def euler_savings_func(w, r, e, n_guess, b_s, b_splus1, b_splus2, BQ, factor, T_H, chi_b, params, theta, tau_bq, rho, lambdas): ''' This function is usually looped through over J, so it does one ability group at a time. Inputs: w = wage rate (scalar) r = rental rate (scalar) e = ability levels (Sx1 array) n_guess = labor distribution (Sx1 array) b_s = wealth holdings at the start of a period (Sx1 array) b_splus1 = wealth holdings for the next period (Sx1 array) b_splus2 = wealth holdings for 2 periods ahead (Sx1 array) BQ = aggregate bequests for a certain ability (scalar) factor = scaling factor to convert to dollars (scalar) T_H = lump sum tax (scalar) chi_b = chi^b_j for a certain ability (scalar) params = parameter list (list) theta = replacement rate for a certain ability (scalar) tau_bq = bequest tax rate (scalar) rho = mortality rate (Sx1 array) lambdas = ability weight (scalar) Output: euler = Value of savings euler error (Sx1 array) ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \ a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params # In order to not have 2 savings euler equations (one that solves the first S-1 equations, and one that solves the last one), # we combine them. In order to do this, we have to compute a consumption term in period t+1, which requires us to have a shifted # e and n matrix. We append a zero on the end of both of these so they will be the right size. We could append any value to them, # since in the euler equation, the coefficient on the marginal utility of # consumption for this term will be zero (since rho is one). e_extended = np.array(list(e) + [0]) n_extended = np.array(list(n_guess) + [0]) tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H, None, 'SS', False, params, theta, tau_bq) tax2 = tax.total_taxes(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ, lambdas, factor, T_H, None, 'SS', True, params, theta, tau_bq) cons1 = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params, tax1) cons2 = get_cons(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ, lambdas, b_splus2, params, tax2) income = (r * b_splus1 + w * e_extended[1:] * n_extended[1:]) * factor deriv = (1 + r * (1 - tax.tau_income(r, b_splus1, w, e_extended[1:], n_extended[1:], factor, params) - tax.tau_income_deriv(r, b_splus1, w, e_extended[1:], n_extended[1:], factor, params) * income) - tax.tau_w_prime(b_splus1, params) * b_splus1 - tax.tau_wealth(b_splus1, params)) savings_ut = rho * np.exp(-sigma * g_y) * chi_b * b_splus1**(-sigma) # Again, not who in this equation, the (1-rho) term will zero out in the last period, so the last entry of cons2 can be complete # gibberish (which it is). It just has to exist so cons2 is the right # size to match all other arrays in the equation. euler = marg_ut_cons(cons1, params) - beta * (1 - rho) * deriv * marg_ut_cons( cons2, params) * np.exp(-sigma * g_y) - savings_ut return euler
def euler_labor_leisure_func(w, r, e, n_guess, b_s, b_splus1, BQ, factor, T_H, chi_n, params, theta, tau_bq, lambdas): ''' This function is usually looped through over J, so it does one ability group at a time. Inputs: w = wage rate (scalar) r = rental rate (scalar) e = ability levels (Sx1 array) n_guess = labor distribution (Sx1 array) b_s = wealth holdings at the start of a period (Sx1 array) b_splus1 = wealth holdings for the next period (Sx1 array) BQ = aggregate bequests for a certain ability (scalar) factor = scaling factor to convert to dollars (scalar) T_H = lump sum tax (scalar) chi_n = chi^n_s (Sx1 array) params = parameter list (list) theta = replacement rate for a certain ability (scalar) tau_bq = bequest tax rate (scalar) lambdas = ability weight (scalar) Output: euler = Value of labor leisure euler error (Sx1 array) ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \ a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H, None, 'SS', False, params, theta, tau_bq) cons = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params, tax1) income = (r * b_s + w * e * n_guess) * factor deriv = 1 - tau_payroll - tax.tau_income( r, b_s, w, e, n_guess, factor, params) - tax.tau_income_deriv( r, b_s, w, e, n_guess, factor, params) * income euler = marg_ut_cons(cons, params) * w * deriv * e - \ marg_ut_labor(n_guess, chi_n, params) return euler
def euler_labor_leisure_func(w, r, e, n_guess, b_s, b_splus1, BQ, factor, T_H, chi_n, params, theta, tau_bq, lambdas): """ This function is usually looped through over J, so it does one ability group at a time. Inputs: w = wage rate (scalar) r = rental rate (scalar) e = ability levels (Sx1 array) n_guess = labor distribution (Sx1 array) b_s = wealth holdings at the start of a period (Sx1 array) b_splus1 = wealth holdings for the next period (Sx1 array) BQ = aggregate bequests for a certain ability (scalar) factor = scaling factor to convert to dollars (scalar) T_H = lump sum tax (scalar) chi_n = chi^n_s (Sx1 array) params = parameter list (list) theta = replacement rate for a certain ability (scalar) tau_bq = bequest tax rate (scalar) lambdas = ability weight (scalar) Output: euler = Value of labor leisure euler error (Sx1 array) """ J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = ( params ) tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H, None, "SS", False, params, theta, tau_bq) cons = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params, tax1) income = (r * b_s + w * e * n_guess) * factor deriv = ( 1 - tau_payroll - tax.tau_income(r, b_s, w, e, n_guess, factor, params) - tax.tau_income_deriv(r, b_s, w, e, n_guess, factor, params) * income ) euler = marg_ut_cons(cons, params) * w * deriv * e - marg_ut_labor(n_guess, chi_n, params) return euler
def euler_savings_func(w, r, e, n_guess, b_s, b_splus1, b_splus2, BQ, factor, T_H, chi_b, params, theta, tau_bq, rho, lambdas): ''' This function is usually looped through over J, so it does one ability group at a time. Inputs: w = wage rate (scalar) r = rental rate (scalar) e = ability levels (Sx1 array) n_guess = labor distribution (Sx1 array) b_s = wealth holdings at the start of a period (Sx1 array) b_splus1 = wealth holdings for the next period (Sx1 array) b_splus2 = wealth holdings for 2 periods ahead (Sx1 array) BQ = aggregate bequests for a certain ability (scalar) factor = scaling factor to convert to dollars (scalar) T_H = lump sum tax (scalar) chi_b = chi^b_j for a certain ability (scalar) params = parameter list (list) theta = replacement rate for a certain ability (scalar) tau_bq = bequest tax rate (scalar) rho = mortality rate (Sx1 array) lambdas = ability weight (scalar) Output: euler = Value of savings euler error (Sx1 array) ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \ a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params # In order to not have 2 savings euler equations (one that solves the first S-1 equations, and one that solves the last one), # we combine them. In order to do this, we have to compute a consumption term in period t+1, which requires us to have a shifted # e and n matrix. We append a zero on the end of both of these so they will be the right size. We could append any value to them, # since in the euler equation, the coefficient on the marginal utility of consumption for this term will be zero (since rho is one). e_extended = np.array(list(e) + [0]) n_extended = np.array(list(n_guess) + [0]) tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H, None, 'SS', False, params, theta, tau_bq) tax2 = tax.total_taxes(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ, lambdas, factor, T_H, None, 'SS', True, params, theta, tau_bq) cons1 = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params, tax1) cons2 = get_cons(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ, lambdas, b_splus2, params, tax2) income = (r * b_splus1 + w * e_extended[1:] * n_extended[1:]) * factor deriv = ( 1 + r*(1-tax.tau_income(r, b_splus1, w, e_extended[1:], n_extended[1:], factor, params)-tax.tau_income_deriv( r, b_splus1, w, e_extended[1:], n_extended[1:], factor, params)*income)-tax.tau_w_prime(b_splus1, params)*b_splus1-tax.tau_wealth(b_splus1, params)) savings_ut = rho * np.exp(-sigma * g_y) * chi_b * b_splus1 ** (-sigma) # Again, not who in this equation, the (1-rho) term will zero out in the last period, so the last entry of cons2 can be complete # gibberish (which it is). It just has to exist so cons2 is the right size to match all other arrays in the equation. euler = marg_ut_cons(cons1, params) - beta * (1-rho) * deriv * marg_ut_cons( cons2, params) * np.exp(-sigma * g_y) - savings_ut return euler
def SS_TPI_firstdoughnutring(guesses, winit, rinit, BQinit, T_H_init, initial_b, factor_ss, j, tax_params, parameters, theta, tau_bq): ''' Solves the first entries of the upper triangle of the twist doughnut. This is separate from the main TPI function because the the values of b and n are scalars, so it is easier to just have a separate function for these cases. Inputs: guesses = guess for b and n (2x1 list) winit = initial wage rate (scalar) rinit = initial rental rate (scalar) BQinit = initial aggregate bequest (scalar) T_H_init = initial lump sum tax (scalar) initial_b = initial distribution of capital (SxJ array) factor_ss = steady state scaling factor (scalar) j = which ability type is being solved for (scalar) parameters = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rates (Jx1 array) Output: euler errors (2x1 list) ''' J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_ss, tau_payroll, retire, mean_income_data,\ h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = parameters analytical_mtrs, etr_params, mtrx_params, mtry_params = tax_params b2 = float(guesses[0]) n1 = float(guesses[1]) b1 = float(initial_b[-2, j]) # Euler 1 equations tax1_params = (J, S, retire, etr_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll) tax1 = tax.total_taxes(rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[ j], factor_ss, T_H_init, j, 'TPI_scalar', False, tax1_params, theta, tau_bq) cons1 = household.get_cons( rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[j], b2, parameters, tax1) bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[-1, j] * b2 ** (-sigma) error1 = household.marg_ut_cons(cons1, parameters) - bequest_ut # Euler 2 equations income2 = (rinit * b1 + winit * e[-1, j] * n1) * factor_ss deriv2 = 1 - tau_payroll - tax.MTR_labor(rinit, b1, winit, e[-1, j], n1, factor_ss, analytical_mtrs, etr_params[-1,0,:], mtrx_params[-1,0,:]) error2 = household.marg_ut_cons(cons1, parameters) * winit * \ e[-1, j] * deriv2 - household.marg_ut_labor(n1, chi_n[-1], parameters) if n1 <= 0 or n1 >= 1: error2 += 1e12 if b2 <= 0: error1 += 1e12 if cons1 <= 0: error1 += 1e12 return [error1] + [error2]
def SS_TPI_firstdoughnutring(guesses, winit, rinit, BQinit, T_H_init, initial_b, factor_ss, j, parameters, theta, tau_bq): ''' Solves the first entries of the upper triangle of the twist doughnut. This is separate from the main TPI function because the the values of b and n are scalars, so it is easier to just have a separate function for these cases. Inputs: guesses = guess for b and n (2x1 list) winit = initial wage rate (scalar) rinit = initial rental rate (scalar) BQinit = initial aggregate bequest (scalar) T_H_init = initial lump sum tax (scalar) initial_b = initial distribution of capital (SxJ array) factor_ss = steady state scaling factor (scalar) j = which ability type is being solved for (scalar) parameters = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rates (Jx1 array) Output: euler errors (2x1 list) ''' b2 = float(guesses[0]) n1 = float(guesses[1]) b1 = float(initial_b[-2, j]) # Euler 1 equations tax1 = tax.total_taxes(rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[j], factor_ss, T_H_init, j, 'TPI_scalar', False, parameters, theta, tau_bq) cons1 = household.get_cons(rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[j], b2, parameters, tax1) bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[-1, j] * b2**(-sigma) error1 = household.marg_ut_cons(cons1, parameters) - bequest_ut # Euler 2 equations income2 = (rinit * b1 + winit * e[-1, j] * n1) * factor_ss deriv2 = 1 - tau_payroll - tax.tau_income( rinit, b1, winit, e[-1, j], n1, factor_ss, parameters) - tax.tau_income_deriv( rinit, b1, winit, e[-1, j], n1, factor_ss, parameters) * income2 error2 = household.marg_ut_cons(cons1, parameters) * winit * \ e[-1, j] * deriv2 - household.marg_ut_labor(n1, chi_n[-1], parameters) if n1 <= 0 or n1 >= 1: error2 += 1e12 if b2 <= 0: error1 += 1e12 if cons1 <= 0: error1 += 1e12 return [error1] + [error2]
def twist_doughnut(guesses, r, w, BQ, T_H, j, s, t, params): ''' Parameters: guesses = distribution of capital and labor (various length list) w = wage rate ((T+S)x1 array) r = rental rate ((T+S)x1 array) BQ = aggregate bequests ((T+S)x1 array) T_H = lump sum tax over time ((T+S)x1 array) factor = scaling factor (scalar) j = which ability type is being solved for (scalar) s = which upper triangle loop is being solved for (scalar) t = which diagonal is being solved for (scalar) params = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rate (Jx1 array) rho = mortalit rate (Sx1 array) lambdas = ability weights (Jx1 array) e = ability type (SxJ array) initial_b = capital stock distribution in period 0 (SxJ array) chi_b = chi^b_j (Jx1 array) chi_n = chi^n_s (Sx1 array) Output: Value of Euler error (various length list) ''' income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params length = len(guesses) / 2 b_guess = np.array(guesses[:length]) n_guess = np.array(guesses[length:]) if length == S: b_s = np.array([0] + list(b_guess[:-1])) else: b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1])) b_splus1 = b_guess b_splus2 = np.array(list(b_guess[1:]) + [0]) w_s = w[t:t + length] w_splus1 = w[t + 1:t + length + 1] r_s = r[t:t + length] r_splus1 = r[t + 1:t + length + 1] n_s = n_guess n_extended = np.array(list(n_guess[1:]) + [0]) e_s = e[-length:, j] e_extended = np.array(list(e[-length + 1:, j]) + [0]) BQ_s = BQ[t:t + length] BQ_splus1 = BQ[t + 1:t + length + 1] T_H_s = T_H[t:t + length] T_H_splus1 = T_H[t + 1:t + length + 1] # Savings euler equations # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J, )) tax_s_params = (e_s, lambdas[j], 'TPI', retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_s = tax.total_taxes(r_s, w_s, b_s, n_s, BQ_s, factor, T_H_s, j, False, tax_s_params) etr_params_sp1 = np.append(etr_params, np.reshape(etr_params[-1, :], (1, etr_params.shape[1])), axis=0)[1:, :] taxsp1_params = (e_extended, lambdas[j], 'TPI', retire, etr_params_sp1, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_splus1 = tax.total_taxes(r_splus1, w_splus1, b_splus1, n_extended, BQ_splus1, factor, T_H_splus1, j, True, taxsp1_params) cons_s_params = (e_s, lambdas[j], g_y) cons_s = household.get_cons(r_s, w_s, b_s, b_splus1, n_s, BQ_s, tax_s, cons_s_params) cons_sp1_params = (e_extended, lambdas[j], g_y) cons_splus1 = household.get_cons(r_splus1, w_splus1, b_splus1, b_splus2, n_extended, BQ_splus1, tax_splus1, cons_sp1_params) income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \ chi_b[j] * b_splus1 ** (-sigma) mtry_params_sp1 = np.append(mtry_params, np.reshape(mtry_params[-1, :], (1, mtry_params.shape[1])), axis=0)[1:, :] mtr_capital_params = (e_extended, etr_params_sp1, mtry_params_sp1, analytical_mtrs) deriv_savings = 1 + r_splus1 * (1 - tax.MTR_capital( r_splus1, w_splus1, b_splus1, n_extended, factor, mtr_capital_params)) error1 = household.marg_ut_cons( cons_s, sigma) - beta * (1 - rho[-(length):]) * np.exp( -sigma * g_y) * deriv_savings * household.marg_ut_cons( cons_splus1, sigma) - savings_ut # Labor leisure euler equations income_s = (r_s * b_s + w_s * e_s * n_s) * factor mtr_labor_params = (e_s, etr_params, mtrx_params, analytical_mtrs) deriv_laborleisure = 1 - tau_payroll - tax.MTR_labor( r_s, w_s, b_s, n_s, factor, mtr_labor_params) mu_labor_params = (b_ellipse, upsilon, ltilde, chi_n[-length:]) error2 = household.marg_ut_cons(cons_s, sigma) * w_s * e[ -(length):, j] * deriv_laborleisure - household.marg_ut_labor( n_s, mu_labor_params) # Check and punish constraint violations mask1 = n_guess < 0 error2[mask1] += 1e12 mask2 = n_guess > ltilde error2[mask2] += 1e12 mask3 = cons_s < 0 error2[mask3] += 1e12 mask4 = b_guess <= 0 error2[mask4] += 1e12 mask5 = cons_splus1 < 0 error2[mask5] += 1e12 return list(error1.flatten()) + list(error2.flatten())
def firstdoughnutring(guesses, r, w, b, BQ, T_H, j, params): ''' Solves the first entries of the upper triangle of the twist doughnut. This is separate from the main TPI function because the the values of b and n are scalars, so it is easier to just have a separate function for these cases. Inputs: guesses = guess for b and n (2x1 list) winit = initial wage rate (scalar) rinit = initial rental rate (scalar) BQinit = initial aggregate bequest (scalar) T_H_init = initial lump sum tax (scalar) initial_b = initial distribution of capital (SxJ array) factor = steady state scaling factor (scalar) j = which ability type is being solved for (scalar) parameters = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rates (Jx1 array) Output: euler errors (2x1 list) ''' # unpack tuples of parameters income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params b_splus1 = float(guesses[0]) n = float(guesses[1]) b_s = float(initial_b[-2, j]) # Euler 1 equations # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J, )) tax1_params = (e[-1, j], lambdas[j], 'TPI_scalar', retire, etr_params[-1, 0, :], h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax1 = tax.total_taxes(r, w, b_s, n, BQ, factor, T_H, j, False, tax1_params) cons_params = (e[-1, j], lambdas[j], g_y) cons = household.get_cons(r, w, b_s, b_splus1, n, BQ, tax1, cons_params) bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[j] * b_splus1**(-sigma) error1 = household.marg_ut_cons(cons, sigma) - bequest_ut # Euler 2 equations income2 = (r * b_s + w * e[-1, j] * n) * factor mtr_labor_params = (e[-1, j], etr_params[-1, 0, :], mtrx_params[-1, 0, :], analytical_mtrs) deriv2 = 1 - tau_payroll - tax.MTR_labor(r, w, b_s, n, factor, mtr_labor_params) mu_labor_params = (b_ellipse, upsilon, ltilde, chi_n[-1]) error2 = household.marg_ut_cons(cons, sigma) * w * \ e[-1, j] * deriv2 - household.marg_ut_labor(n, mu_labor_params) #### TEST THESE FUNCS BELOW TO BE SURE GET SAME OUTPUT, but should use if so *** # foc_save_params = (e[-1, j], sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, # analytical_mtrs, etr_params[-1,0,:], mtry_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') # error3 = household.FOC_savings(r, w, b_s, b_splus1, 0., n, BQ, factor, T_H, foc_save_params) # foc_labor_params = (e[-1, j], sigma, g_y, theta, b_ellipse, upsilon, chi_n, ltilde, tau_bq, lambdas, J, S, # analytical_mtrs, etr_params[-1,0,:], mtrx_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') # error4 = household.FOC_labor(r, w, b, b_splus1, n, BQ, factor, T_H, foc_labor_params) # print 'check1:', error2-error4 # print 'check2:', error1-error3 if n <= 0 or n >= 1: error2 += 1e12 if b_splus1 <= 0: error1 += 1e12 if cons <= 0: error1 += 1e12 return [error1] + [error2]
def twist_doughnut(guesses, r, w, BQ, T_H, j, s, t, params): ''' Parameters: guesses = distribution of capital and labor (various length list) w = wage rate ((T+S)x1 array) r = rental rate ((T+S)x1 array) BQ = aggregate bequests ((T+S)x1 array) T_H = lump sum tax over time ((T+S)x1 array) factor = scaling factor (scalar) j = which ability type is being solved for (scalar) s = which upper triangle loop is being solved for (scalar) t = which diagonal is being solved for (scalar) params = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rate (Jx1 array) rho = mortalit rate (Sx1 array) lambdas = ability weights (Jx1 array) e = ability type (SxJ array) initial_b = capital stock distribution in period 0 (SxJ array) chi_b = chi^b_j (Jx1 array) chi_n = chi^n_s (Sx1 array) Output: Value of Euler error (various length list) ''' income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, imm_rates, e, retire, mean_income_data,\ factor, T_H_baseline, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n, theta = tpi_params length = len(guesses) / 2 b_guess = np.array(guesses[:length]) n_guess = np.array(guesses[length:]) if length == S: b_s = np.array([0] + list(b_guess[:-1])) else: b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1])) b_splus1 = b_guess b_splus2 = np.array(list(b_guess[1:]) + [0]) w_s = w[t:t + length] w_splus1 = w[t + 1:t + length + 1] r_s = r[t:t + length] r_splus1 = r[t + 1:t + length + 1] n_s = n_guess n_extended = np.array(list(n_guess[1:]) + [0]) e_s = e[-length:, j] e_extended = np.array(list(e[-length + 1:, j]) + [0]) BQ_s = BQ[t:t + length] BQ_splus1 = BQ[t + 1:t + length + 1] T_H_s = T_H[t:t + length] T_H_splus1 = T_H[t + 1:t + length + 1] # Errors from FOC for savings foc_save_params = (e_s, sigma, beta, g_y, chi_b[j], theta, tau_bq, rho[-(length):], lambdas[j], j, J, S, analytical_mtrs, etr_params, mtry_params, h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') error1 = household.FOC_savings(r_s, w_s, b_s, b_splus1, b_splus2, n_s, BQ_s, factor, T_H_s, foc_save_params) # Errors from FOC for labor supply foc_labor_params = (e_s, sigma, g_y, theta, b_ellipse, upsilon, chi_n[-length:], ltilde, tau_bq, lambdas[j], j, J, S, analytical_mtrs, etr_params, mtrx_params, h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') error2 = household.FOC_labor(r_s, w_s, b_s, b_splus1, n_s, BQ_s, factor, T_H_s, foc_labor_params) tax_params = (e_s, lambdas[j], 'TPI', retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_s = tax.total_taxes(r_s, w_s, b_s, n_s, BQ_s, factor, T_H_s, j, False, tax_params) cons_params = (e_s, lambdas[j], g_y) cons_s = household.get_cons(r_s, w_s, b_s, b_splus1, n_s, BQ_s, tax_s, cons_params) # Check and punish constraint violations mask1 = n_guess < 0 error2[mask1] = 1e12 mask2 = n_guess > ltilde error2[mask2] = 1e12 # mask3 = cons_s < 0 # error2[mask3] += 1e12 mask4 = b_guess <= 0 error2[mask4] += 1e12 # mask5 = cons_splus1 < 0 mask5 = b_splus1 < 0 error2[mask5] += 1e12 return list(error1.flatten()) + list(error2.flatten())
def FOC_savings(r, w, b, b_splus1, b_splus2, n, BQ, factor, T_H, params): ''' Computes Euler errors for the FOC for savings in the steady state. This function is usually looped through over J, so it does one lifetime income group at a time. Inputs: r = scalar, interest rate w = scalar, wage rate b = [S,J] array, distribution of wealth/capital holdings b_splus1 = [S,J] array, distribution of wealth/capital holdings one period ahead b_splus2 = [S,J] array, distribution of wealth/capital holdings two periods ahead n = [S,J] array, distribution of labor supply BQ = [J,] vector, aggregate bequests by lifetime income group factor = scalar, scaling factor to convert model income to dollars T_H = scalar, lump sum transfer params = length 18 tuple (e, sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, etr_params, mtry_params, h_wealth, p_wealth, m_wealth, tau_payroll, tau_bq) e = [S,J] array, effective labor units sigma = scalar, coefficient of relative risk aversion beta = scalar, discount factor g_y = scalar, exogenous labor augmenting technological growth chi_b = [J,] vector, utility weight on bequests for each lifetime income group theta = [J,] vector, replacement rate for each lifetime income group tau_bq = scalar, bequest tax rate (scalar) rho = [S,] vector, mortality rates lambdas = [J,] vector, ability weights J = integer, number of lifetime income groups S = integer, number of economically active periods in lifetime etr_params = [S,10] array, parameters of effective income tax rate function mtry_params = [S,10] array, parameters of marginal tax rate on capital income function h_wealth = scalar, parameter in wealth tax function p_wealth = scalar, parameter in wealth tax function m_wealth = scalar, parameter in wealth tax function tau_payroll = scalar, payroll tax rate tau_bq = scalar, bequest tax rate Functions called: get_cons marg_ut_cons tax.total_taxes tax.MTR_capital Objects in function: tax1 = [S,J] array, net taxes in the current period tax2 = [S,J] array, net taxes one period ahead cons1 = [S,J] array, consumption in the current period cons2 = [S,J] array, consumption one period ahead deriv = [S,J] array, after-tax return on capital savings_ut = [S,J] array, marginal utility from savings euler = [S,J] array, Euler error from FOC for savings Returns: euler ''' e, sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, \ analytical_mtrs, etr_params, mtry_params, h_wealth, p_wealth, m_wealth, tau_payroll, retire, method = params # In order to not have 2 savings euler equations (one that solves the first S-1 equations, and one that solves the last one), # we combine them. In order to do this, we have to compute a consumption term in period t+1, which requires us to have a shifted # e and n matrix. We append a zero on the end of both of these so they will be the right size. We could append any value to them, # since in the euler equation, the coefficient on the marginal utility of # consumption for this term will be zero (since rho is one). if method == 'TPI_scalar': e_extended = np.array([e] + [0]) n_extended = np.array([n] + [0]) etr_params_to_use = etr_params mtry_params_to_use = mtry_params else: e_extended = np.array(list(e) + [0]) n_extended = np.array(list(n) + [0]) etr_params_to_use = np.append(etr_params, np.reshape(etr_params[-1, :], (1, etr_params.shape[1])), axis=0)[1:, :] mtry_params_to_use = np.append(mtry_params, np.reshape(mtry_params[-1, :], (1, mtry_params.shape[1])), axis=0)[1:, :] # tax1_params = (e, lambdas, method, retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) # tax1 = tax.total_taxes(r, w, b, n, BQ, factor, T_H, None, False, tax1_params) # tax2_params = (e_extended[1:], lambdas, method, retire, # np.append(etr_params,np.reshape(etr_params[-1,:],(1,etr_params.shape[1])),axis=0)[1:,:], # h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) # tax2 = tax.total_taxes(r, w, b_splus1, n_extended[1:], BQ, factor, T_H, None, True, tax2_params) # cons1_params = (e, lambdas, g_y) # cons1 = get_cons(r, w, b, b_splus1, n, BQ, tax1, cons1_params) # cons2_params = (e_extended[1:], lambdas, g_y) # cons2 = get_cons(r, w, b_splus1, b_splus2, n_extended[1:], BQ, tax2, cons2_params) # mtr_cap_params = (e_extended[1:], np.append(etr_params,np.reshape(etr_params[-1,:],(1,etr_params.shape[1])),axis=0)[1:,:], # np.append(mtry_params,np.reshape(mtry_params[-1,:],(1,mtry_params.shape[1])),axis=0)[1:,:],analytical_mtrs) # deriv = (1+r) - r*(tax.MTR_capital(r, w, b_splus1, n_extended[1:], factor, mtr_cap_params)) tax1_params = (e, lambdas, method, retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax1 = tax.total_taxes(r, w, b, n, BQ, factor, T_H, None, False, tax1_params) tax2_params = (e_extended[1:], lambdas, method, retire, etr_params_to_use, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax2 = tax.total_taxes(r, w, b_splus1, n_extended[1:], BQ, factor, T_H, None, True, tax2_params) cons1_params = (e, lambdas, g_y) cons1 = get_cons(r, w, b, b_splus1, n, BQ, tax1, cons1_params) cons2_params = (e_extended[1:], lambdas, g_y) cons2 = get_cons(r, w, b_splus1, b_splus2, n_extended[1:], BQ, tax2, cons2_params) mtr_cap_params = (e_extended[1:], etr_params_to_use, mtry_params_to_use, analytical_mtrs) deriv = (1 + r) - r * (tax.MTR_capital(r, w, b_splus1, n_extended[1:], factor, mtr_cap_params)) savings_ut = rho * np.exp(-sigma * g_y) * chi_b * b_splus1**(-sigma) # Again, note timing in this equation, the (1-rho) term will zero out in the last period, so the last entry of cons2 can be complete # gibberish (which it is). It just has to exist so cons2 is the right # size to match all other arrays in the equation. euler = marg_ut_cons(cons1, sigma) - beta * (1 - rho) * deriv * marg_ut_cons( cons2, sigma) * np.exp(-sigma * g_y) - savings_ut return euler
def run_TPI(income_tax_params, tpi_params, iterative_params, initial_values, SS_values, output_dir="./OUTPUT"): # unpack tuples of parameters analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params maxiter, mindist_SS, mindist_TPI = iterative_params J, S, T, BQ_dist, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params K0, b_sinit, b_splus1init, L0, Y0,\ w0, r0, BQ0, T_H_0, factor, tax0, c0, initial_b, initial_n = initial_values Kss, Lss, rss, wss, BQss, T_Hss, bssmat_splus1, nssmat = SS_values TPI_FIG_DIR = output_dir # Initialize guesses at time paths domain = np.linspace(0, T, T) K_init = (-1 / (domain + 1)) * (Kss - K0) + Kss K_init[-1] = Kss K_init = np.array(list(K_init) + list(np.ones(S) * Kss)) L_init = np.ones(T + S) * Lss K = K_init L = L_init Y_params = (alpha, Z) Y = firm.get_Y(K, L, Y_params) w = firm.get_w(Y, L, alpha) r_params = (alpha, delta) r = firm.get_r(Y, K, r_params) BQ = np.zeros((T + S, J)) for j in xrange(J): BQ[:, j] = list(np.linspace(BQ0[j], BQss[j], T)) + [BQss[j]] * S BQ = np.array(BQ) if T_Hss < 1e-13 and T_Hss > 0.0 : T_Hss2 = 0.0 # sometimes SS is very small but not zero, even if taxes are zero, this get's rid of the approximation error, which affects the perc changes below else: T_Hss2 = T_Hss T_H = np.ones(T + S) * T_Hss2 # Make array of initial guesses for labor supply and savings domain2 = np.tile(domain.reshape(T, 1, 1), (1, S, J)) ending_b = bssmat_splus1 guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b ending_b_tail = np.tile(ending_b.reshape(1, S, J), (S, 1, 1)) guesses_b = np.append(guesses_b, ending_b_tail, axis=0) domain3 = np.tile(np.linspace(0, 1, T).reshape(T, 1, 1), (1, S, J)) guesses_n = domain3 * (nssmat - initial_n) + initial_n ending_n_tail = np.tile(nssmat.reshape(1, S, J), (S, 1, 1)) guesses_n = np.append(guesses_n, ending_n_tail, axis=0) b_mat = np.zeros((T + S, S, J)) n_mat = np.zeros((T + S, S, J)) ind = np.arange(S) TPIiter = 0 TPIdist = 10 PLOT_TPI = False euler_errors = np.zeros((T, 2 * S, J)) TPIdist_vec = np.zeros(maxiter) while (TPIiter < maxiter) and (TPIdist >= mindist_TPI): # Plot TPI for K for each iteration, so we can see if there is a # problem if PLOT_TPI is True: K_plot = list(K) + list(np.ones(10) * Kss) L_plot = list(L) + list(np.ones(10) * Lss) plt.figure() plt.axhline( y=Kss, color='black', linewidth=2, label=r"Steady State $\hat{K}$", ls='--') plt.plot(np.arange( T + 10), Kpath_plot[:T + 10], 'b', linewidth=2, label=r"TPI time path $\hat{K}_t$") plt.savefig(os.path.join(TPI_FIG_DIR, "TPI_K")) # Uncomment the following print statements to make sure all euler equations are converging. # If they don't, then you'll have negative consumption or consumption spikes. If they don't, # it is the initial guesses. You might need to scale them differently. It is rather delicate for the first # few periods and high ability groups. # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J,)) guesses = (guesses_b, guesses_n) outer_loop_vars = (r, w, K, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, theta, ind) # Solve HH problem in inner loop euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) # if euler_errors.max() > 1e-6: # print 't-loop:', euler_errors.max() # Force the initial distribution of capital to be as given above. b_mat[0, :, :] = initial_b K_params = (omega[:T].reshape(T, S, 1), lambdas.reshape(1, 1, J), g_n_vector[:T], 'TPI') K[:T] = household.get_K(b_mat[:T], K_params) L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') L[:T] = firm.get_L(n_mat[:T], L_params) Y_params = (alpha, Z) Ynew = firm.get_Y(K[:T], L[:T], Y_params) wnew = firm.get_w(Ynew[:T], L[:T], alpha) r_params = (alpha, delta) rnew = firm.get_r(Ynew[:T], K[:T], r_params) BQ_params = (omega[:T].reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), g_n_vector[:T].reshape(T, 1), 'TPI') BQnew = household.get_BQ(rnew[:T].reshape(T, 1), b_mat[:T,:,:], BQ_params) bmat_s = np.zeros((T, S, J)) bmat_s[:, 1:, :] = b_mat[:T, :-1, :] bmat_splus1 = np.zeros((T, S, J)) bmat_splus1[:, :, :] = b_mat[1:T + 1, :, :] TH_tax_params = np.zeros((T,S,J,etr_params.shape[2])) for i in range(etr_params.shape[2]): TH_tax_params[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) T_H_params = (np.tile(e.reshape(1, S, J),(T,1,1)), BQ_dist, lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', TH_tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J) T_H_new = np.array(list(tax.get_lump_sum(np.tile(rnew[:T].reshape(T, 1, 1),(1,S,J)), np.tile(wnew[:T].reshape(T, 1, 1),(1,S,J)), bmat_s, n_mat[:T,:,:], BQnew[:T].reshape(T, 1, J), factor, T_H_params)) + [T_Hss] * S) w[:T] = utils.convex_combo(wnew[:T], w[:T], nu) r[:T] = utils.convex_combo(rnew[:T], r[:T], nu) BQ[:T] = utils.convex_combo(BQnew[:T], BQ[:T], nu) T_H[:T] = utils.convex_combo(T_H_new[:T], T_H[:T], nu) guesses_b = utils.convex_combo(b_mat, guesses_b, nu) guesses_n = utils.convex_combo(n_mat, guesses_n, nu) if T_H.all() != 0: TPIdist = np.array(list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list( utils.pct_diff_func(wnew[:T], w[:T])) + list(utils.pct_diff_func(T_H_new[:T], T_H[:T]))).max() else: TPIdist = np.array(list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list( utils.pct_diff_func(wnew[:T], w[:T])) + list(np.abs(T_H_new[:T], T_H[:T]))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations # if TPIiter > 10: # if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0: # nu /= 2 # print 'New Value of nu:', nu TPIiter += 1 print '\tIteration:', TPIiter print '\t\tDistance:', TPIdist if ((TPIiter >= maxiter) or (np.absolute(TPIdist) > mindist_TPI)) and ENFORCE_SOLUTION_CHECKS : raise RuntimeError("Transition path equlibrium not found") Y[:T] = Ynew # Solve HH problem in inner loop guesses = (guesses_b, guesses_n) outer_loop_vars = (r, w, K, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, theta, ind) euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) b_mat[0, :, :] = initial_b K_params = (omega[:T].reshape(T, S, 1), lambdas.reshape(1, 1, J), g_n_vector[:T], 'TPI') K[:T] = household.get_K(b_mat[:T], K_params) # this is what old code does, but it's strange - why use # b_mat -- what is going on with initial period, etc. etr_params_path = np.zeros((T,S,J,etr_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_path[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) tax_path_params = (np.tile(e.reshape(1, S, J),(T,1,1)), BQ_dist, lambdas, 'TPI', retire, etr_params_path, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_path = tax.total_taxes(np.tile(r[:T].reshape(T, 1, 1),(1,S,J)), np.tile(w[:T].reshape(T, 1, 1),(1,S,J)), bmat_s, n_mat[:T,:,:], BQ[:T, :].reshape(T, 1, J), factor, T_H[:T].reshape(T, 1, 1), None, False, tax_path_params) cons_params = (e.reshape(1, S, J), BQ_dist, lambdas.reshape(1, 1, J), g_y) c_path = household.get_cons(omega[:T].reshape(T,S,1), r[:T].reshape(T, 1, 1), w[:T].reshape(T, 1, 1), bmat_s, bmat_splus1, n_mat[:T,:,:], BQ[:T].reshape(T, 1, J), tax_path, cons_params) C_params = (omega[:T].reshape(T, S, 1), lambdas, 'TPI') C = household.get_C(c_path, C_params) I_params = (delta, g_y, g_n_vector[:T]) I = firm.get_I(K[1:T+1], K[:T], I_params) print 'Resource Constraint Difference:', Y[:T] - C[:T] - I[:T] print'Checking time path for violations of constaints.' for t in xrange(T): household.constraint_checker_TPI( b_mat[t], n_mat[t], c_path[t], t, ltilde) eul_savings = euler_errors[:, :S, :].max(1).max(1) eul_laborleisure = euler_errors[:, S:, :].max(1).max(1) print 'Max Euler error, savings: ', eul_savings print 'Max Euler error labor supply: ', eul_laborleisure if ((np.any(np.absolute(eul_savings) >= mindist_TPI) or (np.any(np.absolute(eul_laborleisure) > mindist_TPI))) and ENFORCE_SOLUTION_CHECKS): raise RuntimeError("Transition path equlibrium not found") ''' ------------------------------------------------------------------------ Save variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' output = {'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'T_H': T_H, 'r': r, 'w': w, 'b_mat': b_mat, 'n_mat': n_mat, 'c_path': c_path, 'tax_path': tax_path, 'eul_savings': eul_savings, 'eul_laborleisure': eul_laborleisure} tpi_dir = os.path.join(output_dir, "TPI") utils.mkdirs(tpi_dir) tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl") pickle.dump(output, open(tpi_vars, "wb")) macro_output = {'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'T_H': T_H, 'r': r, 'w': w, 'tax_path': tax_path} # Non-stationary output # macro_ns_output = {'K_ns_path': K_ns_path, 'C_ns_path': C_ns_path, 'I_ns_path': I_ns_path, # 'L_ns_path': L_ns_path, 'BQ_ns_path': BQ_ns_path, # 'rinit': rinit, 'Y_ns_path': Y_ns_path, 'T_H_ns_path': T_H_ns_path, # 'w_ns_path': w_ns_path} return output, macro_output
