close,
                                                    fastperiod=12,
                                                    fastmatype=0,
                                                    slowperiod=26,
                                                    slowmatype=0,
                                                    signalperiod=9,
                                                    signalmatype=0)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDFIX':  #Moving Average Convergence/Divergence Fix 12/26
            macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MFI':  #Money Flow Index
            self.output = ta.MFI(self.high,
                                 self.low,
                                 self.close,
                                 self.volume,
                                 timeperiod=self.tp)

        elif para is 'MINUS_DI':  #Minus Directional Indicator
            self.output = ta.MINUS_DI(self.high,
                                      self.low,
                                      self.close,
                                      timeperiod=self.tp)

        elif para is 'MINUS_DM':  #Minus Directional Movement
            self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'MOM':  #Momentum
            self.output = ta.MOM(self.close, timeperiod=10)

        elif para is 'PLUS_DI':  #Plus Directional Indicator
            self.output = ta.PLUS_DI(self.high,
                                     self.low,
                                     self.close,
                                     timeperiod=self.tp)

        elif para is 'PLUS_DM':  #Plus Directional Movement
            self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'PPO':  #Percentage Price Oscillator
            self.output = ta.PPO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'ROC':  #Rate of change : ((price/prevPrice)-1)*100
            self.output = ta.ROC(self.close, timeperiod=10)

        elif para is 'ROCP':  #Rate of change Percentage: (price-prevPrice)/prevPrice
            self.output = ta.ROCP(self.close, timeperiod=10)

        elif para is 'ROCR':  #Rate of change ratio: (price/prevPrice)
            self.output = ta.ROCR(self.close, timeperiod=10)

        elif para is 'ROCR100':  #Rate of change ratio 100 scale: (price/prevPrice)*100
            self.output = ta.ROCR100(self.close, timeperiod=10)

        elif para is 'RSI':  #Relative Strength Index
            self.output = ta.RSI(self.close, timeperiod=self.tp)

        elif para is 'STOCH':  #Stochastic
            slowk, slowd = ta.STOCH(self.high,
                                    self.low,
                                    self.close,
                                    fastk_period=5,
                                    slowk_period=3,
                                    slowk_matype=0,
                                    slowd_period=3,
                                    slowd_matype=0)
            self.output = [slowk, slowd]

        elif para is 'STOCHF':  #Stochastic Fast
            fastk, fastd = ta.STOCHF(self.high,
                                     self.low,
                                     self.close,
                                     fastk_period=5,
                                     fastd_period=3,
                                     fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'STOCHRSI':  #Stochastic Relative Strength Index
            fastk, fastd = ta.STOCHRSI(self.close,
                                       timeperiod=self.tp,
                                       fastk_period=5,
                                       fastd_period=3,
                                       fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'TRIX':  #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
            self.output = ta.TRIX(self.close, timeperiod=self.tp)

        elif para is 'ULTOSC':  #Ultimate Oscillator
            self.output = ta.ULTOSC(self.high,
                                    self.low,
                                    self.close,
                                    timeperiod1=self.tp,
                                    timeperiod2=self.tp1,
                                    timeperiod3=self.tp2)

        elif para is 'WILLR':  #Williams' %R
            self.output = ta.WILLR(self.high,
                                   self.low,
                                   self.close,
                                   timeperiod=self.tp)

        # Volume Indicators    : #
        elif para is 'AD':  #Chaikin A/D Line
            self.output = ta.AD(self.high, self.low, self.close, self.volume)

        elif para is 'ADOSC':  #Chaikin A/D Oscillator
            self.output = ta.ADOSC(self.high,
                                   self.low,
                                   self.close,
                                   self.volume,
                                   fastperiod=3,
                                   slowperiod=10)

        elif para is 'OBV':  #On Balance Volume
            self.output = ta.OBV(self.close, self.volume)

    # Volatility Indicators: #
        elif para is 'ATR':  #Average True Range
            self.output = ta.ATR(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'NATR':  #Normalized Average True Range
            self.output = ta.NATR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'TRANGE':  #True Range
            self.output = ta.TRANGE(self.high, self.low, self.close)

        #Price Transform      : #
        elif para is 'AVGPRICE':  #Average Price
            self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close)

        elif para is 'MEDPRICE':  #Median Price
            self.output = ta.MEDPRICE(self.high, self.low)

        elif para is 'TYPPRICE':  #Typical Price
            self.output = ta.TYPPRICE(self.high, self.low, self.close)

        elif para is 'WCLPRICE':  #Weighted Close Price
            self.output = ta.WCLPRICE(self.high, self.low, self.close)

        #Cycle Indicators     : #
        elif para is 'HT_DCPERIOD':  #Hilbert Transform - Dominant Cycle Period
            self.output = ta.HT_DCPERIOD(self.close)

        elif para is 'HT_DCPHASE':  #Hilbert Transform - Dominant Cycle Phase
            self.output = ta.HT_DCPHASE(self.close)

        elif para is 'HT_PHASOR':  #Hilbert Transform - Phasor Components
            inphase, quadrature = ta.HT_PHASOR(self.close)
            self.output = [inphase, quadrature]

        elif para is 'HT_SINE':  #Hilbert Transform - SineWave #2
            sine, leadsine = ta.HT_SINE(self.close)
            self.output = [sine, leadsine]

        elif para is 'HT_TRENDMODE':  #Hilbert Transform - Trend vs Cycle Mode
            self.integer = ta.HT_TRENDMODE(self.close)

        #Pattern Recognition  : #
        elif para is 'CDL2CROWS':  #Two Crows
            self.integer = ta.CDL2CROWS(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDL3BLACKCROWS':  #Three Black Crows
            self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3INSIDE':  #Three Inside Up/Down
            self.integer = ta.CDL3INSIDE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDL3LINESTRIKE':  #Three-Line Strike
            self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3OUTSIDE':  #Three Outside Up/Down
            self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDL3STARSINSOUTH':  #Three Stars In The South
            self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDL3WHITESOLDIERS':  #Three Advancing White Soldiers
            self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLABANDONEDBABY':  #Abandoned Baby
            self.integer = ta.CDLABANDONEDBABY(self.op,
                                               self.high,
                                               self.low,
                                               self.close,
                                               penetration=0)

