Пример #1
0
def tema(close, graph=False, **kwargs):
    '''
    TEMA - Triple Exponential Moving Average
    '''
    result = talib.TEMA(close, **kwargs)
    df = pd.concat([pd.DataFrame(close), pd.DataFrame(result)], axis=1)
    df.columns = ['close', 'tema']
    if graph:
        title = 'TEMA - Triple Exponential Moving Average'
        style = ['r-'] + ['--'] * (len(df.columns) - 1)
        fname = '15_tema.png'
        make_graph(title, df, style=style, fname=fname)
    return df
Пример #2
0
def measure_tema(values_n: int, period: int):
    close = numpy.random.random(values_n)

    start = time.time_ns()
    output = TEMA(period, close)
    output[-1]
    t1 = (time.time_ns() - start) / 1000000

    start = time.time_ns()
    output = talib.TEMA(close, timeperiod = period)
    output[-1]
    t2 = (time.time_ns() - start) / 1000000

    t3 = 0.0
    output = None
    for i in range(period, values_n):
        close = numpy.random.random(i)
        start = time.time_ns()
        output = talib.TEMA(close, timeperiod = period)
        t3 += (time.time_ns() - start) / 1000000

    print(f"TEMA({period});{values_n:,};{round(t1, 3)};{round(t2, 3)};{round(t3, 3)}")
Пример #3
0
def add_TEMA(self, timeperiod=26, type="line", color="secondary", **kwargs):
    """Triple Moving Exponential Average."""

    if not self.has_close:
        raise Exception()

    utils.kwargs_check(kwargs, VALID_TA_KWARGS)
    if "kind" in kwargs:
        type = kwargs["kind"]

    name = "TEMA({})".format(str(timeperiod))
    self.pri[name] = dict(type=type, color=color)
    self.ind[name] = talib.TEMA(self.df[self.cl].values, timeperiod)
Пример #4
0
    def test_tema(self):
        result = self.overlap.tema(self.close)
        self.assertIsInstance(result, Series)
        self.assertEqual(result.name, 'TEMA_10')

        try:
            expected = tal.TEMA(self.close, 10)
            pdt.assert_series_equal(result, expected, check_names=False)
        except AssertionError as ae:
            try:
                corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION)
                self.assertGreater(corr, CORRELATION_THRESHOLD)
            except Exception as ex:
                error_analysis(result, CORRELATION, ex)
Пример #5
0
def trix(df, window=[11]):

    column = func.Cl(df)

    # iterate through each window
    for wind in window:
        # create labels
        label = 'trix' + str(wind)
        errlabel = label + 'err'
        # calc trix
        df[label] = ta.TEMA(column, wind)
        df[errlabel] = df[label] - 0

    return df
Пример #6
0
	def overlap(self):
		upper, middle, lower = talib.BBANDS(self.close,timeperiod=5,nbdevup=2,nbdevdn=2,matype=0)
		EMA = talib.EMA(self.close,self.period)
		HT_trendline = talib.HT_TRENDLINE(self.close)
		KAMA = talib.KAMA(self.close,self.period)
		MA = talib.MA(self.close,self.period,matype=0)
		mama, fama = talib.MAMA(self.close,fastlimit = 0.5,slowlimit = 0.05)
		mavp = talib.MAVP(self.close, minperiod = 5,maxperiod = 30,matype=0)
		midpoint = talib.MIDPOINT(self.close,self.period)
		midprice = talib.MIDPRICE(self.high,self.low,self.period)
		sar = talib.SAR(self.high,self.low,acceleration = 0, maximum = 0)
		sarext = talib.SAREXT(self.high,self.low,startvalue=0,offsetonreverse=0,accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
		sma = talib.SMA(self.close,self.period)
		t3 = talib.T3(self.close, self.period, vfactor = 0)
		tema = talib.TEMA(self.close,self.period)
		trima = talib.TRIMA(self.close,period)
		wma = talib.WMA(self.close, self.period)
    def triple_EMA(self, df, period):
        """Triple MA  a smoothing indicator with less lag than a straight
        exponential moving average.
            Args:
                close: Closing price of instrument
                period: number of time periods in the calculation
                feature_dict: Dictionary of added features
            Return:
                tripleEMA
                feature_dict
        """
        col_name = 'TripleEMA_' + str(period)
        current_feature['Latest'] = col_name
        feature_dict[col_name] = 'Keep'

        df[col_name] = ta.TEMA(df.Close, period)
        return df
def init_state(indata, test=False):
    openn = indata['open'].values
    close = indata['close'].values
    high = indata['high'].values
    low = indata['low'].values
    volume = indata['volume'].values
    
    diff = np.diff(close)
    diff = np.insert(diff, 0, 0)
    
    sma30 = talib.SMA(close, 30)
    sma60 = talib.SMA(close, timeperiod=60)
    rsi = talib.RSI(close, timeperiod=14)
    atr = talib.ATR(high, low, close, timeperiod=14)
    trange = talib.TRANGE(high, low, close)
    macd, macdsignal, macdhist = talib.MACD(close, 12, 26, 9)
    upper, middle, lower = talib.BBANDS(close, 20, 2, 2)
    ema = talib.EMA(close, 30)
    ma = talib.MA(close, 30)
    wma = talib.WMA(close, timeperiod=30)
    tema = talib.TEMA(close, 30)
    obv = talib.OBV(close, np.asarray(volume, dtype='float'))
    adx = talib.ADX(high, low, close, 14)
    apo = talib.APO(close, 12, 2, 0)
    bop = talib.BOP(openn, high, low, close)
    mom = talib.MOM(close,10)
    ppo = talib.PPO(close, 12, 26, 0)
    slowk, slowd = talib.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
    ad = talib.AD(high, low, close, np.asarray(volume, dtype='float'))
    wcl = talib.WCLPRICE(high, low, close)

    #--- Preprocess data
    xdata = np.column_stack((close, diff, sma30, sma60, rsi, atr, macd, macdsignal, macdhist, lower, middle, upper, ema, ma, wma, adx, apo, bop, mom, ppo, slowk, slowd, trange, wcl))
    
    xdata = np.nan_to_num(xdata)
    if test == False:
        scaler = preprocessing.StandardScaler()
        xdata = np.expand_dims(scaler.fit_transform(xdata), axis=1)
        joblib.dump(scaler, 'data/scaler.pkl')
    elif test == True:
        scaler = joblib.load('data/scaler.pkl')
        xdata = np.expand_dims(scaler.fit_transform(xdata), axis=1)
    state = xdata[0:1, 0:1, :]

    return state, xdata, close
Пример #9
0
    def ts_analysis(self, event=None):

        print("Time series analysis for CLOSE position")

        timeperiod = int(self.ui.timeperiod_test.value())

        # Integration
        n = 1
        integr = np.diff(self.closep, n=n)
        date1 = self.date[n:]

        first_not_nan_index = 3 * timeperiod - 3
        date2 = date1[first_not_nan_index + 1:]
        _TEMA = talib.TEMA(integr,
                           timeperiod=timeperiod)[first_not_nan_index + 1:]

        # Autocorrelation

        fig = plt.figure("Time series analysis for CLOSE position",
                         figsize=(12, 8))
        ax0 = fig.add_subplot(411)
        ax0.set_title("Original timeseries (TEMA)")
        ax0.grid()

        ax0.plot(self.date, self.candle_price_TEMA, '-bo')

        ax1 = fig.add_subplot(412, sharex=ax0)
        ax1.set_title("Integrated original timeseries. diff=1 (TEMA)")
        ax1.grid()
        ax1.axis('on')
        # ax1.axhline(0, color='k')
        # ax0.plot(date1, integr, 'b')
        ax1.plot(date2, _TEMA, 'r')

        lags = int(100)
        ax2 = fig.add_subplot(413)
        fig = sm.graphics.tsa.plot_acf(_TEMA, lags=lags, ax=ax2)
        ax3 = fig.add_subplot(414)
        fig = sm.graphics.tsa.plot_pacf(_TEMA, lags=lags, ax=ax3)

        fig.set_tight_layout(True)

        # plt.tight_layout()

        plt.show()
Пример #10
0
def handle_data(context):
    # 获取历史数据, 取后window根bar
    hist = context.data.get_price(context.security,
                                  count=context.user_data.team_window * 4,
                                  frequency=context.frequency)
    if len(hist.index) < context.user_data.team_window * 4:
        context.log.warn("bar的数量不足, 等待下一根bar...")
        return

    # 历史收盘价
    close = np.array(hist["close"])
    # 初始化买入/卖出信号
    long_signal_triggered = False
    short_signal_triggered = False
    # 计算指标值
    tema = talib.TEMA(close, timeperiod=context.user_data.team_window)

    current_price = context.data.get_current_price(context.security)

    #  产生买入/卖出信号
    if current_price > tema[-1]:
        long_signal_triggered = True
    elif current_price < tema[-1]:
        short_signal_triggered = True

    # 有卖出信号,且持有仓位,则全仓卖出
    if short_signal_triggered:
        if context.account.huobi_cny_btc >= HUOBI_CNY_BTC_MIN_ORDER_QUANTITY:
            context.log.info("正在卖出 %s" % context.security)
            context.log.info("卖出数量为 %s" % context.account.huobi_cny_btc)
            context.order.sell(context.security,
                               quantity=str(context.account.huobi_cny_btc))
        else:
            context.log.info("仓位不足,无法卖出")
    # 有买入信号,且持有现金,则全仓买入
    elif long_signal_triggered:
        if context.account.huobi_cny_cash >= HUOBI_CNY_BTC_MIN_ORDER_CASH_AMOUNT:
            context.log.info("正在买入 %s" % context.security)
            context.log.info("下单金额为 %s 元" % context.account.huobi_cny_cash)
            context.order.buy(context.security,
                              cash_amount=str(context.account.huobi_cny_cash))
        else:
            context.log.info("现金不足,无法下单")
    else:
        context.log.info("无交易信号,进入下一根bar")
Пример #11
0
    def test_TEMA(self):
        class MyTEMA(OperatorTEMA):

            def __init__(self, name, **kwargs):
                super(MyTEMA, self).__init__(100, name, **kwargs)

        self.env.add_operator('tema', {
            'operator': MyTEMA,
            })
        string = 'tema(30, open)'
        gene = self.env.parse_string(string)
        self.assertRaises(IndexError, gene.eval, self.env, self.dates[98], self.dates[-1])
        ser = gene.eval(self.env, self.dates[99], self.dates[99]).iloc[0]
        o = self.env.get_data_value('open').values
        res = []
        for i, val in ser.iteritems():
            res.append(talib.TEMA(o[:100, i], 30)[-1] == val)
        self.assertTrue(all(res))
Пример #12
0
def tema(candles: np.ndarray,
         period=9,
         sequential=False) -> Union[float, np.ndarray]:
    """
    TEMA - Triple Exponential Moving Average

    :param candles: np.ndarray
    :param period: int - default: 9
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    if not sequential and len(candles) > 240:
        candles = candles[-240:]

    res = talib.TEMA(candles[:, 2], timeperiod=period)

    return res if sequential else res[-1]
Пример #13
0
def tema(candles: np.ndarray, period: int = 9, source_type: str = "close", sequential: bool = False) -> Union[
    float, np.ndarray]:
    """
    TEMA - Triple Exponential Moving Average

