tamura_directionality_v[r] = np.load(os.path.join(images_path, 'tamura_directionality_%d.npy' % (r + 1))) else : if img is None: img = misc.imread(os.path.join(images_path, 'im%d.jpg' % (r + 1) )) if useGreyScale: img = rgb2gray(img) print 'Calculating Tamura DIRECTIONALITY for file ', os.path.join(images_path, 'im%d.jpg' % (r + 1)) try: start_time = time.time() tamura_directionality_v[r] = degreeDirect(img, threshold, neigh) elapsed_time = time.time() - start_time np.save(os.path.join(images_path, 'tamura_directionality_%d.npy' % (r + 1)),tamura_directionality_v[r]) except: failures_directionality.append(r+1) print 'It took %ds to calculate DIRECTIONALITY...' % elapsed_time #print tamura_directionality_v[r] if useGarbor:
vq_codes_obs_features = np.load('%s/vq_codes_obs_features_%d_%d_%s_%s_%s_%s.npy' % (path_1, kCentroids_features, cIter_features, useTamuraCoarseness, useTamuraContrast, useTamuraDirectionality, useGarbor)) standard_deviations_features = np.load('%s/standard_deviations_features_%d_%d_%s_%s_%s_%s.npy' % (path_1, kCentroids_features, cIter_features, useTamuraCoarseness, useTamuraContrast, useTamuraDirectionality, useGarbor)) learning_set_features_image = np.zeros(n_colums_features) j = 0 if useTamuraCoarseness: learning_set_features_image[j] = coarseness(img) j = j + 1 if useTamuraContrast: learning_set_features_image[j] = contrast(img) j = j + 1 if useTamuraDirectionality: learning_set_features_image[j] = degreeDirect(img, threshold, neigh) j = j + 1 if useGarbor: start_i = j stop_i = start_i + n_kernels * 2 learning_set_features_image[start_i : stop_i] = np.resize(garbor_features(img, kernels) , (1, n_kernels * 2)) for i in range (n_colums_features): learning_set_features_image[i] = learning_set_features_image[i] / standard_deviations_features[i] # Images from 1o level Kmeans (index, dist) = spy.vq.vq(np.array([learning_set_features_image]), centroids_codebook_features)