Пример #1
0
    def __init__(self,
                 ARCH,
                 nclasses,
                 path=None,
                 path_append="",
                 strict=False):
        super().__init__()
        self.ARCH = ARCH
        self.nclasses = nclasses
        self.path = path
        self.path_append = path_append
        self.strict = False

        # get the model
        bboneModule = imp.load_source(
            "bboneModule", booger.TRAIN_PATH + '/backbones/' +
            self.ARCH["backbone"]["name"] + '.py')
        self.backbone = bboneModule.Backbone(params=self.ARCH["backbone"])

        # do a pass of the backbone to initialize the skip connections
        stub = torch.zeros(
            (1, self.backbone.get_input_depth(),
             self.ARCH["dataset"]["sensor"]["img_prop"]["height"],
             self.ARCH["dataset"]["sensor"]["img_prop"]["width"]))
        w_size = 8
        stub_points = torch.zeros(
            (1, self.backbone.get_input_depth(), w_size * w_size,
             int(self.ARCH["dataset"]["sensor"]["img_prop"]["width"] *
                 self.ARCH["dataset"]["sensor"]["img_prop"]["height"] /
                 w_size / w_size)))

        representations = {}
        representations['image'] = []
        representations['points'] = []
        representations['points'].append(torch.randn(1, 10, 9, 131072).cuda())
        representations['points'].append(torch.randn(1, 10, 9, 32768).cuda())
        representations['points'].append(torch.randn(1, 10, 9, 8192).cuda())
        representations['points'].append(torch.randn(1, 10, 9, 2048).cuda())
        representations['image'].append(torch.randn(1, 10, 64, 2048).cuda())
        representations['image'].append(torch.randn(1, 10, 32, 1024).cuda())
        representations['image'].append(torch.randn(1, 10, 16, 512).cuda())
        representations['image'].append(torch.randn(1, 10, 8, 256).cuda())
        if torch.cuda.is_available():
            stub = stub.cuda()
            stub_points = stub_points.cuda()
            self.backbone.cuda()
        _, stub_skips = self.backbone([stub, representations])

        decoderModule = imp.load_source(
            "decoderModule", booger.TRAIN_PATH + '/tasks/semantic/decoders/' +
            self.ARCH["decoder"]["name"] + '.py')
        self.decoder = decoderModule.Decoder(
            params=self.ARCH["decoder"],
            stub_skips=stub_skips,
            OS=self.ARCH["backbone"]["OS"],
            feature_depth=self.backbone.get_last_depth())

        self.head = nn.Sequential(
            nn.Conv2d(self.decoder.get_last_depth(),
                      self.nclasses,
                      kernel_size=3,
                      stride=1,
                      padding=1))

        if self.ARCH["post"]["CRF"]["use"]:
            self.CRF = CRF(self.ARCH["post"]["CRF"]["params"], self.nclasses)
        else:
            self.CRF = None

        # train backbone?
        if not self.ARCH["backbone"]["train"]:
            for w in self.backbone.parameters():
                w.requires_grad = False

        # train decoder?
        if not self.ARCH["decoder"]["train"]:
            for w in self.decoder.parameters():
                w.requires_grad = False

        # train head?
        if not self.ARCH["head"]["train"]:
            for w in self.head.parameters():
                w.requires_grad = False

        # train CRF?
        if self.CRF and not self.ARCH["post"]["CRF"]["train"]:
            for w in self.CRF.parameters():
                w.requires_grad = False

        # print number of parameters and the ones requiring gradients
        # print number of parameters and the ones requiring gradients
        weights_total = sum(p.numel() for p in self.parameters())
        weights_grad = sum(p.numel() for p in self.parameters()
                           if p.requires_grad)
        print("Total number of parameters (M): ", weights_total / 1000000.)
        print("Total number of parameters requires_grad: ", weights_grad)