    :param candles: np.ndarray
    :param period: int - default: 9
    :param source_type: str - default: "close"
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    if not sequential and len(candles) > 240:
        candles = candles[-240:]

    source = get_candle_source(candles, source_type=source_type)
    res = talib.TEMA(source, timeperiod=period)

    return res if sequential else res[-1]
Пример #14
0
def getIndicators(currency, period, ind_length):
    # 2D array of 5 market indicators
    date_arr, market = db_access.read_table(currency, period)
    date_t = (date_arr[:, 0].flatten())
    #date_t = np.array([[date_t,date_t],[date_t,date_t]],dtype='M8[m]').astype('O')[0,1]

    close_price = market[:, 5].flatten()
    volume = market[:, 1].flatten()
    high = market[:, 3].flatten()
    low = market[:, 4].flatten()

    rsi_long = talib.RSI(close_price,
                         ind_length['rsi_l'])  # @UndefinedVariable
    rsi_short = talib.RSI(close_price,
                          ind_length['rsi_s'])  # @UndefinedVariable
    tema_result = talib.TEMA(close_price, 30)  # @UndefinedVariable
    on_balance = talib.OBV(close_price, volume)  # @UndefinedVariable
    # will_r = talib.WILLR(high, low, close_price, timeperiod=1440) # @UndefinedVariable
    #will_r = talib.LINEARREG_ANGLE(close_price, timeperiod=ind_length['reg']) # @UndefinedVariable

    return date_arr, close_price, rsi_long, rsi_short, tema_result, on_balance
Пример #15
0
def get_df(filename):
    tech = pd.read_csv(filename,index_col=0)
    dclose = np.array(tech.close)
    volume = np.array(tech.volume)
    tech['RSI'] = ta.RSI(np.array(tech.close))
    tech['OBV'] = ta.OBV(np.array(tech.close),np.array(tech.volume))
    tech['NATR'] = ta.NATR(np.array(tech.high),np.array(tech.low),np.array(tech.close))
    tech['upper'],tech['middle'],tech['lower'] = ta.BBANDS(np.array(tech.close), timeperiod=10, nbdevup=2, nbdevdn=2, matype=0)
    tech['DEMA'] = ta.DEMA(dclose, timeperiod=30)
    tech['EMA'] = ta.EMA(dclose, timeperiod=30)
    tech['HT_TRENDLINE'] = ta.HT_TRENDLINE(dclose)
    tech['KAMA'] = ta.KAMA(dclose, timeperiod=30)
    tech['MA'] = ta.MA(dclose, timeperiod=30, matype=0)
#    tech['mama'], tech['fama'] = ta.MAMA(dclose, fastlimit=0, slowlimit=0)
    tech['MIDPOINT'] = ta.MIDPOINT(dclose, timeperiod=14)
    tech['SMA'] = ta.SMA(dclose, timeperiod=30)
    tech['T3'] = ta.T3(dclose, timeperiod=5, vfactor=0)
    tech['TEMA'] = ta.TEMA(dclose, timeperiod=30)
    tech['TRIMA'] = ta.TRIMA(dclose, timeperiod=30)
    tech['WMA'] = ta.WMA(dclose, timeperiod=30)
    tech['APO'] = ta.APO(dclose, fastperiod=12, slowperiod=26, matype=0)
    tech['CMO'] = ta.CMO(dclose, timeperiod=14)
    tech['macd'], tech['macdsignal'], tech['macdhist'] = ta.MACD(dclose, fastperiod=12, slowperiod=26, signalperiod=9)
    tech['MOM'] = ta.MOM(dclose, timeperiod=10)
    tech['PPO'] = ta.PPO(dclose, fastperiod=12, slowperiod=26, matype=0)
    tech['ROC'] = ta.ROC(dclose, timeperiod=10)
    tech['ROCR'] = ta.ROCR(dclose, timeperiod=10)
    tech['ROCP'] = ta.ROCP(dclose, timeperiod=10)
    tech['ROCR100'] = ta.ROCR100(dclose, timeperiod=10)
    tech['RSI'] = ta.RSI(dclose, timeperiod=14)
    tech['fastk'], tech['fastd'] = ta.STOCHRSI(dclose, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
    tech['TRIX'] = ta.TRIX(dclose, timeperiod=30)
    tech['OBV'] = ta.OBV(dclose,volume)
    tech['HT_DCPHASE'] = ta.HT_DCPHASE(dclose)
    tech['inphase'], tech['quadrature'] = ta.HT_PHASOR(dclose)
    tech['sine'], tech['leadsine'] = ta.HT_SINE(dclose)
    tech['HT_TRENDMODE'] = ta.HT_TRENDMODE(dclose)
    df = tech.fillna(method='bfill')
    return df
Пример #16
0
def getOverlapFunctions(df):
    high = df['High']
    low = df['Low']
    close = df['Close']
    open = df['Open']
    volume = df['Volume']
    df['UPPERBB'],df['MIDDLEBB'],df['LOWERBB'] = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
    df['DEMA'] = ta.DEMA(close,timeperiod=30)
    df['EMA'] = ta.EMA(close, timeperiod=30)
    df['HT_TREND'] = ta.HT_TRENDLINE(close)
    df['KAMA'] = ta.KAMA(close, timeperiod=30)
    df['MA'] = ta.MA(close, timeperiod=30, matype=0)
    #df['MAMA'],df['FAMA'] = ta.MAMA(close, fastlimit=0, slowlimit=0)
    #df['MAVP'] = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)
    df['MIDPOINT'] = ta.MIDPOINT(close, timeperiod=14)
    df['MIDPRICE'] = ta.MIDPRICE(high, low, timeperiod=14)
    df['SAR'] = ta.SAR(high, low, acceleration=0, maximum=0)
    df['SAREXT'] = ta.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
    df['SMA'] = ta.SMA(close, timeperiod=30)
    df['T3'] = ta.T3(close, timeperiod=5, vfactor=0)
    df['TEMA'] = ta.TEMA(close, timeperiod=30)
    df['TRIMA'] = ta.TRIMA(close, timeperiod=30)
    df['WMA'] = ta.WMA(close, timeperiod=30)
Пример #17
0
def tema(client, symbol, timeframe="6m", col="close", periods=None):
    """This will return a dataframe of triple exponential moving average
     for the given symbol across the given timeframe

    Args:
        client (pyEX.Client); Client
        symbol (string); Ticker
        timeframe (string); timeframe to use, for pyEX.chart
        col (string); column to use to calculate
        periods (int); periods

    Returns:
        DataFrame: result
    """
    if periods is None:
        periods = [30]
    periods = tolist(periods)

    df = client.chartDF(symbol, timeframe)

    build = {col: df[col].values}
    for per in periods:
        build["sma-{}".format(per)] = t.TEMA(df[col].values.astype(float), per)
    return pd.DataFrame(build)
Пример #18
0
 def get_average_studies(open, low, high, close, df):
     # https://mrjbq7.github.io/ta-lib/func_groups/overlap_studies.html
     # Bollinger bands
     df['UP_BB'], df['MID_BB'], df['LOW_BB'] = talib.BBANDS(close,
                                                            timeperiod=5,
                                                            nbdevup=2,
                                                            nbdevdn=2,
                                                            matype=0)
     # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
     df["HT"] = talib.HT_TRENDLINE(close)
     # SAR - Parabolic SAR
     df["SAR"] = talib.SAR(high, low, acceleration=0, maximum=0)
     #
     periods = [5, 15, 30, 50, 100, 200]
     for period in periods:
         df['SMA-' + str(period)] = talib.SMA(close, timeperiod=period)
         df['DEMA-' + str(period)] = talib.DEMA(close, timeperiod=period)
         df['TEMA-' + str(period)] = talib.TEMA(close, timeperiod=period)
         df['WMA-' + str(period)] = talib.WMA(close, timeperiod=period)
         df['MIDPOINT-' + str(period)] = talib.MIDPOINT(close,
                                                        timeperiod=period)
         df['MIDPRICE-' + str(period)] = talib.MIDPRICE(high,
                                                        low,
                                                        timeperiod=period)
Пример #19
0
def calc_features(df):
    open = df['op']
    high = df['hi']
    low = df['lo']
    close = df['cl']
    volume = df['volume']

    orig_columns = df.columns

    hilo = (df['hi'] + df['lo']) / 2
    df['BBANDS_upperband'], df['BBANDS_middleband'], df[
        'BBANDS_lowerband'] = talib.BBANDS(close,
                                           timeperiod=5,
                                           nbdevup=2,
                                           nbdevdn=2,
                                           matype=0)
    df['BBANDS_upperband'] -= hilo
    df['BBANDS_middleband'] -= hilo
    df['BBANDS_lowerband'] -= hilo
    df['DEMA'] = talib.DEMA(close, timeperiod=30) - hilo
    df['EMA'] = talib.EMA(close, timeperiod=30) - hilo
    df['HT_TRENDLINE'] = talib.HT_TRENDLINE(close) - hilo
    df['KAMA'] = talib.KAMA(close, timeperiod=30) - hilo
    df['MA'] = talib.MA(close, timeperiod=30, matype=0) - hilo
    df['MIDPOINT'] = talib.MIDPOINT(close, timeperiod=14) - hilo
    df['SMA'] = talib.SMA(close, timeperiod=30) - hilo
    df['T3'] = talib.T3(close, timeperiod=5, vfactor=0) - hilo
    df['TEMA'] = talib.TEMA(close, timeperiod=30) - hilo
    df['TRIMA'] = talib.TRIMA(close, timeperiod=30) - hilo
    df['WMA'] = talib.WMA(close, timeperiod=30) - hilo

    df['ADX'] = talib.ADX(high, low, close, timeperiod=14)
    df['ADXR'] = talib.ADXR(high, low, close, timeperiod=14)
    df['APO'] = talib.APO(close, fastperiod=12, slowperiod=26, matype=0)
    df['AROON_aroondown'], df['AROON_aroonup'] = talib.AROON(high,
                                                             low,
                                                             timeperiod=14)
    df['AROONOSC'] = talib.AROONOSC(high, low, timeperiod=14)
    df['BOP'] = talib.BOP(open, high, low, close)
    df['CCI'] = talib.CCI(high, low, close, timeperiod=14)
    df['DX'] = talib.DX(high, low, close, timeperiod=14)
    df['MACD_macd'], df['MACD_macdsignal'], df['MACD_macdhist'] = talib.MACD(
        close, fastperiod=12, slowperiod=26, signalperiod=9)
    # skip MACDEXT MACDFIX たぶん同じなので
    df['MFI'] = talib.MFI(high, low, close, volume, timeperiod=14)
    df['MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=14)
    df['MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14)
    df['MOM'] = talib.MOM(close, timeperiod=10)
    df['PLUS_DI'] = talib.PLUS_DI(high, low, close, timeperiod=14)
    df['PLUS_DM'] = talib.PLUS_DM(high, low, timeperiod=14)
    df['RSI'] = talib.RSI(close, timeperiod=14)
    df['STOCH_slowk'], df['STOCH_slowd'] = talib.STOCH(high,
                                                       low,
                                                       close,
                                                       fastk_period=5,
                                                       slowk_period=3,
                                                       slowk_matype=0,
                                                       slowd_period=3,
                                                       slowd_matype=0)
    df['STOCHF_fastk'], df['STOCHF_fastd'] = talib.STOCHF(high,
                                                          low,
                                                          close,
                                                          fastk_period=5,
                                                          fastd_period=3,
                                                          fastd_matype=0)
    df['STOCHRSI_fastk'], df['STOCHRSI_fastd'] = talib.STOCHRSI(close,
                                                                timeperiod=14,
                                                                fastk_period=5,
                                                                fastd_period=3,
                                                                fastd_matype=0)
    df['TRIX'] = talib.TRIX(close, timeperiod=30)
    df['ULTOSC'] = talib.ULTOSC(high,
                                low,
                                close,
                                timeperiod1=7,
                                timeperiod2=14,
                                timeperiod3=28)
    df['WILLR'] = talib.WILLR(high, low, close, timeperiod=14)