def firstdoughnutring(guesses, r, w, b, BQ, T_H, j, params): ''' Solves the first entries of the upper triangle of the twist doughnut. This is separate from the main TPI function because the the values of b and n are scalars, so it is easier to just have a separate function for these cases. Inputs: guesses = guess for b and n (2x1 list) winit = initial wage rate (scalar) rinit = initial rental rate (scalar) BQinit = initial aggregate bequest (scalar) T_H_init = initial lump sum tax (scalar) initial_b = initial distribution of capital (SxJ array) factor = steady state scaling factor (scalar) j = which ability type is being solved for (scalar) parameters = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rates (Jx1 array) Output: euler errors (2x1 list) ''' # unpack tuples of parameters income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BQ_dist, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params b_splus1 = float(guesses[0]) n = float(guesses[1]) b_s = float(initial_b[-2, j]) # Euler 1 equations # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J,)) tax1_params = (e[-1, j], BQ_dist[-1, j], lambdas[j], 'TPI_scalar', retire, etr_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax1 = tax.total_taxes(r, w, b_s, n, BQ, factor, T_H, j, False, tax1_params) cons_params = (e[-1, j], BQ_dist[-1, j], lambdas[j], g_y) cons = household.get_cons(omega[0,-1], r, w, b_s, b_splus1, n, BQ, tax1, cons_params) bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[j] * b_splus1 ** (-sigma) error1 = household.marg_ut_cons(cons, sigma) - bequest_ut # Euler 2 equations income2 = (r * b_s + w * e[-1, j] * n) * factor mtr_labor_params = (e[-1, j], etr_params[-1,0,:], mtrx_params[-1,0,:], analytical_mtrs) deriv2 = 1 - tau_payroll - tax.MTR_labor(r, w, b_s, n, factor, mtr_labor_params) mu_labor_params = (b_ellipse, upsilon, ltilde, chi_n[-1]) error2 = household.marg_ut_cons(cons, sigma) * w * \ e[-1, j] * deriv2 - household.marg_ut_labor(n, mu_labor_params) #### TEST THESE FUNCS BELOW TO BE SURE GET SAME OUTPUT, but should use if so *** # foc_save_params = (e[-1, j], sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, # analytical_mtrs, etr_params[-1,0,:], mtry_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') # error3 = household.FOC_savings(r, w, b_s, b_splus1, 0., n, BQ, factor, T_H, foc_save_params) # foc_labor_params = (e[-1, j], sigma, g_y, theta, b_ellipse, upsilon, chi_n, ltilde, tau_bq, lambdas, J, S, # analytical_mtrs, etr_params[-1,0,:], mtrx_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') # error4 = household.FOC_labor(r, w, b, b_splus1, n, BQ, factor, T_H, foc_labor_params) # print 'check1:', error2-error4 # print 'check2:', error1-error3 if n <= 0 or n >= 1: error2 += 1e12 if b_splus1 <= 0: error1 += 1e12 if cons <= 0: error1 += 1e12 return [error1] + [error2]
def run_TPI(income_tax_params, tpi_params, iterative_params, initial_values, SS_values, fix_transfers=False, output_dir="./OUTPUT"): # unpack tuples of parameters analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params maxiter, mindist_SS, mindist_TPI = iterative_params J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, imm_rates, e, retire, mean_income_data,\ factor, T_H_baseline, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n, theta = tpi_params K0, b_sinit, b_splus1init, factor, initial_b, initial_n, omega_S_preTP = initial_values Kss, Lss, rss, wss, BQss, T_Hss, Gss, bssmat_splus1, nssmat = SS_values TPI_FIG_DIR = output_dir # Initialize guesses at time paths domain = np.linspace(0, T, T) r = np.ones(T + S) * rss BQ = np.zeros((T + S, J)) BQ0_params = (omega_S_preTP.reshape(S, 1), lambdas, rho.reshape(S, 1), g_n_vector[0], 'SS') BQ0 = household.get_BQ(r[0], initial_b, BQ0_params) for j in xrange(J): BQ[:, j] = list(np.linspace(BQ0[j], BQss[j], T)) + [BQss[j]] * S BQ = np.array(BQ) # print "BQ values = ", BQ[0, :], BQ[100, :], BQ[-1, :], BQss # print "K0 vs Kss = ", K0-Kss if fix_transfers: T_H = T_H_baseline else: if np.abs(T_Hss) < 1e-13: T_Hss2 = 0.0 # sometimes SS is very small but not zero, even if taxes are zero, this get's rid of the approximation error, which affects the perc changes below else: T_Hss2 = T_Hss T_H = np.ones(T + S) * T_Hss2 * (r / rss) G = np.ones(T + S) * Gss # # print "T_H values = ", T_H[0], T_H[100], T_H[-1], T_Hss # # print "omega diffs = ", (omega_S_preTP-omega[-1]).max(), (omega[10]-omega[-1]).max() # # Make array of initial guesses for labor supply and savings domain2 = np.tile(domain.reshape(T, 1, 1), (1, S, J)) ending_b = bssmat_splus1 guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b ending_b_tail = np.tile(ending_b.reshape(1, S, J), (S, 1, 1)) guesses_b = np.append(guesses_b, ending_b_tail, axis=0) # print 'diff btwn start and end b: ', (guesses_b[0]-guesses_b[-1]).max() # domain3 = np.tile(np.linspace(0, 1, T).reshape(T, 1, 1), (1, S, J)) guesses_n = domain3 * (nssmat - initial_n) + initial_n ending_n_tail = np.tile(nssmat.reshape(1, S, J), (S, 1, 1)) guesses_n = np.append(guesses_n, ending_n_tail, axis=0) # b_mat = np.zeros((T + S, S, J)) # n_mat = np.zeros((T + S, S, J)) ind = np.arange(S) # # print 'diff btwn start and end n: ', (guesses_n[0]-guesses_n[-1]).max() # # # find economic aggregates K = np.zeros(T + S) L = np.zeros(T + S) K[0] = K0 K_params = (omega[:T - 1].reshape(T - 1, S, 1), lambdas.reshape(1, 1, J), imm_rates[:T - 1].reshape(T - 1, S, 1), g_n_vector[1:T], 'TPI') K[1:T] = household.get_K(guesses_b[:T - 1], K_params) K[T:] = Kss L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') L[:T] = firm.get_L(guesses_n[:T], L_params) L[T:] = Lss Y_params = (alpha, Z) Y = firm.get_Y(K, L, Y_params) r_params = (alpha, delta) r[:T] = firm.get_r(Y[:T], K[:T], r_params) # uncomment lines below if want to use starting values from prior run r = TPI_START_VALUES['r'] K = TPI_START_VALUES['K'] L = TPI_START_VALUES['L'] Y = TPI_START_VALUES['Y'] T_H = TPI_START_VALUES['T_H'] BQ = TPI_START_VALUES['BQ'] G = TPI_START_VALUES['G'] guesses_b = TPI_START_VALUES['b_mat'] guesses_n = TPI_START_VALUES['n_mat'] TPIiter = 0 TPIdist = 10 PLOT_TPI = False euler_errors = np.zeros((T, 2 * S, J)) TPIdist_vec = np.zeros(maxiter) # print 'analytical mtrs in tpi = ', analytical_mtrs while (TPIiter < maxiter) and (TPIdist >= mindist_TPI): # Plot TPI for K for each iteration, so we can see if there is a # problem if PLOT_TPI is True: K_plot = list(K) + list(np.ones(10) * Kss) L_plot = list(L) + list(np.ones(10) * Lss) plt.figure() plt.axhline(y=Kss, color='black', linewidth=2, label=r"Steady State $\hat{K}$", ls='--') plt.plot(np.arange(T + 10), Kpath_plot[:T + 10], 'b', linewidth=2, label=r"TPI time path $\hat{K}_t$") plt.savefig(os.path.join(TPI_FIG_DIR, "TPI_K")) guesses = (guesses_b, guesses_n) w_params = (Z, alpha, delta) w = firm.get_w_from_r(r, w_params) # print 'r and rss diff = ', r-rss # print 'w and wss diff = ', w-wss # print 'BQ and BQss diff = ', BQ-BQss # print 'T_H and T_Hss diff = ', T_H - T_Hss # print 'guess b and bss = ', (bssmat_splus1 - guesses_b).max() # print 'guess n and nss = ', (nssmat - guesses_n).max() outer_loop_vars = (r, w, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, ind) # Solve HH problem in inner loop euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) # print 'guess b and bss = ', (b_mat - guesses_b).max() # print 'guess n and nss over time = ', (n_mat - guesses_n).max(axis=2).max(axis=1) # print 'guess n and nss over age = ', (n_mat - guesses_n).max(axis=0).max(axis=1) # print 'guess n and nss over ability = ', (n_mat - guesses_n).max(axis=0).max(axis=0) # quit() print 'Max Euler error: ', (np.abs(euler_errors)).max() bmat_s = np.zeros((T, S, J)) bmat_s[0, 1:, :] = initial_b[:-1, :] bmat_s[1:, 1:, :] = b_mat[:T - 1, :-1, :] bmat_splus1 = np.zeros((T, S, J)) bmat_splus1[:, :, :] = b_mat[:T, :, :] K[0] = K0 K_params = (omega[:T - 1].reshape(T - 1, S, 1), lambdas.reshape(1, 1, J), imm_rates[:T - 1].reshape(T - 1, S, 1), g_n_vector[1:T], 'TPI') K[1:T] = household.get_K(bmat_splus1[:T - 1], K_params) L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') L[:T] = firm.get_L(n_mat[:T], L_params) # print 'K diffs = ', K-K0 # print 'L diffs = ', L-L[0] Y_params = (alpha, Z) Ynew = firm.get_Y(K[:T], L[:T], Y_params) r_params = (alpha, delta) rnew = firm.get_r(Ynew[:T], K[:T], r_params) wnew = firm.get_w_from_r(rnew, w_params) omega_shift = np.append(omega_S_preTP.reshape(1, S), omega[:T - 1, :], axis=0) BQ_params = (omega_shift.reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), g_n_vector[:T].reshape(T, 1), 'TPI') # b_mat_shift = np.append(np.reshape(initial_b, (1, S, J)), # b_mat[:T-1, :, :], axis=0) b_mat_shift = bmat_splus1[:T, :, :] # print 'b diffs = ', (bmat_splus1[100, :, :] - initial_b).max(), (bmat_splus1[0, :, :] - initial_b).max(), (bmat_splus1[1, :, :] - initial_b).max() # print 'r diffs = ', rnew[1]-r[1], rnew[100]-r[100], rnew[-1]-r[-1] BQnew = household.get_BQ(rnew[:T].reshape(T, 1), b_mat_shift, BQ_params) BQss2 = np.empty(J) for j in range(J): BQss_params = (omega[1, :], lambdas[j], rho, g_n_vector[1], 'SS') BQss2[j] = household.get_BQ(rnew[1], bmat_splus1[1, :, j], BQss_params) # print 'BQ test = ', BQss2-BQss, BQss-BQnew[1], BQss-BQnew[100], BQss-BQnew[-1] total_tax_params = np.zeros((T, S, J, etr_params.shape[2])) for i in range(etr_params.shape[2]): total_tax_params[:, :, :, i] = np.tile( np.reshape(np.transpose(etr_params[:, :T, i]), (T, S, 1)), (1, 1, J)) tax_receipt_params = (np.tile(e.reshape(1, S, J), (T, 1, 1)), lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', total_tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J) net_tax_receipts = np.array( list( tax.get_lump_sum(np.tile(rnew[:T].reshape(T, 1, 1), ( 1, S, J)), np.tile(wnew[:T].reshape(T, 1, 1), ( 1, S, J)), bmat_s, n_mat[:T, :, :], BQnew[:T].reshape( T, 1, J), factor, tax_receipt_params)) + [T_Hss] * S) r[:T] = utils.convex_combo(rnew[:T], r[:T], nu) BQ[:T] = utils.convex_combo(BQnew[:T], BQ[:T], nu) if fix_transfers: T_H_new = T_H G[:T] = net_tax_receipts[:T] - T_H[:T] else: T_H_new = net_tax_receipts T_H[:T] = utils.convex_combo(T_H_new[:T], T_H[:T], nu) G[:T] = 0.0 etr_params_path = np.zeros((T, S, J, etr_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_path[:, :, :, i] = np.tile( np.reshape(np.transpose(etr_params[:, :T, i]), (T, S, 1)), (1, 1, J)) tax_path_params = (np.tile(e.reshape(1, S, J), (T, 1, 1)), lambdas, 'TPI', retire, etr_params_path, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) b_to_use = np.zeros((T, S, J)) b_to_use[0, 1:, :] = initial_b[:-1, :] b_to_use[1:, 1:, :] = b_mat[:T - 1, :-1, :] tax_path = tax.total_taxes(np.tile(r[:T].reshape(T, 1, 1), (1, S, J)), np.tile(w[:T].reshape(T, 1, 1), (1, S, J)), b_to_use, n_mat[:T, :, :], BQ[:T, :].reshape(T, 1, J), factor, T_H[:T].reshape(T, 1, 1), None, False, tax_path_params) y_path = (np.tile(r[:T].reshape(T, 1, 1), (1, S, J)) * b_to_use[:T, :, :] + np.tile(w[:T].reshape(T, 1, 1), (1, S, J)) * np.tile(e.reshape(1, S, J), (T, 1, 1)) * n_mat[:T, :, :]) cons_params = (e.reshape(1, S, J), lambdas.reshape(1, 1, J), g_y) c_path = household.get_cons(r[:T].reshape(T, 1, 1), w[:T].reshape(T, 1, 1), b_to_use[:T, :, :], b_mat[:T, :, :], n_mat[:T, :, :], BQ[:T].reshape(T, 1, J), tax_path, cons_params) guesses_b = utils.convex_combo(b_mat, guesses_b, nu) guesses_n = utils.convex_combo(n_mat, guesses_n, nu) if T_H.all() != 0: TPIdist = np.array( list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list(utils.pct_diff_func(T_H_new[:T], T_H[:T]))).max() print 'r dist = ', np.array( list(utils.pct_diff_func(rnew[:T], r[:T]))).max() print 'BQ dist = ', np.array( list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten())).max() print 'T_H dist = ', np.array( list(utils.pct_diff_func(T_H_new[:T], T_H[:T]))).max() print 'T_H path = ', T_H[:20] # print 'r old = ', r[:T] # print 'r new = ', rnew[:T] # print 'K old = ', K[:T] # print 'L old = ', L[:T] # print 'income = ', y_path[:, :, -1] # print 'taxes = ', tax_path[:, :, -1] # print 'labor supply = ', n_mat[:, :, -1] # print 'max and min labor = ', n_mat.max(), n_mat.min() # print 'max and min labor = ', np.argmax(n_mat), np.argmin(n_mat) # print 'max and min labor, j = 7 = ', n_mat[:,:,-1].max(), n_mat[:,:,-1].min() # print 'max and min labor, j = 6 = ', n_mat[:,:,-2].max(), n_mat[:,:,-2].min() # print 'max and min labor, j = 5 = ', n_mat[:,:,4].max(), n_mat[:,:,4].min() # print 'max and min labor, j = 4 = ', n_mat[:,:,3].max(), n_mat[:,:,3].min() # print 'max and min labor, j = 3 = ', n_mat[:,:,2].max(), n_mat[:,:,2].min() # print 'max and min labor, j = 2 = ', n_mat[:,:,1].max(), n_mat[:,:,1].min() # print 'max and min labor, j = 1 = ', n_mat[:,:,0].max(), n_mat[:,:,0].min() # print 'max and min labor, S = 80 = ', n_mat[:,-1,-1].max(), n_mat[:,-1,-1].min() # print "number > 1 = ", (n_mat > 1).sum() # print "number < 0, = ", (n_mat < 0).sum() # print "number > 1, j=7 = ", (n_mat[:T,:,-1] > 1).sum() # print "number < 0, j=7 = ", (n_mat[:T,:,-1] < 0).sum() # print "number > 1, s=80, j=7 = ", (n_mat[:T,-1,-1] > 1).sum() # print "number < 0, s=80, j=7 = ", (n_mat[:T,-1,-1] < 0).sum() # print "number > 1, j= 7, age 80= ", (n_mat[:T,-1,-1] > 1).sum() # print "number < 0, j = 7, age 80= ", (n_mat[:T,-1,-1] < 0).sum() # print "number > 1, j= 7, age 80, period 0 to 10= ", (n_mat[:30,-1,-1] > 1).sum() # print "number < 0, j = 7, age 80, period 0 to 10= ", (n_mat[:30,-1,-1] < 0).sum() # print "number > 1, j= 7, age 70-79, period 0 to 10= ", (n_mat[:30,70:80,-1] > 1).sum() # print "number < 0, j = 7, age 70-79, period 0 to 10= ", (n_mat[:30,70:80 ,-1] < 0).sum() # diag_dict = {'n_mat': n_mat, 'b_mat': b_mat, 'y_path': y_path, 'c_path': c_path} # pickle.dump(diag_dict, open('tpi_iter1.pkl', 'wb')) else: TPIdist = np.array( list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list(np.abs(T_H_new[:T] - T_H[:T]))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations # if TPIiter > 10: # if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0: # nu /= 2 # print 'New Value of nu:', nu TPIiter += 1 print '\tIteration:', TPIiter print '\t\tDistance:', TPIdist Y[:T] = Ynew # Solve HH problem in inner loop guesses = (guesses_b, guesses_n) outer_loop_vars = (r, w, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, ind) euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) bmat_s = np.zeros((T, S, J)) bmat_s[0, 1:, :] = initial_b[:-1, :] bmat_s[1:, 1:, :] = b_mat[:T - 1, :-1, :] bmat_splus1 = np.zeros((T, S, J)) bmat_splus1[:, :, :] = b_mat[:T, :, :] K[0] = K0 K_params = (omega[:T - 1].reshape(T - 1, S, 1), lambdas.reshape(1, 1, J), imm_rates[:T - 1].reshape(T - 1, S, 1), g_n_vector[1:T], 'TPI') K[1:T] = household.get_K(bmat_splus1[:T - 1], K_params) L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') L[:T] = firm.get_L(n_mat[:T], L_params) Y_params = (alpha, Z) Ynew = firm.get_Y(K[:T], L[:T], Y_params) r_params = (alpha, delta) rnew = firm.get_r(Ynew[:T], K[:T], r_params) wnew = firm.get_w_from_r(rnew, w_params) omega_shift = np.append(omega_S_preTP.reshape(1, S), omega[:T - 1, :], axis=0) BQ_params = (omega_shift.reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), g_n_vector[:T].reshape(T, 1), 'TPI') b_mat_shift = np.append(np.reshape(initial_b, (1, S, J)), b_mat[:T - 1, :, :], axis=0) BQnew = household.get_BQ(rnew[:T].reshape(T, 1), b_mat_shift, BQ_params) total_tax_params = np.zeros((T, S, J, etr_params.shape[2])) for i in range(etr_params.shape[2]): total_tax_params[:, :, :, i] = np.tile( np.reshape(np.transpose(etr_params[:, :T, i]), (T, S, 1)), (1, 1, J)) tax_receipt_params = (np.tile(e.reshape(1, S, J), (T, 1, 1)), lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', total_tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J) net_tax_receipts = np.array( list( tax.get_lump_sum(np.tile(rnew[:T].reshape(T, 1, 1), ( 1, S, J)), np.tile(wnew[:T].reshape(T, 1, 1), ( 1, S, J)), bmat_s, n_mat[:T, :, :], BQnew[:T].reshape( T, 1, J), factor, tax_receipt_params)) + [T_Hss] * S) if fix_transfers: G[:T] = net_tax_receipts[:T] - T_H[:T] else: T_H[:T] = net_tax_receipts[:T] G[:T] = 0.0 etr_params_path = np.zeros((T, S, J, etr_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_path[:, :, :, i] = np.tile( np.reshape(np.transpose(etr_params[:, :T, i]), (T, S, 1)), (1, 1, J)) tax_path_params = (np.tile(e.reshape(1, S, J), (T, 1, 1)), lambdas, 'TPI', retire, etr_params_path, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_path = tax.total_taxes(np.tile(r[:T].reshape(T, 1, 1), (1, S, J)), np.tile(w[:T].reshape(T, 1, 1), (1, S, J)), bmat_s, n_mat[:T, :, :], BQ[:T, :].reshape(T, 1, J), factor, T_H[:T].reshape(T, 1, 1), None, False, tax_path_params) cons_params = (e.reshape(1, S, J), lambdas.reshape(1, 1, J), g_y) c_path = household.get_cons(r[:T].reshape(T, 1, 1), w[:T].reshape(T, 1, 1), bmat_s, bmat_splus1, n_mat[:T, :, :], BQ[:T].reshape(T, 1, J), tax_path, cons_params) C_params = (omega[:T].reshape(T, S, 1), lambdas, 'TPI') C = household.get_C(c_path, C_params) I_params = (delta, g_y, omega[:T].reshape(T, S, 1), lambdas, imm_rates[:T].reshape(T, S, 1), g_n_vector[1:T + 1], 'TPI') I = firm.get_I(bmat_splus1[:T], K[1:T + 1], K[:T], I_params) rc_error = Y[:T] - C[:T] - I[:T] - G[:T] print 'Resource Constraint Difference:', rc_error # compute utility u_params = (sigma, np.tile(chi_n.reshape(1, S, 1), (T, 1, J)), b_ellipse, ltilde, upsilon, np.tile(rho.reshape(1, S, 1), (T, 1, J)), np.tile(chi_b.reshape(1, 1, J), (T, S, 1))) utility_path = household.get_u(c_path[:T, :, :], n_mat[:T, :, :], bmat_splus1[:T, :, :], u_params) # compute before and after-tax income y_path = (np.tile(r[:T].reshape(T, 1, 1), (1, S, J)) * bmat_s[:T, :, :] + np.tile(w[:T].reshape(T, 1, 1), (1, S, J)) * np.tile(e.reshape(1, S, J), (T, 1, 1)) * n_mat[:T, :, :]) inctax_params = (np.tile(e.reshape(1, S, J), (T, 1, 1)), etr_params_path) y_aftertax_path = (y_path - tax.tau_income( np.tile(r[:T].reshape(T, 1, 1), (1, S, J)), np.tile(w[:T].reshape(T, 1, 