        # breakdown by layer
        weights_enc = sum(p.numel() for p in self.backbone.parameters())
        weights_dec = sum(p.numel() for p in self.decoder.parameters())
        weights_head = sum(p.numel() for p in self.head.parameters())
        print("Param encoder ", weights_enc)
        print("Param decoder ", weights_dec)
        print("Param head ", weights_head)
        if self.CRF:
            weights_crf = sum(p.numel() for p in self.CRF.parameters())
            print("Param CRF ", weights_crf)

        # get weights
        if path is not None:
            # try backbone
            try:
                w_dict = torch.load(path + "/backbone" + path_append,
                                    map_location=lambda storage, loc: storage)
                self.backbone.load_state_dict(w_dict, strict=True)
                print("Successfully loaded model backbone weights")
            except Exception as e:
                print()
                print("Couldn't load backbone, using random weights. Error: ",
                      e)
                if strict:
                    print(
                        "I'm in strict mode and failure to load weights blows me up :)"
                    )
                    raise e

            # try decoder
            try:
                w_dict = torch.load(path + "/segmentation_decoder" +
                                    path_append,
                                    map_location=lambda storage, loc: storage)
                self.decoder.load_state_dict(w_dict, strict=True)
                print("Successfully loaded model decoder weights")
            except Exception as e:
                print("Couldn't load decoder, using random weights. Error: ",
                      e)
                if strict:
                    print(
                        "I'm in strict mode and failure to load weights blows me up :)"
                    )
                    raise e

            # try head
            try:
                w_dict = torch.load(path + "/segmentation_head" + path_append,
                                    map_location=lambda storage, loc: storage)
                self.head.load_state_dict(w_dict, strict=True)
                print("Successfully loaded model head weights")
            except Exception as e:
                print("Couldn't load head, using random weights. Error: ", e)
                if strict:
                    print(
                        "I'm in strict mode and failure to load weights blows me up :)"
                    )
                    raise e

            # try CRF
            if self.CRF:
                try:
                    w_dict = torch.load(
                        path + "/segmentation_CRF" + path_append,
                        map_location=lambda storage, loc: storage)
                    self.CRF.load_state_dict(w_dict, strict=True)
                    print("Successfully loaded model CRF weights")
                except Exception as e:
                    print("Couldn't load CRF, using random weights. Error: ",
                          e)
                    if strict:
                        print(
                            "I'm in strict mode and failure to load weights blows me up :)"
                        )
                        raise e
        else:
            print("No path to pretrained, using random init.")
Пример #2
0
  def __init__(self, ARCH, nclasses, path=None, path_append="", strict=False):
    super().__init__()
    self.ARCH = ARCH
    self.nclasses = 20
    self.path = path
    self.path_append = path_append
    self.strict = False
  
    bboneModule = imp.load_source("bboneModule",
                                  booger.TRAIN_PATH + '/backbones/' +
                                  self.ARCH["backbone"]["name"] + '.py')
    self.backbone = bboneModule.Backbone(params=self.ARCH["backbone"])

    # do a pass of the backbone to initialize the skip connections
    xyz = torch.zeros((1, 3, 
                        self.ARCH['dataset']['sensor']['img_prop']['height'],
                        self.ARCH['dataset']['sensor']['img_prop']['width']))
    stub = torch.zeros((1,
                        self.backbone.get_input_depth(),
                        self.ARCH["dataset"]["sensor"]["img_prop"]["height"],
                        self.ARCH["dataset"]["sensor"]["img_prop"]["width"]))

    if torch.cuda.is_available():
      stub = stub.cuda()
      xyz = xyz.cuda()
      self.backbone.cuda()
    _, stub_skips = self.backbone(stub)

    decoderModule = imp.load_source("decoderModule",
                                    booger.TRAIN_PATH + '/tasks/semantic/decoders/' +
                                    self.ARCH["decoder"]["name"] + '.py')
    self.decoder = decoderModule.Decoder(params=self.ARCH["decoder"],
                                         stub_skips=stub_skips,
                                         OS=self.ARCH["backbone"]["OS"],
                                         feature_depth=self.backbone.get_last_depth())