    df['AD'] = talib.AD(high, low, close, volume)
    df['ADOSC'] = talib.ADOSC(high,
                              low,
                              close,
                              volume,
                              fastperiod=3,
                              slowperiod=10)
    df['OBV'] = talib.OBV(close, volume)

    df['ATR'] = talib.ATR(high, low, close, timeperiod=14)
    df['NATR'] = talib.NATR(high, low, close, timeperiod=14)
    df['TRANGE'] = talib.TRANGE(high, low, close)

    df['HT_DCPERIOD'] = talib.HT_DCPERIOD(close)
    df['HT_DCPHASE'] = talib.HT_DCPHASE(close)
    df['HT_PHASOR_inphase'], df['HT_PHASOR_quadrature'] = talib.HT_PHASOR(
        close)
    df['HT_SINE_sine'], df['HT_SINE_leadsine'] = talib.HT_SINE(close)
    df['HT_TRENDMODE'] = talib.HT_TRENDMODE(close)

    df['BETA'] = talib.BETA(high, low, timeperiod=5)
    df['CORREL'] = talib.CORREL(high, low, timeperiod=30)
    df['LINEARREG'] = talib.LINEARREG(close, timeperiod=14) - close
    df['LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(close, timeperiod=14)
    df['LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT(
        close, timeperiod=14) - close
    df['LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(close, timeperiod=14)
    df['STDDEV'] = talib.STDDEV(close, timeperiod=5, nbdev=1)

    return df
Пример #20
0
def get_factors(index,
                Open,
                Close,
                High,
                Low,
                Volume,
                rolling=26,
                drop=False,
                normalization=True):
    tmp = pd.DataFrame()
    tmp['tradeTime'] = index

    # 累积/派发线(Accumulation / Distribution Line,该指标将每日的成交量通过价格加权累计,
    # 用以计算成交量的动量。属于趋势型因子
    tmp['AD'] = talib.AD(High, Low, Close, Volume)

    # 佳庆指标(Chaikin Oscillator),该指标基于AD曲线的指数移动均线而计算得到。属于趋势型因子
    tmp['ADOSC'] = talib.ADOSC(High,
                               Low,
                               Close,
                               Volume,
                               fastperiod=3,
                               slowperiod=10)

    # 平均动向指数,DMI因子的构成部分。属于趋势型因子
    tmp['ADX'] = talib.ADX(High, Low, Close, timeperiod=14)

    # 相对平均动向指数,DMI因子的构成部分。属于趋势型因子
    tmp['ADXR'] = talib.ADXR(High, Low, Close, timeperiod=14)

    # 绝对价格振荡指数
    tmp['APO'] = talib.APO(Close, fastperiod=12, slowperiod=26)

    # Aroon通过计算自价格达到近期最高值和最低值以来所经过的期间数,帮助投资者预测证券价格从趋势到区域区域或反转的变化,
    # Aroon指标分为Aroon、AroonUp和AroonDown3个具体指标。属于趋势型因子
    tmp['AROONDown'], tmp['AROONUp'] = talib.AROON(High, Low, timeperiod=14)
    tmp['AROONOSC'] = talib.AROONOSC(High, Low, timeperiod=14)

    # 均幅指标(Average TRUE Ranger),取一定时间周期内的股价波动幅度的移动平均值,
    # 是显示市场变化率的指标,主要用于研判买卖时机。属于超买超卖型因子。
    tmp['ATR14'] = talib.ATR(High, Low, Close, timeperiod=14)
    tmp['ATR6'] = talib.ATR(High, Low, Close, timeperiod=6)

    # 布林带
    tmp['Boll_Up'], tmp['Boll_Mid'], tmp['Boll_Down'] = talib.BBANDS(
        Close, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)

    # 均势指标
    tmp['BOP'] = talib.BOP(Open, High, Low, Close)

    # 5日顺势指标(Commodity Channel Index),专门测量股价是否已超出常态分布范围。属于超买超卖型因子。
    tmp['CCI5'] = talib.CCI(High, Low, Close, timeperiod=5)
    tmp['CCI10'] = talib.CCI(High, Low, Close, timeperiod=10)
    tmp['CCI20'] = talib.CCI(High, Low, Close, timeperiod=20)
    tmp['CCI88'] = talib.CCI(High, Low, Close, timeperiod=88)

    # 钱德动量摆动指标(Chande Momentum Osciliator),与其他动量指标摆动指标如相对强弱指标(RSI)和随机指标(KDJ)不同,
    # 钱德动量指标在计算公式的分子中采用上涨日和下跌日的数据。属于超买超卖型因子
    tmp['CMO_Close'] = talib.CMO(Close, timeperiod=14)
    tmp['CMO_Open'] = talib.CMO(Close, timeperiod=14)

    # DEMA双指数移动平均线
    tmp['DEMA6'] = talib.DEMA(Close, timeperiod=6)
    tmp['DEMA12'] = talib.DEMA(Close, timeperiod=12)
    tmp['DEMA26'] = talib.DEMA(Close, timeperiod=26)

    # DX 动向指数
    tmp['DX'] = talib.DX(High, Low, Close, timeperiod=14)

    # EMA 指数移动平均线
    tmp['EMA6'] = talib.EMA(Close, timeperiod=6)
    tmp['EMA12'] = talib.EMA(Close, timeperiod=12)
    tmp['EMA26'] = talib.EMA(Close, timeperiod=26)

    # KAMA 适应性移动平均线
    tmp['KAMA'] = talib.KAMA(Close, timeperiod=30)

    # MACD
    tmp['MACD_DIF'], tmp['MACD_DEA'], tmp['MACD_bar'] = talib.MACD(
        Close, fastperiod=12, slowperiod=24, signalperiod=9)

    # 中位数价格 不知道是什么意思
    tmp['MEDPRICE'] = talib.MEDPRICE(High, Low)

    # 负向指标 负向运动
    tmp['MiNUS_DI'] = talib.MINUS_DI(High, Low, Close, timeperiod=14)
    tmp['MiNUS_DM'] = talib.MINUS_DM(High, Low, timeperiod=14)

    # 动量指标(Momentom Index),动量指数以分析股价波动的速度为目的,研究股价在波动过程中各种加速,
    # 减速,惯性作用以及股价由静到动或由动转静的现象。属于趋势型因子
    tmp['MOM'] = talib.MOM(Close, timeperiod=10)

    # 归一化平均值范围
    tmp['NATR'] = talib.NATR(High, Low, Close, timeperiod=14)

    # OBV 	能量潮指标(On Balance Volume,OBV),以股市的成交量变化来衡量股市的推动力,
    # 从而研判股价的走势。属于成交量型因子
    tmp['OBV'] = talib.OBV(Close, Volume)

    # PLUS_DI 更向指示器
    tmp['PLUS_DI'] = talib.PLUS_DI(High, Low, Close, timeperiod=14)
    tmp['PLUS_DM'] = talib.PLUS_DM(High, Low, timeperiod=14)

    # PPO 价格振荡百分比
    tmp['PPO'] = talib.PPO(Close, fastperiod=6, slowperiod=26, matype=0)

    # ROC 6日变动速率(Price Rate of Change),以当日的收盘价和N天前的收盘价比较,
    # 通过计算股价某一段时间内收盘价变动的比例,应用价格的移动比较来测量价位动量。属于超买超卖型因子。
    tmp['ROC6'] = talib.ROC(Close, timeperiod=6)
    tmp['ROC20'] = talib.ROC(Close, timeperiod=20)
    # 12日量变动速率指标(Volume Rate of Change),以今天的成交量和N天前的成交量比较,
    # 通过计算某一段时间内成交量变动的幅度,应用成交量的移动比较来测量成交量运动趋向,
    # 达到事先探测成交量供需的强弱,进而分析成交量的发展趋势及其将来是否有转势的意愿,
    # 属于成交量的反趋向指标。属于成交量型因子
    tmp['VROC6'] = talib.ROC(Volume, timeperiod=6)
    tmp['VROC20'] = talib.ROC(Volume, timeperiod=20)

    # ROC 6日变动速率(Price Rate of Change),以当日的收盘价和N天前的收盘价比较,
    # 通过计算股价某一段时间内收盘价变动的比例,应用价格的移动比较来测量价位动量。属于超买超卖型因子。
    tmp['ROCP6'] = talib.ROCP(Close, timeperiod=6)
    tmp['ROCP20'] = talib.ROCP(Close, timeperiod=20)
    # 12日量变动速率指标(Volume Rate of Change),以今天的成交量和N天前的成交量比较,
    # 通过计算某一段时间内成交量变动的幅度,应用成交量的移动比较来测量成交量运动趋向,
    # 达到事先探测成交量供需的强弱,进而分析成交量的发展趋势及其将来是否有转势的意愿,
    # 属于成交量的反趋向指标。属于成交量型因子
    tmp['VROCP6'] = talib.ROCP(Volume, timeperiod=6)
    tmp['VROCP20'] = talib.ROCP(Volume, timeperiod=20)

    # RSI
    tmp['RSI'] = talib.RSI(Close, timeperiod=14)

    # SAR 抛物线转向
    tmp['SAR'] = talib.SAR(High, Low, acceleration=0.02, maximum=0.2)

    # TEMA
    tmp['TEMA6'] = talib.TEMA(Close, timeperiod=6)
    tmp['TEMA12'] = talib.TEMA(Close, timeperiod=12)
    tmp['TEMA26'] = talib.TEMA(Close, timeperiod=26)

    # TRANGE 真实范围
    tmp['TRANGE'] = talib.TRANGE(High, Low, Close)

    # TYPPRICE 典型价格
    tmp['TYPPRICE'] = talib.TYPPRICE(High, Low, Close)

    # TSF 时间序列预测
    tmp['TSF'] = talib.TSF(Close, timeperiod=14)

    # ULTOSC 极限振子
    tmp['ULTOSC'] = talib.ULTOSC(High,
                                 Low,
                                 Close,
                                 timeperiod1=7,
                                 timeperiod2=14,
                                 timeperiod3=28)

    # 威廉指标
    tmp['WILLR'] = talib.WILLR(High, Low, Close, timeperiod=14)

    # 标准化
    if normalization:
        factors_list = tmp.columns.tolist()[1:]

        if rolling >= 26:
            for i in factors_list:
                tmp[i] = (tmp[i] - tmp[i].rolling(window=rolling, center=False).mean()) \
                         / tmp[i].rolling(window=rolling, center=False).std()
        elif rolling < 26 & rolling > 0:
            print('Recommended rolling range greater than 26')
        elif rolling <= 0:
            for i in factors_list:
                tmp[i] = (tmp[i] - tmp[i].mean()) / tmp[i].std()

    if drop:
        tmp.dropna(inplace=True)

    tmp.set_index('tradeTime', inplace=True)

    return tmp
Пример #21
0
def Set_indicators(data, period):
    """
    :param data: dataframe containing ohlcv prices and indexed with date
    :param period: period used to calculate indicators
    :return: dataframe of Technical indicators of specefic timeframe