        elif para is 'CDLBELTHOLD':  #Belt-hold
            self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLBREAKAWAY':  #Breakaway
            self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLCLOSINGMARUBOZU':  #Closing Marubozu
            self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLCONCEALBABYSWALL':  #Concealing Baby Swallow
            self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLCOUNTERATTACK':  #Counterattack
            self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLDARKCLOUDCOVER':  #Dark Cloud Cover
            self.integer = ta.CDLDARKCLOUDCOVER(self.op,
                                                self.high,
                                                self.low,
                                                self.close,
                                                penetration=0)

        elif para is 'CDLDOJI':  #Doji
            self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close)

        elif para is 'CDLDOJISTAR':  #Doji Star
            self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLDRAGONFLYDOJI':  #Dragonfly Doji
            self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLENGULFING':  #Engulfing Pattern
            self.integer = ta.CDLENGULFING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLEVENINGDOJISTAR':  #Evening Doji Star
            self.integer = ta.CDLEVENINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLEVENINGSTAR':  #Evening Star
            self.integer = ta.CDLEVENINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLGAPSIDESIDEWHITE':  #Up/Down-gap side-by-side white lines
            self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLGRAVESTONEDOJI':  #Gravestone Doji
            self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLHAMMER':  #Hammer
            self.integer = ta.CDLHAMMER(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHANGINGMAN':  #Hanging Man
            self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHARAMI':  #Harami Pattern
            self.integer = ta.CDLHARAMI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHARAMICROSS':  #Harami Cross Pattern
            self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLHIGHWAVE':  #High-Wave Candle
            self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLHIKKAKE':  #Hikkake Pattern
            self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLHIKKAKEMOD':  #Modified Hikkake Pattern
            self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHOMINGPIGEON':  #Homing Pigeon
            self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLIDENTICAL3CROWS':  #Identical Three Crows
            self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLINNECK':  #In-Neck Pattern
            self.integer = ta.CDLINNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLINVERTEDHAMMER':  #Inverted Hammer
            self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLKICKING':  #Kicking
            self.integer = ta.CDLKICKING(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLKICKINGBYLENGTH':  #Kicking - bull/bear determined by the longer marubozu
            self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLLADDERBOTTOM':  #Ladder Bottom
            self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLLONGLEGGEDDOJI':  #Long Legged Doji
            self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLLONGLINE':  #Long Line Candle
            self.integer = ta.CDLLONGLINE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMARUBOZU':  #Marubozu
            self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMATCHINGLOW':  #Matching Low
            self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLMATHOLD':  #Mat Hold
            self.integer = ta.CDLMATHOLD(self.op,
                                         self.high,
                                         self.low,
                                         self.close,
                                         penetration=0)

        elif para is 'CDLMORNINGDOJISTAR':  #Morning Doji Star
            self.integer = ta.CDLMORNINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLMORNINGSTAR':  #Morning Star
            self.integer = ta.CDLMORNINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLONNECK':  #On-Neck Pattern
            self.integer = ta.CDLONNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLPIERCING':  #Piercing Pattern
            self.integer = ta.CDLPIERCING(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLRICKSHAWMAN':  #Rickshaw Man
            self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLRISEFALL3METHODS':  #Rising/Falling Three Methods
            self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLSEPARATINGLINES':  #Separating Lines
            self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLSHOOTINGSTAR':  #Shooting Star
            self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLSHORTLINE':  #Short Line Candle
            self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLSPINNINGTOP':  #Spinning Top
            self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLSTALLEDPATTERN':  #Stalled Pattern
            self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLSTICKSANDWICH':  #Stick Sandwich
            self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLTAKURI':  #Takuri (Dragonfly Doji with very long lower shadow)
            self.integer = ta.CDLTAKURI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLTASUKIGAP':  #Tasuki Gap
            self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTHRUSTING':  #Thrusting Pattern
            self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTRISTAR':  #Tristar Pattern
            self.integer = ta.CDLTRISTAR(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLUNIQUE3RIVER':  #Unique 3 River
            self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLUPSIDEGAP2CROWS':  #Upside Gap Two Crows
            self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLXSIDEGAP3METHODS':  #Upside/Downside Gap Three Methods
            self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low,
                                                  self.close)

        #Statistic Functions  : #
        elif para is 'BETA':  #Beta
            self.output = ta.BETA(self.high, self.low, timeperiod=5)

        elif para is 'CORREL':  #Pearson's Correlation Coefficient (r)
            self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp)

        elif para is 'LINEARREG':  #Linear Regression
            self.output = ta.LINEARREG(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_ANGLE':  #Linear Regression Angle
            self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_INTERCEPT':  #Linear Regression Intercept
            self.output = ta.LINEARREG_INTERCEPT(self.close,
                                                 timeperiod=self.tp)

        elif para is 'LINEARREG_SLOPE':  #Linear Regression Slope
            self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp)

        elif para is 'STDDEV':  #Standard Deviation
            self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1)

        elif para is 'TSF':  #Time Series Forecast
            self.output = ta.TSF(self.close, timeperiod=self.tp)

        elif para is 'VAR':  #Variance
            self.output = ta.VAR(self.close, timeperiod=5, nbdev=1)

        else:
            print('You issued command:' + para)
Пример #28
0
def third_making_indicator_5min(dataframe):
    Open_lis = np.array(dataframe['open'], dtype='float')
    High_lis = np.array(dataframe['high'], dtype='float')
    Low_lis = np.array(dataframe['low'], dtype='float')
    Clz_lis = np.array(dataframe['weigted_price'], dtype='float')
    Vol_lis = np.array(dataframe['volume'], dtype='float')