    self.head1 = nn.Sequential(nn.Dropout2d(p=ARCH["head"]["dropout"]),
                              nn.Conv2d(256,
                                        self.nclasses, kernel_size=1,
                                        stride=1, padding=0))

    self.head2 = nn.Sequential(nn.Dropout2d(p=ARCH["head"]["dropout"]),
                              nn.Conv2d(256,
                                        self.nclasses, kernel_size=1,
                                        stride=1, padding=0))

    self.head3 = nn.Sequential(nn.Dropout2d(p=ARCH["head"]["dropout"]),
                              nn.Conv2d(128,
                                        self.nclasses, kernel_size=1,
                                        stride=1, padding=0))

    self.head4 = nn.Sequential(nn.Dropout2d(p=ARCH["head"]["dropout"]),
                              nn.Conv2d(64,
                                        self.nclasses, kernel_size=1,
                                        stride=1, padding=0))
    self.head5 = nn.Sequential(nn.Dropout2d(p=ARCH["head"]["dropout"]),
                              nn.Conv2d(32,
                                        self.nclasses, kernel_size=3,
                                        stride=1, padding=1))



    if self.ARCH["post"]["CRF"]["use"]:
      self.CRF = CRF(self.ARCH["post"]["CRF"]["params"], self.nclasses)
    else:
      self.CRF = None

    # train backbone?
    if not self.ARCH["backbone"]["train"]:
      for w in self.backbone.parameters():
        w.requires_grad = False

    # train decoder?
    if not self.ARCH["decoder"]["train"]:
      for w in self.decoder.parameters():
        w.requires_grad = False

    # train head?
    if not self.ARCH["head"]["train"]:
      for w in self.head.parameters():
        w.requires_grad = False

    # train CRF?
    if self.CRF and not self.ARCH["post"]["CRF"]["train"]:
      for w in self.CRF.parameters():
        w.requires_grad = False

    # print number of parameters and the ones requiring gradients
    # print number of parameters and the ones requiring gradients
    weights_total = sum(p.numel() for p in self.parameters())
    weights_grad = sum(p.numel() for p in self.parameters() if p.requires_grad)
    print("Total number of parameters: ", weights_total)
    print("Total number of parameters requires_grad: ", weights_grad)

    # breakdown by layer
    weights_enc = sum(p.numel() for p in self.backbone.parameters())
    weights_dec = sum(p.numel() for p in self.decoder.parameters())
    weights_head = sum(p.numel() for p in self.head1.parameters())+\
      sum(p.numel() for p in self.head2.parameters())+\
      sum(p.numel() for p in self.head3.parameters())+\
      sum(p.numel() for p in self.head4.parameters())+\
      sum(p.numel() for p in self.head5.parameters())
    print("Param encoder ", weights_enc)
    print("Param decoder ", weights_dec)
    print("Param head ", weights_head)
    if self.CRF:
      weights_crf = sum(p.numel() for p in self.CRF.parameters())
      print("Param CRF ", weights_crf)

    # get weights
    if path is not None:
      # try backbone
      try:
        w_dict = torch.load(path + "/backbone",
                            map_location=lambda storage, loc: storage)
        self.backbone.load_state_dict(w_dict, strict=True)
        print("Successfully loaded model backbone weights")
      except Exception as e:
        print()
        print("Couldn't load backbone, using random weights. Error: ", e)
        if strict:
          print("I'm in strict mode and failure to load weights blows me up :)")
          raise e

      # try decoder
      try:
        w_dict = torch.load(path + "/segmentation_decoder",
                            map_location=lambda storage, loc: storage)
        self.decoder.load_state_dict(w_dict, strict=True)
        print("Successfully loaded model decoder weights")
      except Exception as e:
        print("Couldn't load decoder, using random weights. Error: ", e)
        if strict:
          print("I'm in strict mode and failure to load weights blows me up :)")
          raise e