    """

    df = pd.DataFrame(index=data.index)
    df["mom" + str(period)] = talib.MOM(data[USED_CLOSE_PRICE],
                                        timeperiod=period)
    #change it later
    df["slowk" + str(period)], df["slowd" + str(period)] = talib.STOCH(
        data["High"],
        data["Low"],
        data[USED_CLOSE_PRICE],
        fastk_period=period,
        slowk_period=period,
        slowk_matype=0,
        slowd_period=period,
        slowd_matype=0)

    #WILLR
    df["willr" + str(period)] = talib.WILLR(data["High"],
                                            data["Low"],
                                            data[USED_CLOSE_PRICE],
                                            timeperiod=period)

    #MACDFIX - Moving Average Convergence/Divergence Fix 12/26
    df["macd" + str(period)], df["macdsignal" +
                                 str(period)], df["macdhist" +
                                                  str(period)] = talib.MACDFIX(
                                                      data[USED_CLOSE_PRICE],
                                                      signalperiod=period)

    #CCI
    df["cci" + str(period)] = talib.CCI(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #Bollinger Bands
    df["upperband" +
       str(period)], df["middleband" +
                        str(period)], df["lowerband" +
                                         str(period)] = talib.BBANDS(
                                             data[USED_CLOSE_PRICE],
                                             timeperiod=period,
                                             nbdevup=2,
                                             nbdevdn=2,
                                             matype=0)

    #HIGH SMA
    df["smaHigh" + str(period)] = talib.SMA(data["High"], timeperiod=period)

    # SMA Adj Prices
    df["sma" + str(period)] = talib.SMA(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    df["smaHighLow" + str(period)] = talib.SMA(talib.MEDPRICE(
        data["High"], data["Low"]),
                                               timeperiod=period)

    #DEMA - Double Exponential Moving Average
    df["DEMA" + str(period)] = talib.DEMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #EMA - Exponential Moving Average
    df["EMA" + str(period)] = talib.EMA(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
    df["HT_TRENDLINE" + str(period)] = talib.HT_TRENDLINE(
        data[USED_CLOSE_PRICE])

    #KAMA - Kaufman Adaptive Moving Average
    df["KAMA" + str(period)] = talib.KAMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #T3 - Triple Exponential Moving Average (T3)
    df["T3-" + str(period)] = talib.T3(data[USED_CLOSE_PRICE],
                                       timeperiod=period,
                                       vfactor=0)

    #TEMA - Triple Exponential Moving Average
    df["TEMA" + str(period)] = talib.TEMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #TRIMA - Triangular Moving Average
    df["TRIMA" + str(period)] = talib.TRIMA(data[USED_CLOSE_PRICE],
                                            timeperiod=period)

    #WMA - Weighted Moving Average
    df["TRIMA" + str(period)] = talib.WMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    ##########

    #ADX - Average Directional Movement Index
    df["ADX" + str(period)] = talib.ADX(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #ADXR - Average Directional Movement Index Rating
    df["ADXR" + str(period)] = talib.ADXR(data["High"],
                                          data["Low"],
                                          data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #AROON - Aroon
    df["aroondown" + str(period)], df["aroonup" + str(period)] = talib.AROON(
        data["High"], data["Low"], timeperiod=period)

    #AROONOSC - Aroon Oscillator
    df["aroondown" + str(period)] = talib.AROONOSC(data["High"],
                                                   data["Low"],
                                                   timeperiod=period)

    #CMO - Chande Momentum Oscillator
    df["CMO" + str(period)] = talib.CMO(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #DX - Directional Movement Index
    df["DX" + str(period)] = talib.DX(data["High"],
                                      data["Low"],
                                      data[USED_CLOSE_PRICE],
                                      timeperiod=period)

    #MINUS_DI - Minus Directional Indicator
    df["MINUS_DI" + str(period)] = talib.MINUS_DI(data["High"],
                                                  data["Low"],
                                                  data[USED_CLOSE_PRICE],
                                                  timeperiod=period)

    #MINUS_DM - Minus Directional Movement
    df["MINUS_DM" + str(period)] = talib.MINUS_DM(data["High"],
                                                  data["Low"],
                                                  timeperiod=period)

    #PLUS_DI - Plus Directional Indicator
    df["PLUS_DI" + str(period)] = talib.PLUS_DI(data["High"],
                                                data["Low"],
                                                data[USED_CLOSE_PRICE],
                                                timeperiod=period)

    #PLUS_DM - Plus Directional Movement
    df["PLUS_DM" + str(period)] = talib.PLUS_DM(data["High"],
                                                data["Low"],
                                                timeperiod=period)

    #ROC - Rate of change : ((price/prevPrice)-1)*100
    df["roc" + str(period)] = talib.ROC(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
    df["ROCP" + str(period)] = talib.ROCP(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #ROCR - Rate of change ratio: (price/prevPrice)
    df["ROCR" + str(period)] = talib.ROCR(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
    df["ROCR100-" + str(period)] = talib.ROCR100(data[USED_CLOSE_PRICE],
                                                 timeperiod=period)

    #RSI - Relative Strength Index
    df["RSI-" + str(period)] = talib.RSI(data[USED_CLOSE_PRICE],
                                         timeperiod=period)

    #TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    df["TRIX" + str(period)] = talib.TRIX(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #MFI - Money Flow Index
    df["MFI" + str(period)] = talib.MFI(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        data["Volume"],
                                        timeperiod=period)

    #ADOSC - Chaikin A/D Oscillator set periods later please
    df["ADOSC" + str(period)] = talib.ADOSC(data["High"],
                                            data["Low"],
                                            data[USED_CLOSE_PRICE],
                                            data["Volume"],
                                            fastperiod=np.round(period / 3),
                                            slowperiod=period)

    return df
Пример #22
0
    def calculate(self, para):

        self.t = self.inputdata[:, 0]
        self.op = self.inputdata[:, 1]
        self.high = self.inputdata[:, 2]
        self.low = self.inputdata[:, 3]
        self.close = self.inputdata[:, 4]
        #adjusted close
        self.close1 = self.inputdata[:, 5]
        self.volume = self.inputdata[:, 6]
        #Overlap study

        #Overlap Studies
        #Overlap Studies
        if para is 'BBANDS':  #Bollinger Bands
            upperband, middleband, lowerband = ta.BBANDS(self.close,
                                                         timeperiod=self.tp,
                                                         nbdevup=2,
                                                         nbdevdn=2,
                                                         matype=0)
            self.output = [upperband, middleband, lowerband]

        elif para is 'DEMA':  #Double Exponential Moving Average
            self.output = ta.DEMA(self.close, timeperiod=self.tp)

        elif para is 'EMA':  #Exponential Moving Average
            self.output = ta.EMA(self.close, timeperiod=self.tp)

        elif para is 'HT_TRENDLINE':  #Hilbert Transform - Instantaneous Trendline
            self.output = ta.HT_TRENDLINE(self.close)

        elif para is 'KAMA':  #Kaufman Adaptive Moving Average
            self.output = ta.KAMA(self.close, timeperiod=self.tp)

        elif para is 'MA':  #Moving average
            self.output = ta.MA(self.close, timeperiod=self.tp, matype=0)

        elif para is 'MAMA':  #MESA Adaptive Moving Average
            mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0)

        elif para is 'MAVP':  #Moving average with variable period
            self.output = ta.MAVP(self.close,
                                  periods=10,
                                  minperiod=self.tp,
                                  maxperiod=self.tp1,
                                  matype=0)

        elif para is 'MIDPOINT':  #MidPoint over period
            self.output = ta.MIDPOINT(self.close, timeperiod=self.tp)

        elif para is 'MIDPRICE':  #Midpoint Price over period
            self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp)

        elif para is 'SAR':  #Parabolic SAR
            self.output = ta.SAR(self.high,
                                 self.low,
                                 acceleration=0,
                                 maximum=0)

        elif para is 'SAREXT':  #Parabolic SAR - Extended
            self.output = ta.SAREXT(self.high,
                                    self.low,
                                    startvalue=0,
                                    offsetonreverse=0,
                                    accelerationinitlong=0,
                                    accelerationlong=0,
                                    accelerationmaxlong=0,
                                    accelerationinitshort=0,
                                    accelerationshort=0,
                                    accelerationmaxshort=0)

        elif para is 'SMA':  #Simple Moving Average
            self.output = ta.SMA(self.close, timeperiod=self.tp)

        elif para is 'T3':  #Triple Exponential Moving Average (T3)
            self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0)

        elif para is 'TEMA':  #Triple Exponential Moving Average
            self.output = ta.TEMA(self.close, timeperiod=self.tp)

        elif para is 'TRIMA':  #Triangular Moving Average
            self.output = ta.TRIMA(self.close, timeperiod=self.tp)

        elif para is 'WMA':  #Weighted Moving Average
            self.output = ta.WMA(self.close, timeperiod=self.tp)

        #Momentum Indicators
        elif para is 'ADX':  #Average Directional Movement Index
            self.output = ta.ADX(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'ADXR':  #Average Directional Movement Index Rating
            self.output = ta.ADXR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'APO':  #Absolute Price Oscillator
            self.output = ta.APO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'AROON':  #Aroon
            aroondown, aroonup = ta.AROON(self.high,
                                          self.low,
                                          timeperiod=self.tp)
            self.output = [aroondown, aroonup]

        elif para is 'AROONOSC':  #Aroon Oscillator
            self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp)

        elif para is 'BOP':  #Balance Of Power
            self.output = ta.BOP(self.op, self.high, self.low, self.close)

        elif para is 'CCI':  #Commodity Channel Index
            self.output = ta.CCI(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'CMO':  #Chande Momentum Oscillator
            self.output = ta.CMO(self.close, timeperiod=self.tp)

        elif para is 'DX':  #Directional Movement Index
            self.output = ta.DX(self.high,
                                self.low,
                                self.close,
                                timeperiod=self.tp)

        elif para is 'MACD':  #Moving Average Convergence/Divergence
            macd, macdsignal, macdhist = ta.MACD(self.close,
                                                 fastperiod=12,
                                                 slowperiod=26,
                                                 signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDEXT':  #MACD with controllable MA type
            macd, macdsignal, macdhist = ta.MACDEXT(self.close,
                                                    fastperiod=12,
                                                    fastmatype=0,
                                                    slowperiod=26,
                                                    slowmatype=0,
                                                    signalperiod=9,
                                                    signalmatype=0)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDFIX':  #Moving Average Convergence/Divergence Fix 12/26
            macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MFI':  #Money Flow Index
            self.output = ta.MFI(self.high,
                                 self.low,
                                 self.close,
                                 self.volume,
                                 timeperiod=self.tp)

        elif para is 'MINUS_DI':  #Minus Directional Indicator
            self.output = ta.MINUS_DI(self.high,
                                      self.low,
                                      self.close,
                                      timeperiod=self.tp)