    ##지표##
    SMA_3_C = ta.SMA(Clz_lis, timeperiod=3)
    SMA_5_H = ta.SMA(High_lis, timeperiod=5)
    SMA_5_L = ta.SMA(Low_lis, timeperiod=5)
    SMA_5_C = ta.SMA(Clz_lis, timeperiod=5)
    SMA_10_H = ta.SMA(High_lis, timeperiod=10)
    SMA_10_L = ta.SMA(Low_lis, timeperiod=10)
    SMA_10_C = ta.SMA(Clz_lis, timeperiod=10)
    RSI_2_C = ta.RSI(Clz_lis, timeperiod=2)
    RSI_3_C = ta.RSI(Clz_lis, timeperiod=3)
    RSI_5_C = ta.RSI(Clz_lis, timeperiod=5)
    RSI_7_H = ta.RSI(High_lis, timeperiod=7)
    RSI_7_L = ta.RSI(Low_lis, timeperiod=7)
    RSI_7_C = ta.RSI(Clz_lis, timeperiod=7)
    RSI_14_H = ta.RSI(High_lis, timeperiod=14)
    RSI_14_L = ta.RSI(Low_lis, timeperiod=14)
    RSI_14_C = ta.RSI(Clz_lis, timeperiod=14)
    ADX = ta.ADX(High_lis, Low_lis, Clz_lis, timeperiod=14)
    ADXR = ta.ADXR(High_lis, Low_lis, Clz_lis, timeperiod=14)
    Aroondown, Aroonup = ta.AROON(High_lis, Low_lis, timeperiod=14)
    Aroonosc = ta.AROONOSC(High_lis, Low_lis, timeperiod=14)
    BOP = ta.BOP(Open_lis, High_lis, Low_lis, Clz_lis)
    CMO = ta.CMO(Clz_lis, timeperiod=14)
    DX = ta.DX(High_lis, Low_lis, Clz_lis, timeperiod=14)
    MFI = ta.MFI(High_lis, Low_lis, Clz_lis, Vol_lis, timeperiod=14)
    MINUS_DI = ta.MINUS_DI(High_lis, Low_lis, Clz_lis, timeperiod=14)
    PLUSDI = ta.PLUS_DI(High_lis, Low_lis, Clz_lis, timeperiod=14)
    PPO = ta.PPO(Clz_lis, fastperiod=12, slowperiod=26, matype=0)
    ROC = ta.ROC(Clz_lis, timeperiod=10)
    ROCP = ta.ROCP(Clz_lis, timeperiod=10)
    ROCR = ta.ROCR(Clz_lis, timeperiod=10)
    ROCR100 = ta.ROCR100(Clz_lis, timeperiod=10)
    Slowk, Slowd = ta.STOCH(High_lis,
                            Low_lis,
                            Clz_lis,
                            fastk_period=5,
                            slowk_period=3,
                            slowk_matype=0,
                            slowd_period=3,
                            slowd_matype=0)
    STOCHF_f, STOCHF_d = ta.STOCHF(High_lis,
                                   Low_lis,
                                   Clz_lis,
                                   fastk_period=5,
                                   fastd_period=3,
                                   fastd_matype=0)
    Fastk, Fastd = ta.STOCHRSI(Clz_lis,
                               timeperiod=14,
                               fastk_period=5,
                               fastd_period=3,
                               fastd_matype=0)
    TRIX = ta.TRIX(Clz_lis, timeperiod=30)
    ULTOSC = ta.ULTOSC(High_lis,
                       Low_lis,
                       Clz_lis,
                       timeperiod1=7,
                       timeperiod2=14,
                       timeperiod3=28)
    WILLR = ta.WILLR(High_lis, Low_lis, Clz_lis, timeperiod=14)
    ADOSC = ta.ADOSC(High_lis,
                     Low_lis,
                     Clz_lis,
                     Vol_lis,
                     fastperiod=3,
                     slowperiod=10)
    NATR = ta.NATR(High_lis, Low_lis, Clz_lis, timeperiod=14)
    HT_DCPERIOD = ta.HT_DCPERIOD(Clz_lis)
    sine, leadsine = ta.HT_SINE(Clz_lis)
    integer = ta.HT_TRENDMODE(Clz_lis)

    ########
    #append
    dataframe['SMA_3_C'] = SMA_3_C
    dataframe['SMA_5_H'] = SMA_5_H
    dataframe['SMA_5_L'] = SMA_5_L
    dataframe['SMA_5_C'] = SMA_5_C
    dataframe['SMA_10_H'] = SMA_10_H
    dataframe['SMA_10_L'] = SMA_10_L
    dataframe['SMA_10_C'] = SMA_10_C
    dataframe['RSI_2_C'] = (RSI_2_C / 100.) * 2 - 1.
    dataframe['RSI_3_C'] = (RSI_3_C / 100.) * 2 - 1.
    dataframe['RSI_5_C'] = (RSI_5_C / 100.) * 2 - 1.
    dataframe['RSI_7_H'] = (RSI_7_H / 100.) * 2 - 1.
    dataframe['RSI_7_L'] = (RSI_7_L / 100.) * 2 - 1.
    dataframe['RSI_7_C'] = (RSI_7_C / 100.) * 2 - 1.
    dataframe['RSI_14_H'] = (RSI_14_H / 100.) * 2 - 1.
    dataframe['RSI_14_L'] = (RSI_14_L / 100.) * 2 - 1.
    dataframe['RSI_14_C'] = (RSI_14_C / 100.) * 2 - 1.
    dataframe['ADX'] = (ADX / 100.) * 2 - 1.
    dataframe['ADXR'] = (ADXR / 100.) * 2 - 1.
    dataframe['Aroondown'] = (Aroondown / 100.) * 2 - 1
    dataframe['Aroonup'] = (Aroonup / 100.) * 2 - 1
    dataframe['Aroonosc'] = Aroonosc / 100.
    dataframe['BOP'] = BOP
    dataframe['CMO'] = CMO / 100.
    dataframe['DX'] = (DX / 100.) * 2 - 1
    dataframe['MFI'] = (MFI / 100.) * 2 - 1
    dataframe['MINUS_DI'] = (MINUS_DI / 100.) * 2 - 1
    dataframe['PLUSDI'] = (PLUSDI / 100.) * 2 - 1
    dataframe['PPO'] = PPO / 10.
    dataframe['ROC'] = ROC / 10.
    dataframe['ROCP'] = ROCP * 10
    dataframe['ROCR'] = (ROCR - 1.0) * 100.
    dataframe['ROCR100'] = ((ROCR100 / 100.) - 1.0) * 100.
    dataframe['Slowk'] = (Slowk / 100.) * 2 - 1
    dataframe['Slowd'] = (Slowd / 100.) * 2 - 1
    dataframe['STOCHF_f'] = (STOCHF_f / 100.) * 2 - 1
    dataframe['STOCHF_d'] = (STOCHF_d / 100.) * 2 - 1
    dataframe['Fastk'] = (Fastk / 100.) * 2 - 1
    dataframe['Fastd'] = (Fastd / 100.) * 2 - 1
    dataframe['TRIX'] = TRIX * 10.
    dataframe['ULTOSC'] = (ULTOSC / 100.) * 2 - 1
    dataframe['WILLR'] = (WILLR / 100.) * 2 + 1
    dataframe['ADOSC'] = ADOSC / 100.
    dataframe['NATR'] = NATR * 2 - 1
    dataframe['HT_DCPERIOD'] = (HT_DCPERIOD / 100.) * 2 - 1
    dataframe['sine'] = sine
    dataframe['leadsine'] = leadsine
    dataframe['integer'] = integer

    return dataframe
Пример #29
0
 def talib_024(self):
     data_ROCR100 = copy.deepcopy(self.close)
     for symbol in symbols:
         data_ROCR100[symbol] = ta.ROCR100(self.close[symbol].values, timeperiod=10)
     return data_ROCR100
Пример #30
0
def _extract_feature(candle, params, candle_type, target_dt):
    '''
    前に余分に必要なデータ量: {(stockf_fastk_period_l + stockf_fastk_period_l) * 最大分足 (min)} + window_size
    = (12 + 12) * 5 + 5 = 125 (min)
    '''
    o = candle.open
    h = candle.high
    l = candle.low
    c = candle.close
    v = candle.volume

    # OHLCV
    features = pd.DataFrame()
    features['open'] = o
    features['high'] = h
    features['low'] = l
    features['close'] = c
    features['volume'] = v

    ####################################
    #
    # Momentum Indicator Functions
    #
    ####################################

    # ADX = SUM((+DI - (-DI)) / (+DI + (-DI)), N) / N
    # N — 計算期間
    # SUM (..., N) — N期間の合計
    # +DI — プラスの価格変動の値(positive directional index)
    # -DI — マイナスの価格変動の値(negative directional index)
    # rsi_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要

    features['adx_s'] = ta.ADX(h, l, c, timeperiod=params['adx_timeperiod_s'])
    features['adx_m'] = ta.ADX(h, l, c, timeperiod=params['adx_timeperiod_m'])
    features['adx_l'] = ta.ADX(h, l, c, timeperiod=params['adx_timeperiod_l'])

    features['adxr_s'] = ta.ADXR(h, l, c, timeperiod=params['adxr_timeperiod_s'])
    features['adxr_m'] = ta.ADXR(h, l, c, timeperiod=params['adxr_timeperiod_m'])
    features['adxr_l'] = ta.ADXR(h, l, c, timeperiod=params['adxr_timeperiod_l'])

    # APO = Shorter Period EMA – Longer Period EMA
    features['apo_s'] = ta.APO(c, fastperiod=params['apo_fastperiod_s'], slowperiod=params['apo_slowperiod_s'], matype=ta.MA_Type.EMA)
    features['apo_m'] = ta.APO(c, fastperiod=params['apo_fastperiod_m'], slowperiod=params['apo_slowperiod_m'], matype=ta.MA_Type.EMA)

    # AroonUp = (N - 過去N日間の最高値からの経過期間) ÷ N × 100
    # AroonDown = (N - 過去N日間の最安値からの経過期間) ÷ N × 100
    # aroon_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要
    #features['aroondown_s'], features['aroonup_s'] = ta.AROON(h, l, timeperiod=params['aroon_timeperiod_s'])
    #features['aroondown_m'], features['aroonup_m'] = ta.AROON(h, l, timeperiod=params['aroon_timeperiod_m'])
    #features['aroondown_l'], features['aroonup_l'] = ta.AROON(h, l, timeperiod=params['aroon_timeperiod_l'])

    # Aronnオシレーター = AroonUp - AroonDown
    # aroonosc_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要
    features['aroonosc_s'] = ta.AROONOSC(h, l, timeperiod=params['aroonosc_timeperiod_s'])
    features['aroonosc_m'] = ta.AROONOSC(h, l, timeperiod=params['aroonosc_timeperiod_m'])
    features['aroonosc_l'] = ta.AROONOSC(h, l, timeperiod=params['aroonosc_timeperiod_l'])

    # BOP = (close - open) / (high - low)
    features['bop'] = ta.BOP(o, h, l, c)

    # CCI = (TP - MA) / (0.015 * MD)
    # TP: (高値+安値+終値) / 3
    # MA: TPの移動平均
    # MD: 平均偏差 = ((MA - TP1) + (MA - TP2) + ...) / N
    features['cci_s'] = ta.CCI(h, l, c, timeperiod=params['cci_timeperiod_s'])
    features['cci_m'] = ta.CCI(h, l, c, timeperiod=params['cci_timeperiod_m'])
    features['cci_l'] = ta.CCI(h, l, c, timeperiod=params['cci_timeperiod_l'])

    # CMO - Chande Momentum Oscillator
    #features['cmo_s'] = ta.CMO(c, timeperiod=params['cmo_timeperiod_s'])
    #features['cmo_m'] = ta.CMO(c, timeperiod=params['cmo_timeperiod_m'])
    #features['cmo_l'] = ta.CMO(c, timeperiod=params['cmo_timeperiod_l'])

    # DX - Directional Movement Index
    features['dx_s'] = ta.DX(h, l, c, timeperiod=params['dx_timeperiod_s'])
    features['dx_m'] = ta.DX(h, l, c, timeperiod=params['dx_timeperiod_m'])
    features['dx_l'] = ta.DX(h, l, c, timeperiod=params['dx_timeperiod_l'])

    # MACD=基準線-相対線
    # 基準線(EMA):過去12日(週・月)間の終値指数平滑平均
    # 相対線(EMA):過去26日(週・月)間の終値指数平滑平均
    # https://www.sevendata.co.jp/shihyou/technical/macd.html
    # macd_slowperiod_m = 30 の場合30分足で((30 + macd_signalperiod_m) * 30)/ 60 = 16.5時間必要(macd_signalperiod_m=3の時)
    macd, macdsignal, macdhist = ta.MACDEXT(c, fastperiod=params['macd_fastperiod_s'],
                                            slowperiod=params['macd_slowperiod_s'],
                                            signalperiod=params['macd_signalperiod_s'],
                                            fastmatype=ta.MA_Type.EMA, slowmatype=ta.MA_Type.EMA,
                                            signalmatype=ta.MA_Type.EMA)
    change_macd = calc_change(macd, macdsignal)
    change_macd.index = macd.index
    features['macd_s'] = macd
    features['macdsignal_s'] = macdsignal
    features['macdhist_s'] = macdhist
    features['change_macd_s'] = change_macd
    macd, macdsignal, macdhist = ta.MACDEXT(c, fastperiod=params['macd_fastperiod_m'],
                                            slowperiod=params['macd_slowperiod_m'],
                                            signalperiod=params['macd_signalperiod_m'],
                                            fastmatype=ta.MA_Type.EMA, slowmatype=ta.MA_Type.EMA,
                                            signalmatype=ta.MA_Type.EMA)
    change_macd = calc_change(macd, macdsignal)
    change_macd.index = macd.index
    features['macd_m'] = macd
    features['macdsignal_m'] = macdsignal
    features['macdhist_m'] = macdhist
    features['change_macd_m'] = change_macd

