def main(): args = parse_args() img = task1.read_image(args.img_path) template = task1.read_image(args.template_path) coordinates = detect(img, template) template_name = "{}.json".format(os.path.splitext(os.path.split(args.template_path)[1])[0]) save_results(coordinates, template, template_name, args.rs_directory)
def main(): args = parse_args() img = t1.read_image(args.img_path) # template = utils.crop(img, xmin=10, xmax=30, ymin=10, ymax=30) # template = np.asarray(template, dtype=np.uint8) # cv2.imwrite("./data/proj1-task2-template.jpg", template) template = t1.read_image(args.template_path) x, y, max_value = match(img, template) # The correct results are: x: 17, y: 129, max_value: 0.994 #print("x : " ,x , " y :", y , "max ncc: ", max_value ) with open(args.rs_path, "w") as file: json.dump({"x": x, "y": y, "value": max_value}, file)
def main(): args = parse_args() img = read_image(args.img_path) template = read_image(args.template_path) coordinates = detect(img, template) print(coordinates) # print(coordinates) fig, ax = plt.subplots(1) ax.imshow(img) for i in coordinates: ax.add_patch(Circle((i[1], i[0]), radius=1, color='red')) plt.show(fig) template_name = "{}.json".format( os.path.splitext(os.path.split(args.template_path)[1])[0]) save_results(coordinates, template, template_name, args.rs_directory)
def main(): args = parse_args() img = task1.read_image(args.img_path) template = task1.read_image(args.template_path) if (args.template_path) == "./data/a.jpg": coordinates = detect(img, template, threshold=4.6) elif (args.template_path) == "./data/b.jpg": coordinates = detect(img, template, threshold=6.44) elif (args.template_path) == "./data/c.jpg": coordinates = detect(img, template, threshold=4.6) elif (args.template_path) == "./data/wa_img.jpg": coordinates = detect(img, template, threshold=4.6) else: print("Template does not exist.") template_name = "{}.json".format( os.path.splitext(os.path.split(args.template_path)[1])[0]) save_results(coordinates, template, template_name, args.rs_directory)
def main(): args = parse_args() img = task1.read_image(args.img_path) template = task1.read_image(args.template_path) coordinates = detect(img, template) template_name = "{}.json".format( os.path.splitext(os.path.split(args.template_path)[1])[0]) save_results(coordinates, template, template_name, args.rs_directory) img = cv2.imread(args.img_path, 1) import matplotlib.pyplot as plt from matplotlib.patches import Arrow, Circle fig, ax = plt.subplots(1) ax.imshow(img) for i in coordinates: ax.add_patch(Circle((i[1], i[0]), radius=1, color='red')) plt.show(fig)
import cv2 import sys import numpy as np from task1 import min_filtered_image, max_filtered_image, path, read_image def max_min(I, N=3): A = max_filtered_image(I, N) B = min_filtered_image(A, N) O = np.zeros(I.shape).astype('uint8') O = I - B + 255 return O, B if __name__ == '__main__': I = read_image(path) if len(sys.argv) == 2: N = int(sys.argv[1]) # check if N is odd if N % 2 == 1: O, background = max_min(I, N) cv2.imwrite(f'task2_O_N_{N}.png', O) print(f'task2_O_N_{N}.png saved in root.') # optional O_normalized = cv2.normalize(O, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX,