# Calculo do histograma hist_RGB_given_image, bins = np.histogram(img, n_columns_histogram) path_1 = "%s/arrays/level1_%d_%d" % (images_path, kCentroids_features, cIter_features) # Recupera vetores calculados pelo KMEANS centroids_codebook_features = np.load('%s/centroids_codebook_features_%d_%d_%s_%s_%s_%s.npy' % (path_1, kCentroids_features, cIter_features, useTamuraCoarseness, useTamuraContrast, useTamuraDirectionality, useGarbor)) vq_codes_obs_features = np.load('%s/vq_codes_obs_features_%d_%d_%s_%s_%s_%s.npy' % (path_1, kCentroids_features, cIter_features, useTamuraCoarseness, useTamuraContrast, useTamuraDirectionality, useGarbor)) standard_deviations_features = np.load('%s/standard_deviations_features_%d_%d_%s_%s_%s_%s.npy' % (path_1, kCentroids_features, cIter_features, useTamuraCoarseness, useTamuraContrast, useTamuraDirectionality, useGarbor)) learning_set_features_image = np.zeros(n_colums_features) j = 0 if useTamuraCoarseness: learning_set_features_image[j] = coarseness(img) j = j + 1 if useTamuraContrast: learning_set_features_image[j] = contrast(img) j = j + 1 if useTamuraDirectionality: learning_set_features_image[j] = degreeDirect(img, threshold, neigh) j = j + 1 if useGarbor: start_i = j stop_i = start_i + n_kernels * 2
if os.path.isfile(os.path.join(images_path, 'tamura_coarseness_%d.npy' % (r + 1))): tamura_coarseness_v[r] = np.load(os.path.join(images_path, 'tamura_coarseness_%d.npy' % (r + 1))) else : if img is None: img = misc.imread(os.path.join(images_path, 'im%d.jpg' % (r + 1) )) if useGreyScale: img = rgb2gray(img) print 'Calculating Tamura COARSENESS for file ', os.path.join(images_path, 'im%d.jpg' % (r + 1)) try: start_time = time.time() tamura_coarseness_v[r] = coarseness(img) elapsed_time = time.time() - start_time print 'It took %ds to calculate COARSENESS...' % elapsed_time np.save(os.path.join(images_path, 'tamura_coarseness_%d.npy' % (r + 1)),tamura_coarseness_v[r]) except: failures_coarseness.append(r+1) print tamura_coarseness_v[r] if useTamuraContrast: if not tamura_contrast_hasBeenCalculated: if os.path.isfile(os.path.join(images_path, 'tamura_contrast_%d.npy' % (r + 1))): tamura_contrast_v[r] = np.load(os.path.join(images_path, 'tamura_contrast_%d.npy' % (r + 1)))
def optimize(content_targets, style_target, content_weight, style_weight, tv_weight, fcrs_weight, fcon_weight, fdir_weight, vgg_path, epochs=2, print_iterations=1000, batch_size=4, save_path='saver/fns.ckpt', slow=False, learning_rate=1e-3, debug=False): if slow: batch_size = 1 mod = len(content_targets) % batch_size if mod > 0: print("Train set has been trimmed slightly..") content_targets = content_targets[:-mod] style_features = {} batch_shape = (batch_size, 256, 256, 3) style_shape = (1, ) + style_target.shape print(style_shape) prop = [1.0, 2.0, 16.0, 2.0, 1.0] # precomputer content texture measurement if batch_size == 1: with tf.Graph().as_default(), tf.Session() as sess: content_image = tf.placeholder(tf.float32, shape=batch_shape, name='content_image') image = np.zeros(batch_shape, dtype=np.float32) image[0] = get_img(content_targets[0], (256, 256, 3)).astype(np.float32) fcrs = tamura.coarseness(content_image) fcon = tamura.contrast(content_image) fdir = tamura.directionality(content_image) content_fcrs = fcrs.eval(feed_dict={content_image: image}) content_fcon = fcon.eval(feed_dict={content_image: image}) content_fdir = fdir.eval(feed_dict={content_image: image}) # precompute style texture features with tf.Graph().as_default(), tf.Session() as sess: style_image = tf.placeholder(tf.float32, shape=style_shape, name='style_image') image = np.zeros(batch_shape, dtype=np.float32) image = np.array([style_target]) fcrs = tamura.coarseness(style_image) fcon = tamura.contrast(style_image) fdir = tamura.directionality(style_image) style_fcrs = fcrs.eval(feed_dict={style_image: image}) style_fcon = fcon.eval(feed_dict={style_image: image}) style_fdir = fdir.eval(feed_dict={style_image: image}) # precompute style features with tf.Graph().as_default(), tf.device('/cpu:0'), tf.Session() as sess: style_image = tf.placeholder(tf.float32, shape=style_shape, name='style_image') style_image_pre = vgg.preprocess(style_image) net = vgg.net(vgg_path, style_image_pre) style_pre = np.array([style_target]) for layer in STYLE_LAYERS: features = net[layer].eval(feed_dict={style_image: style_pre}) features = np.reshape(features, (-1, features.shape[3])) gram = np.matmul(features.T, features) / features.size style_features[layer] = gram with tf.Graph().as_default(), tf.Session() as sess: X_content = tf.placeholder(tf.float32, shape=batch_shape, name="X_content") X_pre = vgg.preprocess(X_content) # precompute content features content_features = {} content_net = vgg.net(vgg_path, X_pre) content_features[CONTENT_LAYER] = content_net[CONTENT_LAYER] if slow: preds = tf.Variable( tf.random_normal(X_content.get_shape()) * 0.256) preds_pre = preds else: preds = transform.net(X_content / 255.0) preds_pre = vgg.preprocess(preds) net = vgg.net(vgg_path, preds_pre) content_size = _tensor_size( content_features[CONTENT_LAYER]) * batch_size assert _tensor_size(content_features[CONTENT_LAYER]) == _tensor_size( net[CONTENT_LAYER]) content_loss = content_weight * ( 2 * tf.nn.l2_loss(net[CONTENT_LAYER] - content_features[CONTENT_LAYER]) / content_size) style_losses = [] #for style_layer in STYLE_LAYERS: for i in range(5): style_layer = STYLE_LAYERS[i] layer = net[style_layer] bs, height, width, filters = map(lambda i: i.value, layer.get_shape()) size = height * width * filters feats = tf.reshape(layer, (bs, height * width, filters)) feats_T = tf.transpose(feats, perm=[0, 2, 1]) grams = tf.matmul(feats_T, feats) / size style_gram = style_features[style_layer] style_losses.append(2 * prop[i] * tf.nn.l2_loss(grams - style_gram) / style_gram.size) style_loss = style_weight * functools.reduce(tf.add, style_losses) / batch_size # total variation denoising tv_y_size = _tensor_size(preds[:, 1:, :, :]) tv_x_size = _tensor_size(preds[:, :, 1:, :]) y_tv = tf.nn.l2_loss(preds[:, 1:, :, :] - preds[:, :batch_shape[1] - 1, :, :]) x_tv = tf.nn.l2_loss(preds[:, :, 1:, :] - preds[:, :, :batch_shape[2] - 1, :]) tv_loss = tv_weight * 2 * (x_tv / tv_x_size + y_tv / tv_y_size) / batch_size # tamura loss pred_fcrs = tamura.coarseness(preds_pre) pred_fcon = tamura.contrast(preds_pre) pred_fdir = tamura.directionality(preds_pre) fcrs_loss = fcrs_weight * 2 * tf.nn.l2_loss(pred_fcrs - style_fcrs) fcon_loss = fcon_weight * 2 * tf.nn.l2_loss(pred_fcon - style_fcon) fdir_loss = fdir_weight * 2 * tf.nn.l2_loss(pred_fdir - style_fdir) loss = content_loss + style_loss + tv_loss + fcrs_loss + fcon_loss + fdir_loss # overall loss global_step = tf.Variable(0, trainable=False) add_global = global_step.assign_add(1) lr = tf.train.exponential_decay(learning_rate, global_step=global_step, decay_steps=10, decay_rate=0.9) train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss) sess.run(tf.global_variables_initializer()) import random uid = random.randint(1, 100) print("UID: %s" % uid) for epoch in range(epochs): #sess.run(add_global) num_examples = len(content_targets) iterations = 0 while iterations * batch_size < num_examples: start_time = time.time() curr = iterations * batch_size step = curr + batch_size X_batch = np.zeros(batch_shape, dtype=np.float32) for j, img_p in enumerate(content_targets[curr:step]): X_batch[j] = get_img(img_p, (256, 256, 3)).astype(np.float32) iterations += 1 assert X_batch.shape[0] == batch_size feed_dict = {X_content: X_batch} train_step.run(feed_dict=feed_dict) end_time = time.time() delta_time = end_time - start_time if debug: print("UID: %s, batch time: %s" % (uid, delta_time)) is_print_iter = int(iterations) % print_iterations == 0 if slow: is_print_iter = epoch % print_iterations == 0 is_last = epoch == epochs - 1 and iterations * batch_size >= num_examples should_print = is_print_iter or is_last if should_print: to_get = [ style_loss, content_loss, tv_loss, fcrs_loss, fcon_loss, fdir_loss, loss, preds, lr, global_step ] #to_get = [style_loss, content_loss, tv_loss, fcrs_loss, fcon_loss, fdir_loss, loss, preds] test_feed_dict = {X_content: X_batch} tup = sess.run(to_get, feed_dict=test_feed_dict) _style_loss, _content_loss, _tv_loss, _fcrs_loss, _fcon_loss, _fdir_loss, _loss, _preds, _lr, _global_step = tup #_style_loss,_content_loss,_tv_loss,_fcrs_loss,_fcon_loss,_fdir_loss,_loss,_preds = tup losses = (_style_loss, _content_loss, _tv_loss, _fcrs_loss, _fcon_loss, _fdir_loss, _loss) if slow: _preds = vgg.unprocess(_preds) else: saver = tf.train.Saver() res = saver.save(sess, save_path) yield (_preds, losses, iterations, epoch, _lr, _global_step)