    # MFI - Money Flow Index
    features['mfi_s'] = ta.MFI(h, l, c, v, timeperiod=params['mfi_timeperiod_s'])
    features['mfi_m'] = ta.MFI(h, l, c, v, timeperiod=params['mfi_timeperiod_m'])
    features['mfi_l'] = ta.MFI(h, l, c, v, timeperiod=params['mfi_timeperiod_l'])

    # MINUS_DI - Minus Directional Indicator
    features['minus_di_s'] = ta.MINUS_DI(h, l, c, timeperiod=params['minus_di_timeperiod_s'])
    features['minus_di_m'] = ta.MINUS_DI(h, l, c, timeperiod=params['minus_di_timeperiod_m'])
    features['minus_di_l'] = ta.MINUS_DI(h, l, c, timeperiod=params['minus_di_timeperiod_l'])

    # MINUS_DM - Minus Directional Movement
    features['minus_dm_s'] = ta.MINUS_DM(h, l, timeperiod=params['minus_dm_timeperiod_s'])
    features['minus_dm_m'] = ta.MINUS_DM(h, l, timeperiod=params['minus_dm_timeperiod_m'])
    features['minus_dm_l'] = ta.MINUS_DM(h, l, timeperiod=params['minus_dm_timeperiod_l'])

    # MOM - Momentum
    features['mom_s'] = ta.MOM(c, timeperiod=params['mom_timeperiod_s'])
    features['mom_m'] = ta.MOM(c, timeperiod=params['mom_timeperiod_m'])
    features['mom_l'] = ta.MOM(c, timeperiod=params['mom_timeperiod_l'])

    # PLUS_DI - Minus Directional Indicator
    features['plus_di_s'] = ta.PLUS_DI(h, l, c, timeperiod=params['plus_di_timeperiod_s'])
    features['plus_di_m'] = ta.PLUS_DI(h, l, c, timeperiod=params['plus_di_timeperiod_m'])
    features['plus_di_l'] = ta.PLUS_DI(h, l, c, timeperiod=params['plus_di_timeperiod_l'])

    # PLUS_DM - Minus Directional Movement
    features['plus_dm_s'] = ta.PLUS_DM(h, l, timeperiod=params['plus_dm_timeperiod_s'])
    features['plus_dm_m'] = ta.PLUS_DM(h, l, timeperiod=params['plus_dm_timeperiod_m'])
    features['plus_dm_l'] = ta.PLUS_DM(h, l, timeperiod=params['plus_dm_timeperiod_l'])

    # PPO - Percentage Price Oscillator
    #features['ppo_s'] = ta.PPO(c, fastperiod=params['ppo_fastperiod_s'], slowperiod=params['ppo_slowperiod_s'], matype=ta.MA_Type.EMA)
    #features['ppo_m'] = ta.PPO(c, fastperiod=params['ppo_fastperiod_m'], slowperiod=params['ppo_slowperiod_m'], matype=ta.MA_Type.EMA)

    # ROC - Rate of change : ((price/prevPrice)-1)*100
    features['roc_s'] = ta.ROC(c, timeperiod=params['roc_timeperiod_s'])
    features['roc_m'] = ta.ROC(c, timeperiod=params['roc_timeperiod_m'])
    features['roc_l'] = ta.ROC(c, timeperiod=params['roc_timeperiod_l'])

    # ROCP = (price-prevPrice) / prevPrice
    # http://www.tadoc.org/indicator/ROCP.htm
    # rocp_timeperiod_l = 30 の場合、30分足で(30 * 30) / 60 = 15時間必要
    rocp = ta.ROCP(c, timeperiod=params['rocp_timeperiod_s'])
    change_rocp = calc_change(rocp, pd.Series(np.zeros(len(candle)), index=candle.index))
    change_rocp.index = rocp.index
    features['rocp_s'] = rocp
    features['change_rocp_s'] = change_rocp
    rocp = ta.ROCP(c, timeperiod=params['rocp_timeperiod_m'])
    change_rocp = calc_change(rocp, pd.Series(np.zeros(len(candle)), index=candle.index))
    change_rocp.index = rocp.index
    features['rocp_m'] = rocp
    features['change_rocp_m'] = change_rocp
    rocp = ta.ROCP(c, timeperiod=params['rocp_timeperiod_l'])
    change_rocp = calc_change(rocp, pd.Series(np.zeros(len(candle)), index=candle.index))
    change_rocp.index = rocp.index
    features['rocp_l'] = rocp
    features['change_rocp_l'] = change_rocp

    # ROCR - Rate of change ratio: (price/prevPrice)
    features['rocr_s'] = ta.ROCR(c, timeperiod=params['rocr_timeperiod_s'])
    features['rocr_m'] = ta.ROCR(c, timeperiod=params['rocr_timeperiod_m'])
    features['rocr_l'] = ta.ROCR(c, timeperiod=params['rocr_timeperiod_l'])

    # ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
    features['rocr100_s'] = ta.ROCR100(c, timeperiod=params['rocr100_timeperiod_s'])
    features['rocr100_m'] = ta.ROCR100(c, timeperiod=params['rocr100_timeperiod_m'])
    features['rocr100_l'] = ta.ROCR100(c, timeperiod=params['rocr100_timeperiod_l'])

    # RSI = (100 * a) / (a + b) (a: x日間の値上がり幅の合計, b: x日間の値下がり幅の合計)
    # https://www.sevendata.co.jp/shihyou/technical/rsi.html
    # rsi_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要
    #features['rsi_s'] = ta.RSI(c, timeperiod=params['rsi_timeperiod_s'])
    #features['rsi_m'] = ta.RSI(c, timeperiod=params['rsi_timeperiod_m'])
    #features['rsi_l'] = ta.RSI(c, timeperiod=params['rsi_timeperiod_l'])