        elif para is 'MINUS_DM':  #Minus Directional Movement
            self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'MOM':  #Momentum
            self.output = ta.MOM(self.close, timeperiod=10)

        elif para is 'PLUS_DI':  #Plus Directional Indicator
            self.output = ta.PLUS_DI(self.high,
                                     self.low,
                                     self.close,
                                     timeperiod=self.tp)

        elif para is 'PLUS_DM':  #Plus Directional Movement
            self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'PPO':  #Percentage Price Oscillator
            self.output = ta.PPO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'ROC':  #Rate of change : ((price/prevPrice)-1)*100
            self.output = ta.ROC(self.close, timeperiod=10)

        elif para is 'ROCP':  #Rate of change Percentage: (price-prevPrice)/prevPrice
            self.output = ta.ROCP(self.close, timeperiod=10)

        elif para is 'ROCR':  #Rate of change ratio: (price/prevPrice)
            self.output = ta.ROCR(self.close, timeperiod=10)

        elif para is 'ROCR100':  #Rate of change ratio 100 scale: (price/prevPrice)*100
            self.output = ta.ROCR100(self.close, timeperiod=10)

        elif para is 'RSI':  #Relative Strength Index
            self.output = ta.RSI(self.close, timeperiod=self.tp)

        elif para is 'STOCH':  #Stochastic
            slowk, slowd = ta.STOCH(self.high,
                                    self.low,
                                    self.close,
                                    fastk_period=5,
                                    slowk_period=3,
                                    slowk_matype=0,
                                    slowd_period=3,
                                    slowd_matype=0)
            self.output = [slowk, slowd]

        elif para is 'STOCHF':  #Stochastic Fast
            fastk, fastd = ta.STOCHF(self.high,
                                     self.low,
                                     self.close,
                                     fastk_period=5,
                                     fastd_period=3,
                                     fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'STOCHRSI':  #Stochastic Relative Strength Index
            fastk, fastd = ta.STOCHRSI(self.close,
                                       timeperiod=self.tp,
                                       fastk_period=5,
                                       fastd_period=3,
                                       fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'TRIX':  #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
            self.output = ta.TRIX(self.close, timeperiod=self.tp)

        elif para is 'ULTOSC':  #Ultimate Oscillator
            self.output = ta.ULTOSC(self.high,
                                    self.low,
                                    self.close,
                                    timeperiod1=self.tp,
                                    timeperiod2=self.tp1,
                                    timeperiod3=self.tp2)

        elif para is 'WILLR':  #Williams' %R
            self.output = ta.WILLR(self.high,
                                   self.low,
                                   self.close,
                                   timeperiod=self.tp)

        # Volume Indicators    : #
        elif para is 'AD':  #Chaikin A/D Line
            self.output = ta.AD(self.high, self.low, self.close, self.volume)

        elif para is 'ADOSC':  #Chaikin A/D Oscillator
            self.output = ta.ADOSC(self.high,
                                   self.low,
                                   self.close,
                                   self.volume,
                                   fastperiod=3,
                                   slowperiod=10)

        elif para is 'OBV':  #On Balance Volume
            self.output = ta.OBV(self.close, self.volume)

    # Volatility Indicators: #
        elif para is 'ATR':  #Average True Range
            self.output = ta.ATR(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'NATR':  #Normalized Average True Range
            self.output = ta.NATR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'TRANGE':  #True Range
            self.output = ta.TRANGE(self.high, self.low, self.close)

        #Price Transform      : #
        elif para is 'AVGPRICE':  #Average Price
            self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close)

        elif para is 'MEDPRICE':  #Median Price
            self.output = ta.MEDPRICE(self.high, self.low)

        elif para is 'TYPPRICE':  #Typical Price
            self.output = ta.TYPPRICE(self.high, self.low, self.close)

        elif para is 'WCLPRICE':  #Weighted Close Price
            self.output = ta.WCLPRICE(self.high, self.low, self.close)

        #Cycle Indicators     : #
        elif para is 'HT_DCPERIOD':  #Hilbert Transform - Dominant Cycle Period
            self.output = ta.HT_DCPERIOD(self.close)

        elif para is 'HT_DCPHASE':  #Hilbert Transform - Dominant Cycle Phase
            self.output = ta.HT_DCPHASE(self.close)

        elif para is 'HT_PHASOR':  #Hilbert Transform - Phasor Components
            inphase, quadrature = ta.HT_PHASOR(self.close)
            self.output = [inphase, quadrature]

        elif para is 'HT_SINE':  #Hilbert Transform - SineWave #2
            sine, leadsine = ta.HT_SINE(self.close)
            self.output = [sine, leadsine]

        elif para is 'HT_TRENDMODE':  #Hilbert Transform - Trend vs Cycle Mode
            self.integer = ta.HT_TRENDMODE(self.close)

        #Pattern Recognition  : #
        elif para is 'CDL2CROWS':  #Two Crows
            self.integer = ta.CDL2CROWS(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDL3BLACKCROWS':  #Three Black Crows
            self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3INSIDE':  #Three Inside Up/Down
            self.integer = ta.CDL3INSIDE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDL3LINESTRIKE':  #Three-Line Strike
            self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3OUTSIDE':  #Three Outside Up/Down
            self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDL3STARSINSOUTH':  #Three Stars In The South
            self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDL3WHITESOLDIERS':  #Three Advancing White Soldiers
            self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLABANDONEDBABY':  #Abandoned Baby
            self.integer = ta.CDLABANDONEDBABY(self.op,
                                               self.high,
                                               self.low,
                                               self.close,
                                               penetration=0)

        elif para is 'CDLBELTHOLD':  #Belt-hold
            self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLBREAKAWAY':  #Breakaway
            self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLCLOSINGMARUBOZU':  #Closing Marubozu
            self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLCONCEALBABYSWALL':  #Concealing Baby Swallow
            self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLCOUNTERATTACK':  #Counterattack
            self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLDARKCLOUDCOVER':  #Dark Cloud Cover
            self.integer = ta.CDLDARKCLOUDCOVER(self.op,
                                                self.high,
                                                self.low,
                                                self.close,
                                                penetration=0)

        elif para is 'CDLDOJI':  #Doji
            self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close)

        elif para is 'CDLDOJISTAR':  #Doji Star
            self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLDRAGONFLYDOJI':  #Dragonfly Doji
            self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLENGULFING':  #Engulfing Pattern
            self.integer = ta.CDLENGULFING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLEVENINGDOJISTAR':  #Evening Doji Star
            self.integer = ta.CDLEVENINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLEVENINGSTAR':  #Evening Star
            self.integer = ta.CDLEVENINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLGAPSIDESIDEWHITE':  #Up/Down-gap side-by-side white lines
            self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLGRAVESTONEDOJI':  #Gravestone Doji
            self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLHAMMER':  #Hammer
            self.integer = ta.CDLHAMMER(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHANGINGMAN':  #Hanging Man
            self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHARAMI':  #Harami Pattern
            self.integer = ta.CDLHARAMI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHARAMICROSS':  #Harami Cross Pattern
            self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLHIGHWAVE':  #High-Wave Candle
            self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLHIKKAKE':  #Hikkake Pattern
            self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLHIKKAKEMOD':  #Modified Hikkake Pattern
            self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHOMINGPIGEON':  #Homing Pigeon
            self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLIDENTICAL3CROWS':  #Identical Three Crows
            self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLINNECK':  #In-Neck Pattern
            self.integer = ta.CDLINNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLINVERTEDHAMMER':  #Inverted Hammer
            self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLKICKING':  #Kicking
            self.integer = ta.CDLKICKING(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLKICKINGBYLENGTH':  #Kicking - bull/bear determined by the longer marubozu
            self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLLADDERBOTTOM':  #Ladder Bottom
            self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLLONGLEGGEDDOJI':  #Long Legged Doji
            self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLLONGLINE':  #Long Line Candle
            self.integer = ta.CDLLONGLINE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMARUBOZU':  #Marubozu
            self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMATCHINGLOW':  #Matching Low
            self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLMATHOLD':  #Mat Hold
            self.integer = ta.CDLMATHOLD(self.op,
                                         self.high,
                                         self.low,
                                         self.close,
                                         penetration=0)

        elif para is 'CDLMORNINGDOJISTAR':  #Morning Doji Star
            self.integer = ta.CDLMORNINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLMORNINGSTAR':  #Morning Star
            self.integer = ta.CDLMORNINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLONNECK':  #On-Neck Pattern
            self.integer = ta.CDLONNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLPIERCING':  #Piercing Pattern
            self.integer = ta.CDLPIERCING(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLRICKSHAWMAN':  #Rickshaw Man
            self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLRISEFALL3METHODS':  #Rising/Falling Three Methods
            self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLSEPARATINGLINES':  #Separating Lines
            self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLSHOOTINGSTAR':  #Shooting Star
            self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLSHORTLINE':  #Short Line Candle
            self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLSPINNINGTOP':  #Spinning Top
            self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLSTALLEDPATTERN':  #Stalled Pattern
            self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLSTICKSANDWICH':  #Stick Sandwich
            self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLTAKURI':  #Takuri (Dragonfly Doji with very long lower shadow)
            self.integer = ta.CDLTAKURI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLTASUKIGAP':  #Tasuki Gap
            self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTHRUSTING':  #Thrusting Pattern
            self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTRISTAR':  #Tristar Pattern
            self.integer = ta.CDLTRISTAR(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLUNIQUE3RIVER':  #Unique 3 River
            self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLUPSIDEGAP2CROWS':  #Upside Gap Two Crows
            self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLXSIDEGAP3METHODS':  #Upside/Downside Gap Three Methods
            self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low,
                                                  self.close)

        #Statistic Functions  : #
        elif para is 'BETA':  #Beta
            self.output = ta.BETA(self.high, self.low, timeperiod=5)

        elif para is 'CORREL':  #Pearson's Correlation Coefficient (r)
            self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp)

        elif para is 'LINEARREG':  #Linear Regression
            self.output = ta.LINEARREG(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_ANGLE':  #Linear Regression Angle
            self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_INTERCEPT':  #Linear Regression Intercept
            self.output = ta.LINEARREG_INTERCEPT(self.close,
                                                 timeperiod=self.tp)

        elif para is 'LINEARREG_SLOPE':  #Linear Regression Slope
            self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp)

        elif para is 'STDDEV':  #Standard Deviation
            self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1)

        elif para is 'TSF':  #Time Series Forecast
            self.output = ta.TSF(self.close, timeperiod=self.tp)

        elif para is 'VAR':  #Variance
            self.output = ta.VAR(self.close, timeperiod=5, nbdev=1)

        else:
            print('You issued command:' + para)
Пример #23
0
def main():
    ohlcv = api_ohlcv('20191017')
    open, high, low, close, volume, timestamp = [], [], [], [], [], []

    for i in ohlcv:
        open.append(int(i[0]))
        high.append(int(i[1]))
        low.append(int(i[2]))
        close.append(int(i[3]))
        volume.append(float(i[4]))
        time_str = str(i[5])
        timestamp.append(
            datetime.fromtimestamp(int(
                time_str[:10])).strftime('%Y/%m/%d %H:%M:%M'))

    date_time_index = pd.to_datetime(
        timestamp)  # convert to DateTimeIndex type
    df = pd.DataFrame(
        {
            'open': open,
            'high': high,
            'low': low,
            'close': close,
            'volume': volume
        },
        index=date_time_index)
    # df.index += pd.offsets.Hour(9) # adjustment for JST if required
    print(df.shape)
    print(df.columns)