      # try head
      try:
        print(path_append+'./segmentation_head1')
        w_dict = torch.load(path + "/segmentation_head1",
                            map_location=lambda storage, loc: storage)
        self.head1.load_state_dict(w_dict, strict=True)
        print("Successfully loaded model head weights")
      except Exception as e:
        print("Couldn't load head, using random weights. Error: ", e)
        if strict:
          print("I'm in strict mode and failure to load weights blows me up :)")
          raise e
      try:
        w_dict = torch.load(path+ "/segmentation_head2",
                            map_location=lambda storage, loc: storage)
        self.head2.load_state_dict(w_dict, strict=True)
        print("Successfully loaded model head weights")
      except Exception as e:
        print("Couldn't load head, using random weights. Error: ", e)
        if strict:
          print("I'm in strict mode and failure to load weights blows me up :)")
          raise e
      try:
        w_dict = torch.load(path + "/segmentation_head3",
                            map_location=lambda storage, loc: storage)
        self.head3.load_state_dict(w_dict, strict=True)
        print("Successfully loaded model head weights")
      except Exception as e:
        print("Couldn't load head, using random weights. Error: ", e)
        if strict:
          print("I'm in strict mode and failure to load weights blows me up :)")
          raise e

      try:
        w_dict = torch.load(path+ "/segmentation_head4",
                            map_location=lambda storage, loc: storage)
        self.head4.load_state_dict(w_dict, strict=True)
        print("Successfully loaded model head weights")
      except Exception as e:
        print("Couldn't load head, using random weights. Error: ", e)
        if strict:
          print("I'm in strict mode and failure to load weights blows me up :)")
          raise e

      try:
        w_dict = torch.load(path + "/segmentation_head5",
                            map_location=lambda storage, loc: storage)
        self.head5.load_state_dict(w_dict, strict=True)
        print("Successfully loaded model head weights")
      except Exception as e:
        print("Couldn't load head, using random weights. Error: ", e)
        if strict:
          print("I'm in strict mode and failure to load weights blows me up :)")
          raise e
    else:
      print("No path to pretrained, using random init.")
Пример #3
0
    def __init__(self,
                 ARCH,
                 nclasses,
                 path=None,
                 path_append="",
                 strict=False):
        super().__init__()
        self.ARCH = ARCH
        self.nclasses = nclasses
        self.path = path
        self.path_append = path_append
        self.strict = False

        # get the model
        cur_dir = pathlib.Path(__file__).parent.absolute()
        spec = importlib.util.spec_from_file_location(
            "BackboneModule",
            cur_dir.joinpath("../../../backbones/" +
                             self.ARCH["backbone"]["name"] + ".py"))
        backbone_module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(backbone_module)
        self.backbone = backbone_module.Backbone(params=self.ARCH["backbone"])

        # do a pass of the backbone to initialize the skip connections
        stub = torch.zeros(
            (1, self.backbone.get_input_depth(),
             self.ARCH["dataset"]["sensor"]["img_prop"]["height"],
             self.ARCH["dataset"]["sensor"]["img_prop"]["width"]))

        if torch.cuda.is_available():
            stub = stub.cuda()
            self.backbone.cuda()
        _, stub_skips = self.backbone(stub)

        decoder_spec = importlib.util.spec_from_file_location(
            "DecoderModule",
            cur_dir.joinpath("../decoders/" + self.ARCH["decoder"]["name"] +
                             ".py"))
        decoder_module = importlib.util.module_from_spec(decoder_spec)
        decoder_spec.loader.exec_module(decoder_module)
        self.decoder = decoder_module.Decoder(
            params=self.ARCH["decoder"],
            stub_skips=stub_skips,
            OS=self.ARCH["backbone"]["OS"],
            feature_depth=self.backbone.get_last_depth())

        self.head = nn.Sequential(
            nn.Dropout2d(p=ARCH["head"]["dropout"]),
            nn.Conv2d(self.decoder.get_last_depth(),
                      self.nclasses,
                      kernel_size=3,
                      stride=1,
                      padding=1))

        if self.ARCH["post"]["CRF"]["use"]:
            self.CRF = CRF(self.ARCH["post"]["CRF"]["params"], self.nclasses)
        else:
            self.CRF = None