    # FASTK(KPeriod) = 100 * (Today's Close - LowestLow) / (HighestHigh - LowestLow)
    # FASTD(FastDperiod) = MA Smoothed FASTK over FastDperiod
    # http://www.tadoc.org/indicator/STOCHF.htm
    # stockf_fastk_period_l=30の場合30分足で、(((30 + 30) * 30) / 60(min)) = 30時間必要 (LowestLowが移動平均の30分余分に必要なので60period余分に計算する)
    fastk, fastd = ta.STOCHF(h, l, c, fastk_period=params['stockf_fastk_period_s'], fastd_period=params['stockf_fastd_period_s'], fastd_matype=ta.MA_Type.EMA)
    change_stockf = calc_change(fastk, fastd)
    change_stockf.index = fastk.index
    features['fastk_s'] = fastk
    features['fastd_s'] = fastd
    features['fast_change_s'] = change_stockf
    fastk, fastd = ta.STOCHF(h, l, c, fastk_period=params['stockf_fastk_period_m'], fastd_period=params['stockf_fastd_period_m'], fastd_matype=ta.MA_Type.EMA)
    change_stockf = calc_change(fastk, fastd)
    change_stockf.index = fastk.index
    features['fastk_m'] = fastk
    features['fastd_m'] = fastd
    features['fast_change_m'] = change_stockf
    fastk, fastd = ta.STOCHF(h, l, c, fastk_period=params['stockf_fastk_period_l'], fastd_period=params['stockf_fastk_period_l'], fastd_matype=ta.MA_Type.EMA)
    change_stockf = calc_change(fastk, fastd)
    change_stockf.index = fastk.index
    features['fastk_l'] = fastk
    features['fastd_l'] = fastd
    features['fast_change_l'] = change_stockf

    # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    features['trix_s'] = ta.TRIX(c, timeperiod=params['trix_timeperiod_s'])
    features['trix_m'] = ta.TRIX(c, timeperiod=params['trix_timeperiod_m'])
    features['trix_l'] = ta.TRIX(c, timeperiod=params['trix_timeperiod_l'])

    # ULTOSC - Ultimate Oscillator
    features['ultosc_s'] = ta.ULTOSC(h, l, c, timeperiod1=params['ultosc_timeperiod_s1'], timeperiod2=params['ultosc_timeperiod_s2'], timeperiod3=params['ultosc_timeperiod_s3'])

    # WILLR = (当日終値 - N日間の最高値) / (N日間の最高値 - N日間の最安値)× 100
    # https://inet-sec.co.jp/study/technical-manual/williamsr/
    # willr_timeperiod_l=30の場合30分足で、(30 * 30 / 60) = 15時間必要
    features['willr_s'] = ta.WILLR(h, l, c, timeperiod=params['willr_timeperiod_s'])
    features['willr_m'] = ta.WILLR(h, l, c, timeperiod=params['willr_timeperiod_m'])
    features['willr_l'] = ta.WILLR(h, l, c, timeperiod=params['willr_timeperiod_l'])

    ####################################
    #
    # Volume Indicator Functions
    #
    ####################################

    # Volume Indicator Functions
    # slowperiod_adosc_s = 10の場合、30分足で(10 * 30) / 60 = 5時間必要
    features['ad'] = ta.AD(h, l, c, v)
    features['adosc_s'] = ta.ADOSC(h, l, c, v, fastperiod=params['fastperiod_adosc_s'], slowperiod=params['slowperiod_adosc_s'])
    features['obv'] = ta.OBV(c, v)

    ####################################
    #
    # Volatility Indicator Functions
    #
    ####################################

    # ATR - Average True Range
    features['atr_s'] = ta.ATR(h, l, c, timeperiod=params['atr_timeperiod_s'])
    features['atr_m'] = ta.ATR(h, l, c, timeperiod=params['atr_timeperiod_m'])
    features['atr_l'] = ta.ATR(h, l, c, timeperiod=params['atr_timeperiod_l'])

    # NATR - Normalized Average True Range
    #features['natr_s'] = ta.NATR(h, l, c, timeperiod=params['natr_timeperiod_s'])
    #features['natr_m'] = ta.NATR(h, l, c, timeperiod=params['natr_timeperiod_m'])
    #features['natr_l'] = ta.NATR(h, l, c, timeperiod=params['natr_timeperiod_l'])

    # TRANGE - True Range
    features['trange'] = ta.TRANGE(h, l, c)

    ####################################
    #
    # Price Transform Functions
    #
    ####################################

    features['avgprice'] = ta.AVGPRICE(o, h, l, c)
    features['medprice'] = ta.MEDPRICE(h, l)
    #features['typprice'] = ta.TYPPRICE(h, l, c)
    #features['wclprice'] = ta.WCLPRICE(h, l, c)

    ####################################
    #
    # Cycle Indicator Functions
    #
    ####################################

    #features['ht_dcperiod'] = ta.HT_DCPERIOD(c)
    #features['ht_dcphase'] = ta.HT_DCPHASE(c)
    #features['inphase'], features['quadrature'] = ta.HT_PHASOR(c)
    #features['sine'], features['leadsine'] = ta.HT_SINE(c)
    features['integer'] = ta.HT_TRENDMODE(c)

    ####################################
    #
    # Statistic Functions
    #
    ####################################

    # BETA - Beta

    features['beta_s'] = ta.BETA(h, l, timeperiod=params['beta_timeperiod_s'])
    features['beta_m'] = ta.BETA(h, l, timeperiod=params['beta_timeperiod_m'])
    features['beta_l'] = ta.BETA(h, l, timeperiod=params['beta_timeperiod_l'])

    # CORREL - Pearson's Correlation Coefficient (r)
    #features['correl_s'] = ta.CORREL(h, l, timeperiod=params['correl_timeperiod_s'])
    #features['correl_m'] = ta.CORREL(h, l, timeperiod=params['correl_timeperiod_m'])
    #features['correl_l'] = ta.CORREL(h, l, timeperiod=params['correl_timeperiod_l'])

    # LINEARREG - Linear Regression
    #features['linearreg_s'] = ta.LINEARREG(c, timeperiod=params['linearreg_timeperiod_s'])
    #features['linearreg_m'] = ta.LINEARREG(c, timeperiod=params['linearreg_timeperiod_m'])
    #features['linearreg_l'] = ta.LINEARREG(c, timeperiod=params['linearreg_timeperiod_l'])

    # LINEARREG_ANGLE - Linear Regression Angle
    features['linearreg_angle_s'] = ta.LINEARREG_ANGLE(c, timeperiod=params['linearreg_angle_timeperiod_s'])
    features['linearreg_angle_m'] = ta.LINEARREG_ANGLE(c, timeperiod=params['linearreg_angle_timeperiod_m'])
    features['linearreg_angle_l'] = ta.LINEARREG_ANGLE(c, timeperiod=params['linearreg_angle_timeperiod_l'])