    # pct_change
    f = lambda x: 1 if x > 0.0001 else -1 if x < -0.0001 else 0 if -0.0001 <= x <= 0.0001 else np.nan
    y = df.rename(columns={
        'close': 'y'
    }).loc[:, 'y'].pct_change(1).shift(-1).fillna(0)
    X = df.copy()
    y_ = pd.DataFrame(y.map(f), columns=['y'])
    y = df.rename(columns={'close': 'y'}).loc[:, 'y'].pct_change(1).fillna(0)
    df_ = pd.concat([X, y_], axis=1)

    # check the shape
    print(
        '----------------------------------------------------------------------------------------'
    )
    print('X shape: (%i,%i)' % X.shape)
    print('y shape: (%i,%i)' % y_.shape)
    print(
        '----------------------------------------------------------------------------------------'
    )
    print(y_.groupby('y').size())
    print('y=1 up, y=0 stay, y=-1 down')
    print(
        '----------------------------------------------------------------------------------------'
    )

    # feature calculation
    open = pd.Series(df['open'])
    high = pd.Series(df['high'])
    low = pd.Series(df['low'])
    close = pd.Series(df['close'])
    volume = pd.Series(df['volume'])

    # pct_change for new column
    X['diff'] = y

    # Exponential Moving Average
    ema = talib.EMA(close, timeperiod=3)
    ema = ema.fillna(ema.mean())

    # Momentum
    momentum = talib.MOM(close, timeperiod=5)
    momentum = momentum.fillna(momentum.mean())

    # RSI
    rsi = talib.RSI(close, timeperiod=14)
    rsi = rsi.fillna(rsi.mean())

    # ADX
    adx = talib.ADX(high, low, close, timeperiod=14)
    adx = adx.fillna(adx.mean())

    # ADX change
    adx_change = adx.pct_change(1).shift(-1)
    adx_change = adx_change.fillna(adx_change.mean())

    # AD
    ad = talib.AD(high, low, close, volume)
    ad = ad.fillna(ad.mean())

    X_ = pd.concat([X, ema, momentum, rsi, adx_change, ad],
                   axis=1).drop(['open', 'high', 'low', 'close'], axis=1)
    X_.columns = ['volume', 'diff', 'ema', 'momentum', 'rsi', 'adx', 'ad']
    X_.join(y_).head(10)

    # default parameter models
    X_train, X_test, y_train, y_test = train_test_split(X_,
                                                        y_,
                                                        test_size=0.33,
                                                        random_state=42)
    print('X_train shape: {}'.format(X_train.shape))
    print('X_test shape: {}'.format(X_test.shape))
    print('y_train shape: {}'.format(y_train.shape))
    print('y_test shape: {}'.format(y_test.shape))

    pipe_knn = Pipeline([('scl', StandardScaler()),
                         ('est', KNeighborsClassifier(n_neighbors=3))])
    pipe_logistic = Pipeline([('scl', StandardScaler()),
                              ('est',
                               LogisticRegression(solver='lbfgs',
                                                  multi_class='multinomial',
                                                  random_state=39))])
    pipe_rf = Pipeline([('scl', StandardScaler()),
                        ('est', RandomForestClassifier(random_state=39))])
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])

    pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting']
    pipe_lines = [pipe_knn, pipe_logistic, pipe_rf, pipe_gb]

    for (i, pipe) in enumerate(pipe_lines):
        pipe.fit(X_train, y_train.values.ravel())
        print(pipe)
        print('%s: %.3f' %
              (pipe_names[i] + ' Train Accuracy',
               accuracy_score(y_train.values.ravel(), pipe.predict(X_train))))
        print('%s: %.3f' %
              (pipe_names[i] + ' Test Accuracy',
               accuracy_score(y_test.values.ravel(), pipe.predict(X_test))))
        print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score',
                            f1_score(y_train.values.ravel(),
                                     pipe.predict(X_train),
                                     average='micro')))
        print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score',
                            f1_score(y_test.values.ravel(),
                                     pipe.predict(X_test),
                                     average='micro')))

    for (i, pipe) in enumerate(pipe_lines):
        predict = pipe.predict(X_test)
        cm = confusion_matrix(y_test.values.ravel(),
                              predict,
                              labels=[-1, 0, 1])
        print('{} Confusion Matrix'.format(pipe_names[i]))
        print(cm)

    ## Overlap Studies Functions
    # DEMA - Double Exponential Moving Average
    dema = talib.DEMA(close, timeperiod=3)
    dema = dema.fillna(dema.mean())
    print('DEMA - Double Exponential Moving Average shape: {}'.format(
        dema.shape))

    # EMA - Exponential Moving Average
    ema = talib.EMA(close, timeperiod=3)
    ema = ema.fillna(ema.mean())
    print('EMA - Exponential Moving Average shape: {}'.format(ema.shape))

    # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
    hilbert = talib.HT_TRENDLINE(close)
    hilbert = hilbert.fillna(hilbert.mean())
    print(
        'HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline shape: {}'.
        format(hilbert.shape))

    # KAMA - Kaufman Adaptive Moving Average
    kama = talib.KAMA(close, timeperiod=3)
    kama = kama.fillna(kama.mean())
    print('KAMA - Kaufman Adaptive Moving Average shape: {}'.format(
        kama.shape))

    # MA - Moving average
    ma = talib.MA(close, timeperiod=3, matype=0)
    ma = ma.fillna(ma.mean())
    print('MA - Moving average shape: {}'.format(kama.shape))

    # MIDPOINT - MidPoint over period
    midpoint = talib.MIDPOINT(close, timeperiod=7)
    midpoint = midpoint.fillna(midpoint.mean())
    print('MIDPOINT - MidPoint over period shape: {}'.format(midpoint.shape))

    # MIDPRICE - Midpoint Price over period
    midprice = talib.MIDPRICE(high, low, timeperiod=7)
    midprice = midprice.fillna(midprice.mean())
    print('MIDPRICE - Midpoint Price over period shape: {}'.format(
        midprice.shape))

    # SAR - Parabolic SAR
    sar = talib.SAR(high, low, acceleration=0, maximum=0)
    sar = sar.fillna(sar.mean())
    print('SAR - Parabolic SAR shape: {}'.format(sar.shape))

    # SAREXT - Parabolic SAR - Extended
    sarext = talib.SAREXT(high,
                          low,
                          startvalue=0,
                          offsetonreverse=0,
                          accelerationinitlong=0,
                          accelerationlong=0,
                          accelerationmaxlong=0,
                          accelerationinitshort=0,
                          accelerationshort=0,
                          accelerationmaxshort=0)
    sarext = sarext.fillna(sarext.mean())
    print('SAREXT - Parabolic SAR - Extended shape: {}'.format(sarext.shape))

    # SMA - Simple Moving Average
    sma = talib.SMA(close, timeperiod=3)
    sma = sma.fillna(sma.mean())
    print('SMA - Simple Moving Average shape: {}'.format(sma.shape))

    # T3 - Triple Exponential Moving Average (T3)
    t3 = talib.T3(close, timeperiod=5, vfactor=0)
    t3 = t3.fillna(t3.mean())
    print('T3 - Triple Exponential Moving Average shape: {}'.format(t3.shape))

    # TEMA - Triple Exponential Moving Average
    tema = talib.TEMA(close, timeperiod=3)
    tema = tema.fillna(tema.mean())
    print('TEMA - Triple Exponential Moving Average shape: {}'.format(
        tema.shape))

    # TRIMA - Triangular Moving Average
    trima = talib.TRIMA(close, timeperiod=3)
    trima = trima.fillna(trima.mean())
    print('TRIMA - Triangular Moving Average shape: {}'.format(trima.shape))

    # WMA - Weighted Moving Average
    wma = talib.WMA(close, timeperiod=3)
    wma = wma.fillna(wma.mean())
    print('WMA - Weighted Moving Average shape: {}'.format(wma.shape))

    ## Momentum Indicator Functions
    # ADX - Average Directional Movement Index
    adx = talib.ADX(high, low, close, timeperiod=14)
    adx = adx.fillna(adx.mean())
    print('ADX - Average Directional Movement Index shape: {}'.format(
        adx.shape))

    # ADXR - Average Directional Movement Index Rating
    adxr = talib.ADXR(high, low, close, timeperiod=7)
    adxr = adxr.fillna(adxr.mean())
    print('ADXR - Average Directional Movement Index Rating shape: {}'.format(
        adxr.shape))

    # APO - Absolute Price Oscillator
    apo = talib.APO(close, fastperiod=12, slowperiod=26, matype=0)
    apo = apo.fillna(apo.mean())
    print('APO - Absolute Price Oscillator shape: {}'.format(apo.shape))

    # AROONOSC - Aroon Oscillator
    aroon = talib.AROONOSC(high, low, timeperiod=14)
    aroon = aroon.fillna(aroon.mean())
    print('AROONOSC - Aroon Oscillator shape: {}'.format(apo.shape))

    # BOP - Balance Of Power
    bop = talib.BOP(open, high, low, close)
    bop = bop.fillna(bop.mean())
    print('BOP - Balance Of Power shape: {}'.format(apo.shape))

    # CCI - Commodity Channel Index
    cci = talib.CCI(high, low, close, timeperiod=7)
    cci = cci.fillna(cci.mean())
    print('CCI - Commodity Channel Index shape: {}'.format(cci.shape))

    # CMO - Chande Momentum Oscillator
    cmo = talib.CMO(close, timeperiod=7)
    cmo = cmo.fillna(cmo.mean())
    print('CMO - Chande Momentum Oscillator shape: {}'.format(cmo.shape))

    # DX - Directional Movement Index
    dx = talib.DX(high, low, close, timeperiod=7)
    dx = dx.fillna(dx.mean())
    print('DX - Directional Movement Index shape: {}'.format(dx.shape))

    # MFI - Money Flow Index
    mfi = talib.MFI(high, low, close, volume, timeperiod=7)
    mfi = mfi.fillna(mfi.mean())
    print('MFI - Money Flow Index shape: {}'.format(mfi.shape))

    # MINUS_DI - Minus Directional Indicator
    minusdi = talib.MINUS_DI(high, low, close, timeperiod=14)
    minusdi = minusdi.fillna(minusdi.mean())
    print('MINUS_DI - Minus Directional Indicator shape: {}'.format(
        minusdi.shape))

    # MINUS_DM - Minus Directional Movement
    minusdm = talib.MINUS_DM(high, low, timeperiod=14)
    minusdm = minusdm.fillna(minusdm.mean())
    print('MINUS_DM - Minus Directional Movement shape: {}'.format(
        minusdm.shape))

    # MOM - Momentum
    mom = talib.MOM(close, timeperiod=5)
    mom = mom.fillna(mom.mean())
    print('MOM - Momentum shape: {}'.format(mom.shape))

    # PLUS_DI - Plus Directional Indicator
    plusdi = talib.PLUS_DI(high, low, close, timeperiod=14)
    plusdi = plusdi.fillna(plusdi.mean())
    print('PLUS_DI - Plus Directional Indicator shape: {}'.format(
        plusdi.shape))