        # train backbone?
        if not self.ARCH["backbone"]["train"]:
            for w in self.backbone.parameters():
                w.requires_grad = False

        # train decoder?
        if not self.ARCH["decoder"]["train"]:
            for w in self.decoder.parameters():
                w.requires_grad = False

        # train head?
        if not self.ARCH["head"]["train"]:
            for w in self.head.parameters():
                w.requires_grad = False

        # train CRF?
        if self.CRF and not self.ARCH["post"]["CRF"]["train"]:
            for w in self.CRF.parameters():
                w.requires_grad = False

        # print number of parameters and the ones requiring gradients
        # print number of parameters and the ones requiring gradients
        weights_total = sum(p.numel() for p in self.parameters())
        weights_grad = sum(p.numel() for p in self.parameters()
                           if p.requires_grad)
        print("Total number of parameters: ", weights_total)
        print("Total number of parameters requires_grad: ", weights_grad)

        # breakdown by layer
        weights_enc = sum(p.numel() for p in self.backbone.parameters())
        weights_dec = sum(p.numel() for p in self.decoder.parameters())
        weights_head = sum(p.numel() for p in self.head.parameters())
        print("Param encoder ", weights_enc)
        print("Param decoder ", weights_dec)
        print("Param head ", weights_head)
        if self.CRF:
            weights_crf = sum(p.numel() for p in self.CRF.parameters())
            print("Param CRF ", weights_crf)

        # get weights
        if path is not None:
            # try backbone
            try:
                w_dict = torch.load(path + "/backbone" + path_append,
                                    map_location=lambda storage, loc: storage)
                self.backbone.load_state_dict(w_dict, strict=True)
                print("Successfully loaded model backbone weights")
            except Exception as e:
                print()
                print("Couldn't load backbone, using random weights. Error: ",
                      e)
                if strict:
                    print(
                        "I'm in strict mode and failure to load weights blows me up :)"
                    )
                    raise e

            # try decoder
            try:
                w_dict = torch.load(path + "/segmentation_decoder" +
                                    path_append,
                                    map_location=lambda storage, loc: storage)
                self.decoder.load_state_dict(w_dict, strict=True)
                print("Successfully loaded model decoder weights")
            except Exception as e:
                print("Couldn't load decoder, using random weights. Error: ",
                      e)
                if strict:
                    print(
                        "I'm in strict mode and failure to load weights blows me up :)"
                    )
                    raise e

            # try head
            try:
                w_dict = torch.load(path + "/segmentation_head" + path_append,
                                    map_location=lambda storage, loc: storage)
                self.head.load_state_dict(w_dict, strict=True)
                print("Successfully loaded model head weights")
            except Exception as e:
                print("Couldn't load head, using random weights. Error: ", e)
                if strict:
                    print(
                        "I'm in strict mode and failure to load weights blows me up :)"
                    )
                    raise e

            # try CRF
            if self.CRF:
                try:
                    w_dict = torch.load(
                        path + "/segmentation_CRF" + path_append,
                        map_location=lambda storage, loc: storage)
                    self.CRF.load_state_dict(w_dict, strict=True)
                    print("Successfully loaded model CRF weights")
                except Exception as e:
                    print("Couldn't load CRF, using random weights. Error: ",
                          e)
                    if strict:
                        print(
                            "I'm in strict mode and failure to load weights blows me up :)"
                        )
                        raise e
        else:
            print("No path to pretrained, using random init.")