    # LINEARREG_INTERCEPT - Linear Regression Intercept
    features['linearreg_intercept_s'] = ta.LINEARREG_INTERCEPT(c, timeperiod=params['linearreg_intercept_timeperiod_s'])
    features['linearreg_intercept_m'] = ta.LINEARREG_INTERCEPT(c, timeperiod=params['linearreg_intercept_timeperiod_m'])
    features['linearreg_intercept_l'] = ta.LINEARREG_INTERCEPT(c, timeperiod=params['linearreg_intercept_timeperiod_l'])

    # LINEARREG_SLOPE - Linear Regression Slope
    features['linearreg_slope_s'] = ta.LINEARREG_SLOPE(c, timeperiod=params['linearreg_slope_timeperiod_s'])
    features['linearreg_slope_m'] = ta.LINEARREG_SLOPE(c, timeperiod=params['linearreg_slope_timeperiod_m'])
    features['linearreg_slope_l'] = ta.LINEARREG_SLOPE(c, timeperiod=params['linearreg_slope_timeperiod_l'])

    # STDDEV - Standard Deviation
    features['stddev_s'] = ta.STDDEV(c, timeperiod=params['stddev_timeperiod_s'], nbdev=1)
    features['stddev_m'] = ta.STDDEV(c, timeperiod=params['stddev_timeperiod_m'], nbdev=1)
    features['stddev_l'] = ta.STDDEV(c, timeperiod=params['stddev_timeperiod_l'], nbdev=1)

    # TSF - Time Series Forecast
    features['tsf_s'] = ta.TSF(c, timeperiod=params['tsf_timeperiod_s'])
    features['tsf_m'] = ta.TSF(c, timeperiod=params['tsf_timeperiod_m'])
    features['tsf_l'] = ta.TSF(c, timeperiod=params['tsf_timeperiod_l'])

    # VAR - Variance
    #features['var_s'] = ta.VAR(c, timeperiod=params['var_timeperiod_s'], nbdev=1)
    #features['var_m'] = ta.VAR(c, timeperiod=params['var_timeperiod_m'], nbdev=1)
    #features['var_l'] = ta.VAR(c, timeperiod=params['var_timeperiod_l'], nbdev=1)

    # ボリンジャーバンド
    # bbands_timeperiod_l = 30の場合、30分足で(30 * 30) / 60 = 15時間必要
    bb_upper, bb_middle, bb_lower = ta.BBANDS(c, timeperiod=params['bbands_timeperiod_s'],
                                              nbdevup=params['bbands_nbdevup_s'], nbdevdn=params['bbands_nbdevdn_s'],
                                              matype=ta.MA_Type.EMA)
    bb_trend1 = pd.Series(np.zeros(len(candle)), index=candle.index)
    bb_trend1[c > bb_upper] = 1
    bb_trend1[c < bb_lower] = -1
    bb_trend2 = pd.Series(np.zeros(len(candle)), index=candle.index)
    bb_trend2[c > bb_middle] = 1
    bb_trend2[c < bb_middle] = -1
    features['bb_upper_s'] = bb_upper
    features['bb_middle_s'] = bb_middle
    features['bb_lower_s'] = bb_lower
    features['bb_trend1_s'] = bb_trend1
    features['bb_trend2_s'] = bb_trend2
    bb_upper, bb_middle, bb_lower = ta.BBANDS(c, timeperiod=params['bbands_timeperiod_m'],
                                              nbdevup=params['bbands_nbdevup_m'], nbdevdn=params['bbands_nbdevdn_m'],
                                              matype=ta.MA_Type.EMA)
    bb_trend1 = pd.Series(np.zeros(len(candle)), index=candle.index)
    bb_trend1[c > bb_upper] = 1
    bb_trend1[c < bb_lower] = -1
    bb_trend2 = pd.Series(np.zeros(len(candle)), index=candle.index)
    bb_trend2[c > bb_middle] = 1
    bb_trend2[c < bb_middle] = -1
    features['bb_upper_m'] = bb_upper
    features['bb_middle_m'] = bb_middle
    features['bb_lower_m'] = bb_lower
    features['bb_trend1_m'] = bb_trend1
    features['bb_trend2_m'] = bb_trend2
    bb_upper, bb_middle, bb_lower = ta.BBANDS(c, timeperiod=params['bbands_timeperiod_l'],
                                              nbdevup=params['bbands_nbdevup_l'], nbdevdn=params['bbands_nbdevdn_l'],
                                              matype=ta.MA_Type.EMA)
    bb_trend1 = pd.Series(np.zeros(len(candle)), index=candle.index)
    bb_trend1[c > bb_upper] = 1
    bb_trend1[c < bb_lower] = -1
    bb_trend2 = pd.Series(np.zeros(len(candle)), index=candle.index)
    bb_trend2[c > bb_middle] = 1
    bb_trend2[c < bb_middle] = -1
    features['bb_upper_l'] = bb_upper
    features['bb_middle_l'] = bb_middle
    features['bb_lower_l'] = bb_lower
    features['bb_trend1_l'] = bb_trend1
    features['bb_trend2_l'] = bb_trend2