    # PLUS_DM - Plus Directional Movement
    plusdm = talib.PLUS_DM(high, low, timeperiod=14)
    plusdm = plusdm.fillna(plusdm.mean())
    print('PLUS_DM - Plus Directional Movement shape: {}'.format(plusdi.shape))

    # PPO - Percentage Price Oscillator
    ppo = talib.PPO(close, fastperiod=12, slowperiod=26, matype=0)
    ppo = ppo.fillna(ppo.mean())
    print('PPO - Percentage Price Oscillator shape: {}'.format(ppo.shape))

    # ROC - Rate of change:((price/prevPrice)-1)*100
    roc = talib.ROC(close, timeperiod=10)
    roc = roc.fillna(roc.mean())
    print('ROC - Rate of change : ((price/prevPrice)-1)*100 shape: {}'.format(
        roc.shape))

    # RSI - Relative Strength Index
    rsi = talib.RSI(close, timeperiod=14)
    rsi = rsi.fillna(rsi.mean())
    print('RSI - Relative Strength Index shape: {}'.format(rsi.shape))

    # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    trix = talib.TRIX(close, timeperiod=30)
    trix = trix.fillna(trix.mean())
    print('TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA shape: {}'.
          format(trix.shape))

    # ULTOSC - Ultimate Oscillator
    ultosc = talib.ULTOSC(high,
                          low,
                          close,
                          timeperiod1=7,
                          timeperiod2=14,
                          timeperiod3=28)
    ultosc = ultosc.fillna(ultosc.mean())
    print('ULTOSC - Ultimate Oscillator shape: {}'.format(ultosc.shape))

    # WILLR - Williams'%R
    willr = talib.WILLR(high, low, close, timeperiod=7)
    willr = willr.fillna(willr.mean())
    print("WILLR - Williams'%R shape: {}".format(willr.shape))

    ## Volume Indicator Functions
    # AD - Chaikin A/D Line
    ad = talib.AD(high, low, close, volume)
    ad = ad.fillna(ad.mean())
    print('AD - Chaikin A/D Line shape: {}'.format(ad.shape))

    # ADOSC - Chaikin A/D Oscillator
    adosc = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10)
    adosc = adosc.fillna(adosc.mean())
    print('ADOSC - Chaikin A/D Oscillator shape: {}'.format(adosc.shape))

    # OBV - On Balance Volume
    obv = talib.OBV(close, volume)
    obv = obv.fillna(obv.mean())
    print('OBV - On Balance Volume shape: {}'.format(obv.shape))

    ## Volatility Indicator Functions
    # ATR - Average True Range
    atr = talib.ATR(high, low, close, timeperiod=7)
    atr = atr.fillna(atr.mean())
    print('ATR - Average True Range shape: {}'.format(atr.shape))

    # NATR - Normalized Average True Range
    natr = talib.NATR(high, low, close, timeperiod=7)
    natr = natr.fillna(natr.mean())
    print('NATR - Normalized Average True Range shape: {}'.format(natr.shape))

    # TRANGE - True Range
    trange = talib.TRANGE(high, low, close)
    trange = trange.fillna(trange.mean())
    print('TRANGE - True Range shape: {}'.format(natr.shape))

    ## Price Transform Functions
    # AVGPRICE - Average Price
    avg = talib.AVGPRICE(open, high, low, close)
    avg = avg.fillna(avg.mean())
    print('AVGPRICE - Average Price shape: {}'.format(natr.shape))

    # MEDPRICE - Median Price
    medprice = talib.MEDPRICE(high, low)
    medprice = medprice.fillna(medprice.mean())
    print('MEDPRICE - Median Price shape: {}'.format(medprice.shape))

    # TYPPRICE - Typical Price
    typ = talib.TYPPRICE(high, low, close)
    typ = typ.fillna(typ.mean())
    print('TYPPRICE - Typical Price shape: {}'.format(typ.shape))

    # WCLPRICE - Weighted Close Price
    wcl = talib.WCLPRICE(high, low, close)
    wcl = wcl.fillna(wcl.mean())
    print('WCLPRICE - Weighted Close Price shape: {}'.format(wcl.shape))

    ## Cycle Indicator Functions
    # HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period
    dcperiod = talib.HT_DCPERIOD(close)
    dcperiod = dcperiod.fillna(dcperiod.mean())
    print('HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period shape: {}'.
          format(dcperiod.shape))

    # HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase
    dcphase = talib.HT_DCPHASE(close)
    dcphase = dcphase.fillna(dcphase.mean())
    print('HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase shape: {}'.
          format(dcperiod.shape))

    ## Statistic Functions
    # BETA - Beta
    beta = talib.BETA(high, low, timeperiod=3)
    beta = beta.fillna(beta.mean())
    print('BETA - Beta shape: {}'.format(beta.shape))

    # CORREL - Pearson's Correlation Coefficient(r)
    correl = talib.CORREL(high, low, timeperiod=30)
    correl = correl.fillna(correl.mean())
    print("CORREL - Pearson's Correlation Coefficient(r) shape: {}".format(
        beta.shape))

    # LINEARREG - Linear Regression
    linreg = talib.LINEARREG(close, timeperiod=7)
    linreg = linreg.fillna(linreg.mean())
    print("LINEARREG - Linear Regression shape: {}".format(linreg.shape))

    # STDDEV - Standard Deviation
    stddev = talib.STDDEV(close, timeperiod=5, nbdev=1)
    stddev = stddev.fillna(stddev.mean())
    print("STDDEV - Standard Deviation shape: {}".format(stddev.shape))

    # TSF - Time Series Forecast
    tsf = talib.TSF(close, timeperiod=7)
    tsf = tsf.fillna(tsf.mean())
    print("TSF - Time Series Forecast shape: {}".format(tsf.shape))

    # VAR - Variance
    var = talib.VAR(close, timeperiod=5, nbdev=1)
    var = var.fillna(var.mean())
    print("VAR - Variance shape: {}".format(var.shape))

    ## Feature DataFrame
    X_full = pd.concat([
        X, dema, ema, hilbert, kama, ma, midpoint, midprice, sar, sarext, sma,
        t3, tema, trima, wma, adx, adxr, apo, aroon, bop, cci, cmo, mfi,
        minusdi, minusdm, mom, plusdi, plusdm, ppo, roc, rsi, trix, ultosc,
        willr, ad, adosc, obv, atr, natr, trange, avg, medprice, typ, wcl,
        dcperiod, dcphase, beta, correl, linreg, stddev, tsf, var
    ],
                       axis=1).drop(['open', 'high', 'low', 'close'], axis=1)
    X_full.columns = [
        'volume', 'diff', 'dema', 'ema', 'hilbert', 'kama', 'ma', 'midpoint',
        'midprice', 'sar', 'sarext', 'sma', 't3', 'tema', 'trima', 'wma',
        'adx', 'adxr', 'apo', 'aroon', 'bop', 'cci', 'cmo', 'mfi', 'minusdi',
        'minusdm', 'mom', 'plusdi', 'plusdm', 'ppo', 'roc', 'rsi', 'trix',
        'ultosc', 'willr', 'ad', 'adosc', 'obv', 'atr', 'natr', 'trange',
        'avg', 'medprice', 'typ', 'wcl', 'dcperiod', 'dcphase', 'beta',
        'correl', 'linreg', 'stddev', 'tsf', 'var'
    ]
    X_full.join(y_).head(10)

    # full feature models
    X_train_full, X_test_full, y_train_full, y_test_full = train_test_split(
        X_full, y_, test_size=0.33, random_state=42)
    print('X_train shape: {}'.format(X_train_full.shape))
    print('X_test shape: {}'.format(X_test_full.shape))
    print('y_train shape: {}'.format(y_train_full.shape))
    print('y_test shape: {}'.format(y_test_full.shape))

    pipe_knn_full = Pipeline([('scl', StandardScaler()),
                              ('est', KNeighborsClassifier(n_neighbors=3))])
    pipe_logistic_full = Pipeline([
        ('scl', StandardScaler()),
        ('est',
         LogisticRegression(solver='lbfgs',
                            multi_class='multinomial',
                            random_state=39))
    ])
    pipe_rf_full = Pipeline([('scl', StandardScaler()),
                             ('est', RandomForestClassifier(random_state=39))])
    pipe_gb_full = Pipeline([('scl', StandardScaler()),
                             ('est',
                              GradientBoostingClassifier(random_state=39))])

    pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting']
    pipe_lines_full = [
        pipe_knn_full, pipe_logistic_full, pipe_rf_full, pipe_gb_full
    ]

    for (i, pipe) in enumerate(pipe_lines_full):
        pipe.fit(X_train_full, y_train_full.values.ravel())
        print(pipe)
        print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy',
                            accuracy_score(y_train_full.values.ravel(),
                                           pipe.predict(X_train_full))))
        print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy',
                            accuracy_score(y_test_full.values.ravel(),
                                           pipe.predict(X_test_full))))
        print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score',
                            f1_score(y_train_full.values.ravel(),
                                     pipe.predict(X_train_full),
                                     average='micro')))
        print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score',
                            f1_score(y_test_full.values.ravel(),
                                     pipe.predict(X_test_full),
                                     average='micro')))

    # Univariate Statistics
    select = SelectPercentile(percentile=25)
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_selected = select.transform(X_train_full)
    X_test_selected = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Univariate Statistics-------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Cllassifier with Univariate Statistics
    print(
        '---------------------------With Univariate Statistics--------------------------------------'
    )
    pipe_gb_percentile = Pipeline([
        ('scl', StandardScaler()),
        ('est', GradientBoostingClassifier(random_state=39))
    ])
    pipe_gb_percentile.fit(X_train_selected, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_percentile.predict(X_train_selected))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_percentile.predict(X_test_selected))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_percentile.predict(X_train_selected),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_percentile.predict(X_test_selected),
                 average='micro')))

    # Model-based Selection
    select = SelectFromModel(RandomForestClassifier(n_estimators=100,
                                                    random_state=42),
                             threshold="1.25*mean")
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_model = select.transform(X_train_full)
    X_test_model = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Model-based Selection--------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Classifier with Model-based Selection
    print(
        '----------------------------With Model-based Selection--------------------------------------'
    )
    pipe_gb_model = Pipeline([('scl', StandardScaler()),
                              ('est',
                               GradientBoostingClassifier(random_state=39))])
    pipe_gb_model.fit(X_train_model, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_model.predict(X_train_model))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_model.predict(X_test_model))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_model.predict(X_train_model),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_model.predict(X_test_model),
                 average='micro')))

    # Recursive Feature Elimination
    select = RFE(RandomForestClassifier(n_estimators=100, random_state=42),
                 n_features_to_select=15)
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_rfe = select.transform(X_train_full)
    X_test_rfe = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Recursive Feature Elimination-------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Classifier with Recursive Feature Elimination
    print(
        '----------------------------With Recursive Feature Elimination--------------------------------------'
    )
    pipe_gb_rfe = Pipeline([('scl', StandardScaler()),
                            ('est',
                             GradientBoostingClassifier(random_state=39))])
    pipe_gb_rfe.fit(X_train_rfe, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_rfe.predict(X_train_rfe))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_rfe.predict(X_test_rfe))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_rfe.predict(X_train_rfe),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_rfe.predict(X_test_rfe),
                 average='micro')))

    cv = cross_val_score(pipe_gb,
                         X_,
                         y_.values.ravel(),
                         cv=StratifiedKFold(n_splits=10,
                                            shuffle=True,
                                            random_state=39))
    print('Cross validation with StratifiedKFold scores: {}'.format(cv))
    print('Cross Validation with StatifiedKFold mean: {}'.format(cv.mean()))