    # ローソク足
    features['CDL2CROWS'] = ta.CDL2CROWS(o, h, l, c)
    features['CDL3BLACKCROWS'] = ta.CDL3BLACKCROWS(o, h, l, c)
    features['CDL3INSIDE'] = ta.CDL3INSIDE(o, h, l, c)
    features['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(o, h, l, c)
    features['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(o, h, l, c)
    features['CDL3STARSINSOUTH'] = ta.CDL3STARSINSOUTH(o, h, l, c)
    features['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(o, h, l, c)
    features['CDLABANDONEDBABY'] = ta.CDLABANDONEDBABY(o, h, l, c, penetration=0)
    features['CDLADVANCEBLOCK'] = ta.CDLADVANCEBLOCK(o, h, l, c)
    features['CDLBELTHOLD'] = ta.CDLBELTHOLD(o, h, l, c)
    features['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(o, h, l, c)
    features['CDLCLOSINGMARUBOZU'] = ta.CDLCLOSINGMARUBOZU(o, h, l, c)
    features['CDLCONCEALBABYSWALL'] = ta.CDLCONCEALBABYSWALL(o, h, l, c)
    features['CDLCOUNTERATTACK'] = ta.CDLCOUNTERATTACK(o, h, l, c)
    features['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(o, h, l, c, penetration=0)
    #features['CDLDOJI'] = ta.CDLDOJI(o, h, l, c)
    features['CDLDOJISTAR'] = ta.CDLDOJISTAR(o, h, l, c)
    features['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(o, h, l, c)
    features['CDLENGULFING'] = ta.CDLENGULFING(o, h, l, c)
    features['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(o, h, l, c, penetration=0)
    features['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(o, h, l, c, penetration=0)
    #features['CDLGAPSIDESIDEWHITE'] = ta.CDLGAPSIDESIDEWHITE(o, h, l, c)
    features['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(o, h, l, c)
    features['CDLHAMMER'] = ta.CDLHAMMER(o, h, l, c)
    #features['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(o, h, l, c)
    features['CDLHARAMI'] = ta.CDLHARAMI(o, h, l, c)
    features['CDLHARAMICROSS'] = ta.CDLHARAMICROSS(o, h, l, c)
    features['CDLHIGHWAVE'] = ta.CDLHIGHWAVE(o, h, l, c)
    #features['CDLHIKKAKE'] = ta.CDLHIKKAKE(o, h, l, c)
    features['CDLHIKKAKEMOD'] = ta.CDLHIKKAKEMOD(o, h, l, c)
    features['CDLHOMINGPIGEON'] = ta.CDLHOMINGPIGEON(o, h, l, c)
    #features['CDLIDENTICAL3CROWS'] = ta.CDLIDENTICAL3CROWS(o, h, l, c)
    features['CDLINNECK'] = ta.CDLINNECK(o, h, l, c)
    #features['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(o, h, l, c)
    features['CDLKICKING'] = ta.CDLKICKING(o, h, l, c)
    features['CDLKICKINGBYLENGTH'] = ta.CDLKICKINGBYLENGTH(o, h, l, c)
    features['CDLLADDERBOTTOM'] = ta.CDLLADDERBOTTOM(o, h, l, c)
    #features['CDLLONGLEGGEDDOJI'] = ta.CDLLONGLEGGEDDOJI(o, h, l, c)
    features['CDLMARUBOZU'] = ta.CDLMARUBOZU(o, h, l, c)
    #features['CDLMATCHINGLOW'] = ta.CDLMATCHINGLOW(o, h, l, c)
    features['CDLMATHOLD'] = ta.CDLMATHOLD(o, h, l, c, penetration=0)
    features['CDLMORNINGDOJISTAR'] = ta.CDLMORNINGDOJISTAR(o, h, l, c, penetration=0)
    features['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(o, h, l, c, penetration=0)
    features['CDLONNECK'] = ta.CDLONNECK(o, h, l, c)
    features['CDLPIERCING'] = ta.CDLPIERCING(o, h, l, c)
    features['CDLRICKSHAWMAN'] = ta.CDLRICKSHAWMAN(o, h, l, c)
    features['CDLRISEFALL3METHODS'] = ta.CDLRISEFALL3METHODS(o, h, l, c)
    features['CDLSEPARATINGLINES'] = ta.CDLSEPARATINGLINES(o, h, l, c)
    #features['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(o, h, l, c)
    features['CDLSHORTLINE'] = ta.CDLSHORTLINE(o, h, l, c)
    #features['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(o, h, l, c)
    features['CDLSTALLEDPATTERN'] = ta.CDLSTALLEDPATTERN(o, h, l, c)
    features['CDLSTICKSANDWICH'] = ta.CDLSTICKSANDWICH(o, h, l, c)
    features['CDLTAKURI'] = ta.CDLTAKURI(o, h, l, c)
    features['CDLTASUKIGAP'] = ta.CDLTASUKIGAP(o, h, l, c)
    features['CDLTHRUSTING'] = ta.CDLTHRUSTING(o, h, l, c)
    features['CDLTRISTAR'] = ta.CDLTRISTAR(o, h, l, c)
    features['CDLUNIQUE3RIVER'] = ta.CDLUNIQUE3RIVER(o, h, l, c)
    features['CDLUPSIDEGAP2CROWS'] = ta.CDLUPSIDEGAP2CROWS(o, h, l, c)
    features['CDLXSIDEGAP3METHODS'] = ta.CDLXSIDEGAP3METHODS(o, h, l, c)

    '''
    # トレンドライン
    for dt in datetimerange(candle.index[0], candle.index[-1] + timedelta(minutes=1)):
        start_dt = (dt - timedelta(minutes=130)).strftime('%Y-%m-%d %H:%M:%S')
        end_dt = dt.strftime('%Y-%m-%d %H:%M:%S')
        tmp = candle.loc[(start_dt <= candle.index) & (candle.index <= end_dt)]
        for w_size, stride in [(15, 5), (30, 10), (60, 10), (120, 10)]:
        # for w_size, stride in [(120, 10)]:
            trendlines = calc_trendlines(tmp, w_size, stride)
            if len(trendlines) == 0:
                continue
            trendline_feature = calc_trendline_feature(tmp, trendlines)

            print('{}-{} {} {} {}'.format(dt - timedelta(minutes=130), dt, trendline_feature['high_a'], trendline_feature['high_b'], trendline_feature['high_diff']))

            features.loc[features.index == end_dt, 'trendline_high_a_{}'.format(w_size)] = trendline_feature['high_a']
            features.loc[features.index == end_dt, 'trendline_high_b_{}'.format(w_size)] = trendline_feature['high_b']
            features.loc[features.index == end_dt, 'trendline_high_diff_{}'.format(w_size)] = trendline_feature['high_diff']
            features.loc[features.index == end_dt, 'trendline_low_a_{}'.format(w_size)] = trendline_feature['low_a']
            features.loc[features.index == end_dt, 'trendline_low_b_{}'.format(w_size)] = trendline_feature['low_b']
            features.loc[features.index == end_dt, 'trendline_low_diff_{}'.format(w_size)] = trendline_feature['low_diff']
    '''

    window = 5
    features_ext = features
    for w in range(window):
        tmp = features.shift(periods=60 * (w + 1), freq='S')
        tmp.columns = [c + '_' + str(w + 1) + 'w' for c in features.columns]
        features_ext = pd.concat([features_ext, tmp], axis=1)
    
    if candle_type == '5min':
        features_ext = features_ext.shift(periods=300, freq='S')
        features_ext = features_ext.fillna(method='ffill')
    features_ext = features_ext[features_ext.index == target_dt]
    return features_ext