    # GridSearch
    n_features = len(df.columns)
    param_grid = {
        'learning_rate': [0.01, 0.1, 1, 10],
        'n_estimators': [1, 10, 100, 200, 300],
        'max_depth': [1, 2, 3, 4, 5]
    }
    stratifiedcv = StratifiedKFold(n_splits=10, shuffle=True, random_state=39)
    X_train, X_test, y_train, y_test = train_test_split(X_,
                                                        y_,
                                                        test_size=0.33,
                                                        random_state=42)

    grid_search = GridSearchCV(GradientBoostingClassifier(),
                               param_grid,
                               cv=stratifiedcv)
    grid_search.fit(X_train, y_train.values.ravel())
    print('GridSearch Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train.values.ravel(), grid_search.predict(X_train))))
    print('GridSearch Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test.values.ravel(), grid_search.predict(X_test))))
    print('GridSearch Train F1 Score: {:.3f}'.format(
        f1_score(y_train.values.ravel(),
                 grid_search.predict(X_train),
                 average='micro')))
    print('GridSearch Test F1 Score: {:.3f}'.format(
        f1_score(y_test.values.ravel(),
                 grid_search.predict(X_test),
                 average='micro')))

    # GridSearch results
    print("Best params:\n{}".format(grid_search.best_params_))
    print("Best cross-validation score: {:.2f}".format(
        grid_search.best_score_))
    results = pd.DataFrame(grid_search.cv_results_)
    corr_params = results.drop(results.columns[[
        0, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20
    ]],
                               axis=1)
    corr_params.head()

    # GridSearch in nested
    cv_gb = cross_val_score(grid_search,
                            X_,
                            y_.values.ravel(),
                            cv=StratifiedKFold(n_splits=3,
                                               shuffle=True,
                                               random_state=39))
    print('Grid Search with nested cross validation scores: {}'.format(cv_gb))
    print('Grid Search with nested cross validation mean: {}'.format(
        cv_gb.mean()))
Пример #24
0
def handle_overlap_studies(args, kax, klines_df, close_times, display_count):
    all_name = ""
    if args.ABANDS:  # ATR BANDS
        name = 'ABANDS'
        real = talib.ATR(klines_df["high"],
                         klines_df["low"],
                         klines_df["close"],
                         timeperiod=14)
        emas = talib.EMA(klines_df["close"], timeperiod=26)
        kax.plot(close_times, emas[-display_count:], "b--", label=name)

        #cs = ['y', 'c', 'm', 'k']
        for idx, n in enumerate(args.ABANDS):
            """
            if idx >= len(cs):
                break
            c = cs[idx]
            """
            c = 'y'
            cl = c + '--'
            n = int(n)
            kax.plot(close_times, (emas + n * real)[-display_count:],
                     cl,
                     label=name + ' upperband')
            kax.plot(close_times, (emas - n * real)[-display_count:],
                     cl,
                     label=name + ' lowerband')

    if args.BANDS:  # BANDS
        name = 'BANDS'
        emas = talib.EMA(klines_df["close"], timeperiod=26)
        kax.plot(close_times, emas[-display_count:], "b--", label=name)
        r = args.BANDS
        kax.plot(close_times, (1 + r) * emas[-display_count:],
                 'y--',
                 label=name + ' upperband')
        kax.plot(close_times, (1 - r) * emas[-display_count:],
                 'y--',
                 label=name + ' lowerband')

    # talib
    os_key = 'BBANDS'
    if args.BBANDS:
        upperband, middleband, lowerband = talib.BBANDS(klines_df["close"],
                                                        timeperiod=5,
                                                        nbdevup=2,
                                                        nbdevdn=2,
                                                        matype=0)
        kax.plot(close_times,
                 upperband[-display_count:],
                 "y",
                 label=os_key + ' upperband')
        kax.plot(close_times,
                 middleband[-display_count:],
                 "b",
                 label=os_key + ' middleband')
        kax.plot(close_times,
                 lowerband[-display_count:],
                 "y",
                 label=os_key + ' lowerband')

    os_key = 'DEMA'
    if args.DEMA:
        real = talib.DEMA(klines_df["close"], timeperiod=args.DEMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    if args.EMA:
        name = 'EMA'
        all_name += "  %s%s" % (name, args.EMA)
        for idx, e_p in enumerate(args.EMA):
            if idx >= len(plot_colors):
                break
            e_p = int(e_p)
            emas = talib.EMA(klines_df["close"], timeperiod=e_p)
            kax.plot(close_times,
                     emas[-display_count:],
                     plot_colors[idx] + '--',
                     label="%sEMA" % (e_p))

    os_key = 'HT_TRENDLINE'
    if args.HT_TRENDLINE:
        real = talib.HT_TRENDLINE(klines_df["close"])
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'KAMA'
    if args.KAMA:
        real = talib.KAMA(klines_df["close"], timeperiod=args.KAMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    if args.MA:
        name = 'MA'
        all_name += "  %s%s" % (name, args.MA)
        for idx, e_p in enumerate(args.MA):
            if idx >= len(plot_colors):
                break
            e_p = int(e_p)
            emas = talib.MA(klines_df["close"], timeperiod=e_p)
            kax.plot(close_times,
                     emas[-display_count:],
                     plot_colors[idx],
                     label="%sMA" % (e_p))

    os_key = 'MAMA'
    if args.MAMA:
        mama, fama = talib.MAMA(klines_df["close"], fastlimit=0, slowlimit=0)
        kax.plot(close_times, mama[-display_count:], "b", label=os_key)
        kax.plot(close_times, fama[-display_count:], "c", label=os_key)

    os_key = 'MIDPOINT'
    if args.MIDPOINT:
        real = talib.MIDPOINT(klines_df["close"], timeperiod=args.MIDPOINT)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'MIDPRICE'
    if args.MIDPRICE:
        real = talib.MIDPRICE(klines_df["high"],
                              klines_df["low"],
                              timeperiod=args.MIDPRICE)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'SAR'
    if args.SAR:
        real = talib.SAR(klines_df["high"],
                         klines_df["low"],
                         acceleration=0,
                         maximum=0)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'SAREXT'
    if args.SAREXT:
        real = talib.SAREXT(klines_df["high"],
                            klines_df["low"],
                            startvalue=0,
                            offsetonreverse=0,
                            accelerationinitlong=0,
                            accelerationlong=0,
                            accelerationmaxlong=0,
                            accelerationinitshort=0,
                            accelerationshort=0,
                            accelerationmaxshort=0)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'SMA'
    if args.SMA:
        real = talib.SMA(klines_df["close"], timeperiod=args.SMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'T3'
    if args.T3:
        real = talib.T3(klines_df["close"], timeperiod=args.T3, vfactor=0)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'TEMA'
    if args.TEMA:
        real = talib.TEMA(klines_df["close"], timeperiod=args.TEMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'TRIMA'
    if args.TRIMA:
        real = talib.TRIMA(klines_df["close"], timeperiod=args.TRIMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'WMA'
    if args.WMA:
        real = talib.WMA(klines_df["close"], timeperiod=args.WMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    return all_name
Пример #25
0
def TALIB_TEMA(close, timeperiod=30):
    '''00387,2,1'''
    return talib.TEMA(close, timeperiod)
Пример #26
0
def talib_TEMA(DataFrame, N=30):
    res = talib.TEMA(DataFrame.close.values, timeperiod=N)
    return pd.DataFrame({'TEMA': res}, index=DataFrame.index)
Пример #27
0
 def add_TEMA(self, df, periods=[5, 10, 20, 30, 60, 120]):
     for i in periods:
         period = str(i)
         df['TEMA_' + period] = ta.TEMA(df['close'], timeperiod=i)
     return df
Пример #28
0
def tema(dataframe, period, field='close'):
    import talib.abstract as ta
    return ta.TEMA(dataframe, timeperiod=period, price=field)
Пример #29
0
                   axis=1)

BOP = ta.BOP(SS.sopen, SS.high, SS.low, SS.sclose)
CCI = ta.CCI(SS.high, SS.low, SS.sclose)
CMO = ta.CMO(SS.sclose)
DEMA = ta.DEMA(SS.sclose)
DX = ta.DX(SS.high, SS.low, SS.sclose)
EMA = ta.EMA(SS.sclose)
KAMA = ta.KAMA(SS.sclose)
MFI = ta.MFI(SS.high, SS.low, SS.sclose, SS.volumn)
MOM = ta.MOM(SS.sclose)
RSI = ta.RSI(SS.sclose)
group2 = pd.concat([BOP, CCI, CMO, DEMA, DX, EMA, KAMA, MFI, MOM, RSI], axis=1)

SAR = ta.SAR(SS.high, SS.low)
TEMA = ta.TEMA(SS.sclose)
TRANGE = ta.TRANGE(SS.high, SS.low, SS.sclose)
TRIMA = ta.TRIMA(SS.sclose)
TRIX = ta.TRIX(SS.sclose)
group3 = pd.concat([SAR, TEMA, TRANGE, TRIMA, TRIX], axis=1)

raw_ta = pd.concat([group1, group2, group3], axis=1)

ta_index = pd.concat([raw_ta, target], axis=1)

ta_index = ta_index.dropna()  #38输入 1输出 4类型

train = ta_index[:'2010-01-01']

x = train.values[:, -1]
                   maximum=0)

df['SAREXT'] = ta.SAREXT(np.array(df['High'].shift(1)),
                         np.array(df['Low'].shift(1)),
                         startvalue=0,
                         offsetonreverse=0,
                         accelerationinitlong=0,
                         accelerationlong=0,
                         accelerationmaxlong=0,
                         accelerationinitshort=0,
                         accelerationshort=0,
                         accelerationmaxshort=0)

df['SMA'] = ta.SMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['T3'] = ta.T3(np.array(df['Adj Close'].shift(1)), timeperiod=n, vfactor=0)
df['TEMA'] = ta.TEMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['TRIMA'] = ta.TRIMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['WMA'] = ta.WMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)

df['20d_ma'] = df['Adj Close'].shift(1).rolling(window=20).mean()
df['50d_ma'] = df['Adj Close'].shift(1).rolling(window=50).mean()
df['Bol_upper'] = df['Adj Close'].shift(1).rolling(
    window=20).mean() + 2 * df['Adj Close'].shift(1).rolling(window=20).std()
df['Bol_lower'] = df['Adj Close'].shift(1).rolling(
    window=20).mean() - 2 * df['Adj Close'].shift(1).rolling(window=20).std()
df['Bol_BW'] = ((df['Bol_upper'] - df['Bol_lower']) / df['20d_ma']) * 100
df['Bol_BW_200MA'] = df['Bol_BW'].shift(1).rolling(window=50).mean()
df['Bol_BW_200MA'] = df['Bol_BW_200MA'].fillna(method='backfill')
# df['20d_ewma'] = df['Adj Close'].shift(1).ewm(span=20).mean()
# df['50d_ewma'] = df['Adj Close'].shift(1).ewm(span=50).mean()