1), (1, S, J)), bmat_s[:T, :, :], n_mat[:T, :, :], factor, inctax_params)) # compute after-tax wealth wtax_params = (h_wealth, p_wealth, m_wealth) b_aftertax_path = bmat_s[:T, :, :] - tax.tau_wealth( bmat_s[:T, :, :], wtax_params) print 'Checking time path for violations of constaints.' for t in xrange(T): household.constraint_checker_TPI(b_mat[t], n_mat[t], c_path[t], t, ltilde) eul_savings = euler_errors[:, :S, :].max(1).max(1) eul_laborleisure = euler_errors[:, S:, :].max(1).max(1) print 'Max Euler error, savings: ', eul_savings print 'Max Euler error labor supply: ', eul_laborleisure ''' ------------------------------------------------------------------------ Save variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' output = { 'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'G': G, 'T_H': T_H, 'r': r, 'w': w, 'b_mat': b_mat, 'n_mat': n_mat, 'c_path': c_path, 'tax_path': tax_path, 'bmat_s': bmat_s, 'utility_path': utility_path, 'b_aftertax_path': b_aftertax_path, 'y_aftertax_path': y_aftertax_path, 'y_path': y_path, 'eul_savings': eul_savings, 'eul_laborleisure': eul_laborleisure } macro_output = { 'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'G': G, 'T_H': T_H, 'r': r, 'w': w, 'tax_path': tax_path } # if ((TPIiter >= maxiter) or (np.absolute(TPIdist) > mindist_TPI)) and ENFORCE_SOLUTION_CHECKS : # raise RuntimeError("Transition path equlibrium not found") # # if ((np.any(np.absolute(rc_error) >= 1e-6)) # and ENFORCE_SOLUTION_CHECKS): # raise RuntimeError("Transition path equlibrium not found") # # if ((np.any(np.absolute(eul_savings) >= mindist_TPI) or # (np.any(np.absolute(eul_laborleisure) > mindist_TPI))) # and ENFORCE_SOLUTION_CHECKS): # raise RuntimeError("Transition path equlibrium not found") return output, macro_output
def run_time_path_iteration(Kss, Lss, Yss, BQss, theta, parameters, g_n_vector, omega_stationary, K0, b_sinit, b_splus1init, L0, Y0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n, factor_ss, tau_bq, chi_b, chi_n, get_baseline=False, output_dir="./OUTPUT", **kwargs): TPI_FIG_DIR = output_dir # Initialize Time paths domain = np.linspace(0, T, T) Kinit = (-1 / (domain + 1)) * (Kss - K0) + Kss Kinit[-1] = Kss Kinit = np.array(list(Kinit) + list(np.ones(S) * Kss)) Linit = np.ones(T + S) * Lss Yinit = firm.get_Y(Kinit, Linit, parameters) winit = firm.get_w(Yinit, Linit, parameters) rinit = firm.get_r(Yinit, Kinit, parameters) BQinit = np.zeros((T + S, J)) for j in xrange(J): BQinit[:, j] = list(np.linspace(BQ0[j], BQss[j], T)) + [BQss[j]] * S BQinit = np.array(BQinit) T_H_init = np.ones(T + S) * T_Hss # Make array of initial guesses domain2 = np.tile(domain.reshape(T, 1, 1), (1, S, J)) ending_b = bssmat_splus1 guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b ending_b_tail = np.tile(ending_b.reshape(1, S, J), (S, 1, 1)) guesses_b = np.append(guesses_b, ending_b_tail, axis=0) domain3 = np.tile(np.linspace(0, 1, T).reshape(T, 1, 1), (1, S, J)) guesses_n = domain3 * (nssmat - initial_n) + initial_n ending_n_tail = np.tile(nssmat.reshape(1, S, J), (S, 1, 1)) guesses_n = np.append(guesses_n, ending_n_tail, axis=0) b_mat = np.zeros((T + S, S, J)) n_mat = np.zeros((T + S, S, J)) ind = np.arange(S) TPIiter = 0 TPIdist = 10 euler_errors = np.zeros((T, 2 * S, J)) TPIdist_vec = np.zeros(maxiter) while (TPIiter < maxiter) and (TPIdist >= mindist_TPI): Kpath_TPI = list(Kinit) + list(np.ones(10) * Kss) Lpath_TPI = list(Linit) + list(np.ones(10) * Lss) # Plot TPI for K for each iteration, so we can see if there is a # problem if PLOT_TPI is True: plt.figure() plt.axhline(y=Kss, color='black', linewidth=2, label=r"Steady State $\hat{K}$", ls='--') plt.plot(np.arange(T + 10), Kpath_TPI[:T + 10], 'b', linewidth=2, label=r"TPI time path $\hat{K}_t$") plt.savefig(os.path.join(TPI_FIG_DIR, "TPI_K")) # Uncomment the following print statements to make sure all euler equations are converging. # If they don't, then you'll have negative consumption or consumption spikes. If they don't, # it is the initial guesses. You might need to scale them differently. It is rather delicate for the first # few periods and high ability groups. for j in xrange(J): b_mat[1, -1, j], n_mat[0, -1, j] = np.array( opt.fsolve(SS_TPI_firstdoughnutring, [guesses_b[1, -1, j], guesses_n[0, -1, j]], args=(winit[1], rinit[1], BQinit[1, j], T_H_init[1], initial_b, factor_ss, j, parameters, theta, tau_bq), xtol=1e-13)) # if np.array(SS_TPI_firstdoughnutring([b_mat[1, -1, j], n_mat[0, -1, j]], winit[1], rinit[1], BQinit[1, j], T_H_init[1], initial_b, factor_ss, j, parameters, theta, tau_bq)).max() > 1e-6: # print 'minidoughnut:', # np.array(SS_TPI_firstdoughnutring([b_mat[1, -1, j], n_mat[0, -1, # j]], winit[1], rinit[1], BQinit[1, j], T_H_init[1], initial_b, # factor_ss, j, parameters, theta, tau_bq)).max() for s in xrange(S - 2): # Upper triangle ind2 = np.arange(s + 2) b_guesses_to_use = np.diag(guesses_b[1:S + 1, :, j], S - (s + 2)) n_guesses_to_use = np.diag(guesses_n[:S, :, j], S - (s + 2)) solutions = opt.fsolve( Steady_state_TPI_solver, list(b_guesses_to_use) + list(n_guesses_to_use), args=(winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, s, 0, parameters, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:len(solutions) / 2] b_mat[1 + ind2, S - (s + 2) + ind2, j] = b_vec n_vec = solutions[len(solutions) / 2:] n_mat[ind2, S - (s + 2) + ind2, j] = n_vec # if abs(np.array(Steady_state_TPI_solver(solutions, winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, s, 0, parameters, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n))).max() > 1e-6: # print 's-loop:', # abs(np.array(Steady_state_TPI_solver(solutions, winit, rinit, # BQinit[:, j], T_H_init, factor_ss, j, s, 0, parameters, # theta, tau_bq, rho, lambdas, e, initial_b, chi_b, # chi_n))).max() for t in xrange(0, T): b_guesses_to_use = .75 * \ np.diag(guesses_b[t + 1:t + S + 1, :, j]) n_guesses_to_use = np.diag(guesses_n[t:t + S, :, j]) solutions = opt.fsolve( Steady_state_TPI_solver, list(b_guesses_to_use) + list(n_guesses_to_use), args=(winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:S] b_mat[t + 1 + ind, ind, j] = b_vec n_vec = solutions[S:] n_mat[t + ind, ind, j] = n_vec inputs = list(solutions) euler_errors[t, :, j] = np.abs( Steady_state_TPI_solver(inputs, winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n)) # if euler_errors.max() > 1e-6: # print 't-loop:', euler_errors.max() # Force the initial distribution of capital to be as given above. b_mat[0, :, :] = initial_b Kinit = household.get_K(b_mat[:T], omega_stationary[:T].reshape(T, S, 1), lambdas.reshape(1, 1, J), g_n_vector[:T], 'TPI') Linit = firm.get_L(e.reshape(1, S, J), n_mat[:T], omega_stationary[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') Ynew = firm.get_Y(Kinit, Linit, parameters) wnew = firm.get_w(Ynew, Linit, parameters) rnew = firm.get_r(Ynew, Kinit, parameters) # the following needs a g_n term BQnew = household.get_BQ(rnew.reshape(T, 1), b_mat[:T], omega_stationary[:T].reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), g_n_vector[:T].reshape(T, 1), 'TPI') bmat_s = np.zeros((T, S, J)) bmat_s[:, 1:, :] = b_mat[:T, :-1, :] T_H_new = np.array( list( tax.get_lump_sum( rnew.reshape(T, 1, 1), bmat_s, wnew.reshape(T, 1, 1), e.reshape(1, S, J), n_mat[:T], BQnew.reshape(T, 1, J), lambdas.reshape(1, 1, J), factor_ss, omega_stationary[:T]. reshape(T, S, 1), 'TPI', parameters, theta, tau_bq)) + [T_Hss] * S) winit[:T] = utils.convex_combo(wnew, winit[:T], parameters) rinit[:T] = utils.convex_combo(rnew, rinit[:T], parameters) BQinit[:T] = utils.convex_combo(BQnew, BQinit[:T], parameters) T_H_init[:T] = utils.convex_combo(T_H_new[:T], T_H_init[:T], parameters) guesses_b = utils.convex_combo(b_mat, guesses_b, parameters) guesses_n = utils.convex_combo(n_mat, guesses_n, parameters) if T_H_init.all() != 0: TPIdist = np.array( list(utils.perc_dif_func(rnew, rinit[:T])) + list(utils.perc_dif_func(BQnew, BQinit[:T]).flatten()) + list(utils.perc_dif_func(wnew, winit[:T])) + list(utils.perc_dif_func(T_H_new, T_H_init))).max() else: TPIdist = np.array( list(utils.perc_dif_func(rnew, rinit[:T])) + list(utils.perc_dif_func(BQnew, BQinit[:T]).flatten()) + list(utils.perc_dif_func(wnew, winit[:T])) + list(np.abs(T_H_new, T_H_init))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations if TPIiter > 10: if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0: nu /= 2 print 'New Value of nu:', nu TPIiter += 1 print '\tIteration:', TPIiter print '\t\tDistance:', TPIdist print 'Computing final solutions' # As in SS, you need the final distributions of b and n to match the final # w, r, BQ, etc. Otherwise the euler errors are large. You need one more # fsolve. for j in xrange(J): b_mat[1, -1, j], n_mat[0, -1, j] = np.array( opt.fsolve(SS_TPI_firstdoughnutring, [guesses_b[1, -1, j], guesses_n[0, -1, j]], args=(winit[1], rinit[1], BQinit[1, j], T_H_init[1], initial_b, factor_ss, j, parameters, theta, tau_bq), xtol=1e-13)) for s in xrange(S - 2): # Upper triangle ind2 = np.arange(s + 2) b_guesses_to_use = np.diag(guesses_b[1:S + 1, :, j], S - (s + 2)) n_guesses_to_use = np.diag(guesses_n[:S, :, j], S - (s + 2)) solutions = opt.fsolve( Steady_state_TPI_solver, list(b_guesses_to_use) + list(n_guesses_to_use), args=(winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, s, 0, parameters, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:len(solutions) / 2] b_mat[1 + ind2, S - (s + 2) + ind2, j] = b_vec n_vec = solutions[len(solutions) / 2:] n_mat[ind2, S - (s + 2) + ind2, j] = n_vec for t in xrange(0, T): b_guesses_to_use = .75 * np.diag(guesses_b[t + 1:t + S + 1, :, j]) n_guesses_to_use = np.diag(guesses_n[t:t + S, :, j]) solutions = opt.fsolve( Steady_state_TPI_solver, list(b_guesses_to_use) + list(n_guesses_to_use), args=(winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:S] b_mat[t + 1 + ind, ind, j] = b_vec n_vec = solutions[S:] n_mat[t + ind, ind, j] = n_vec inputs = list(solutions) euler_errors[t, :, j] = np.abs( Steady_state_TPI_solver(inputs, winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n)) b_mat[0, :, :] = initial_b ''' ------------------------------------------------------------------------ Generate variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' Kpath_TPI = np.array(list(Kinit) + list(np.ones(10) * Kss)) Lpath_TPI = np.array(list(Linit) + list(np.ones(10) * Lss)) BQpath_TPI = np.array(list(BQinit) + list(np.ones((10, J)) * BQss)) b_s = np.zeros((T, S, J)) b_s[:, 1:, :] = b_mat[:T, :-1, :] b_splus1 = np.zeros((T, S, J)) b_splus1[:, :, :] = b_mat[1:T + 1, :, :] tax_path = tax.total_taxes(rinit[:T].reshape(T, 1, 1), b_s, winit[:T].reshape(T, 1, 1), e.reshape(1, S, J), n_mat[:T], BQinit[:T, :].reshape(T, 1, J), lambdas, factor_ss, T_H_init[:T].reshape(T, 1, 1), None, 'TPI', False, parameters, theta, tau_bq) c_path = household.get_cons(rinit[:T].reshape(T, 1, 1), b_s, winit[:T].reshape(T, 1, 1), e.reshape(1, S, J), n_mat[:T], BQinit[:T].reshape(T, 1, J), lambdas.reshape(1, 1, J), b_splus1, parameters, tax_path) Y_path = firm.get_Y(Kpath_TPI[:T], Lpath_TPI[:T], parameters) C_path = household.get_C(c_path, omega_stationary[:T].reshape(T, S, 1), lambdas, 'TPI') I_path = firm.get_I(Kpath_TPI[1:T + 1], Kpath_TPI[:T], delta, g_y, g_n_vector[:T]) print 'Resource Constraint Difference:', Y_path - C_path - I_path print 'Checking time path for violations of constaints.' for t in xrange(T): household.constraint_checker_TPI(b_mat[t], n_mat[t], c_path[t], t, parameters) eul_savings = euler_errors[:, :S, :].max(1).max(1) eul_laborleisure = euler_errors[:, S:, :].max(1).max(1) ''' ------------------------------------------------------------------------ Save variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' output = { 'Kpath_TPI': Kpath_TPI, 'b_mat': b_mat, 'c_path': c_path, 'eul_savings': eul_savings, 'eul_laborleisure': eul_laborleisure, 'Lpath_TPI': Lpath_TPI, 'BQpath_TPI': BQpath_TPI, 'n_mat': n_mat, 'rinit': rinit, 'Yinit': Yinit, 'T_H_init': T_H_init, 'tax_path': tax_path, 'winit': winit } if get_baseline: tpi_init_dir = os.path.join(output_dir, "TPIinit") utils.mkdirs(tpi_init_dir) tpi_init_vars = os.path.join(tpi_init_dir, "TPIinit_vars.pkl") pickle.dump(output, open(tpi_init_vars, "wb")) else: tpi_dir = os.path.join(output_dir, "TPI") utils.mkdirs(tpi_dir) tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl") pickle.dump(output, open(tpi_vars, "wb"))
def run_TPI(income_tax_params, tpi_params, iterative_params, initial_values, SS_values, fix_transfers=False, output_dir="./OUTPUT"): # unpack tuples of parameters analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params maxiter, mindist_SS, mindist_TPI = iterative_params J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, imm_rates, e, retire, mean_income_data,\ factor, T_H_baseline, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n, theta = tpi_params K0, b_sinit, b_splus1init, factor, initial_b, initial_n, omega_S_preTP = initial_values Kss, Lss, rss, wss, BQss, T_Hss, Gss, bssmat_splus1, nssmat = SS_values TPI_FIG_DIR = output_dir # Initialize guesses at time paths domain = np.linspace(0, T, T) r = np.ones(T + S) * rss BQ = np.zeros((T + S, J)) BQ0_params = (omega_S_preTP.reshape(S, 1), lambdas, rho.reshape(S, 1), g_n_vector[0], 'SS') BQ0 = household.get_BQ(r[0], initial_b, BQ0_params) for j in xrange(J): BQ[:, j] = list(np.linspace(BQ0[j], BQss[j], T)) + [BQss[j]] * S BQ = np.array(BQ) # print "BQ values = ", BQ[0, :], BQ[100, :], BQ[-1, :], BQss # print "K0 vs Kss = ", K0-Kss if fix_transfers: T_H = T_H_baseline else: if np.abs(T_Hss) < 1e-13 : T_Hss2 = 0.0 # sometimes SS is very small but not zero, even if taxes are zero, this get's rid of the approximation error, which affects the perc changes below else: T_Hss2 = T_Hss T_H = np.ones(T + S) * T_Hss2 * (r/rss) G = np.ones(T + S) * Gss # # print "T_H values = ", T_H[0], T_H[100], T_H[-1], T_Hss # # print "omega diffs = ", (omega_S_preTP-omega[-1]).max(), (omega[10]-omega[-1]).max() # # Make array of initial guesses for labor supply and savings domain2 = np.tile(domain.reshape(T, 1, 1), (1, S, J)) ending_b = bssmat_splus1 guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b ending_b_tail = np.tile(ending_b.reshape(1, S, J), (S, 1, 1)) guesses_b = np.append(guesses_b, ending_b_tail, axis=0) # print 'diff btwn start and end b: ', (guesses_b[0]-guesses_b[-1]).max() # domain3 = np.tile(np.linspace(0, 1, T).reshape(T, 1, 1), (1, S, J)) guesses_n = domain3 * (nssmat - initial_n) + initial_n ending_n_tail = np.tile(nssmat.reshape(1, S, J), (S, 1, 1)) guesses_n = np.append(guesses_n, ending_n_tail, axis=0) # b_mat = np.zeros((T + S, S, J)) # n_mat = np.zeros((T + S, S, J)) ind = np.arange(S) # # print 'diff btwn start and end n: ', (guesses_n[0]-guesses_n[-1]).max() # # # find economic aggregates K = np.zeros(T+S) L = np.zeros(T+S) K[0] = K0 K_params = (omega[:T-1].reshape(T-1, S, 1), lambdas.reshape(1, 1, J), imm_rates[:T-1].reshape(T-1,S,1), g_n_vector[1:T], 'TPI') K[1:T] = household.get_K(guesses_b[:T-1], K_params) K[T:] = Kss L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') L[:T] = firm.get_L(guesses_n[:T], L_params) L[T:] = Lss Y_params = (alpha, Z) Y = firm.get_Y(K, L, Y_params) r_params = (alpha, delta) r[:T] = firm.get_r(Y[:T], K[:T], r_params) # uncomment lines below if want to use starting values from prior run r = TPI_START_VALUES['r'] K = TPI_START_VALUES['K'] L = TPI_START_VALUES['L'] Y = TPI_START_VALUES['Y'] T_H = TPI_START_VALUES['T_H'] BQ = TPI_START_VALUES['BQ'] G = TPI_START_VALUES['G'] guesses_b = TPI_START_VALUES['b_mat'] guesses_n = TPI_START_VALUES['n_mat'] TPIiter = 0 TPIdist = 10 PLOT_TPI = False euler_errors = np.zeros((T, 2 * S, J)) TPIdist_vec = np.zeros(maxiter) # print 'analytical mtrs in tpi = ', analytical_mtrs while (TPIiter < maxiter) and (TPIdist >= mindist_TPI): # Plot TPI for K for each iteration, so we can see if there is a # problem if PLOT_TPI is True: K_plot = list(K) + list(np.ones(10) * Kss) L_plot = list(L) + list(np.ones(10) * Lss) plt.figure() plt.axhline( y=Kss, color='black', linewidth=2, label=r"Steady State $\hat{K}$", ls='--') plt.plot(np.arange( T + 10), Kpath_plot[:T + 10], 'b', linewidth=2, label=r"TPI time path $\hat{K}_t$") plt.savefig(os.path.join(TPI_FIG_DIR, "TPI_K")) guesses = (guesses_b, guesses_n) w_params = (Z, alpha, delta) w = firm.get_w_from_r(r, w_params) # print 'r and rss diff = ', r-rss # print 'w and wss diff = ', w-wss # print 'BQ and BQss diff = ', BQ-BQss # print 'T_H and T_Hss diff = ', T_H - T_Hss # print 'guess b and bss = ', (bssmat_splus1 - guesses_b).max() # print 'guess n and nss = ', (nssmat - guesses_n).max() outer_loop_vars = (r, w, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, ind) # Solve HH problem in inner loop euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) # print 'guess b and bss = ', (b_mat - guesses_b).max() # print 'guess n and nss over time = ', (n_mat - guesses_n).max(axis=2).max(axis=1) # print 'guess n and nss over age = ', (n_mat - guesses_n).max(axis=0).max(axis=1) # print 'guess n and nss over ability = ', (n_mat - guesses_n).max(axis=0).max(axis=0) # quit() print 'Max Euler error: ', (np.abs(euler_errors)).max() bmat_s = np.zeros((T, S, J)) bmat_s[0, 1:, :] = initial_b[:-1, :] bmat_s[1:, 1:, :] = b_mat[:T-1, :-1, :] bmat_splus1 = np.zeros((T, S, J)) bmat_splus1[:, :, :] = b_mat[:T, :, :] K[0] = K0 K_params = (omega[:T-1].reshape(T-1, S, 1), lambdas.reshape(1, 1, J), imm_rates[:T-1].reshape(T-1, S, 1), g_n_vector[1:T], 'TPI') K[1:T] = household.get_K(bmat_splus1[:T-1], K_params) L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') L[:T] = firm.get_L(n_mat[:T], L_params) # print 'K diffs = ', K-K0 # print 'L diffs = ', L-L[0] Y_params = (alpha, Z) Ynew = firm.get_Y(K[:T], L[:T], Y_params) r_params = (alpha, delta) rnew = firm.get_r(Ynew[:T], K[:T], r_params) wnew = firm.get_w_from_r(rnew, w_params) omega_shift = np.append(omega_S_preTP.reshape(1, S), omega[:T-1, :], axis=0) BQ_params = (omega_shift.reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), g_n_vector[:T].reshape(T, 1), 'TPI') # b_mat_shift = np.append(np.reshape(initial_b, (1, S, J)), # b_mat[:T-1, :, :], axis=0) b_mat_shift = bmat_splus1[:T, :, :] # print 'b diffs = ', (bmat_splus1[100, :, :] - initial_b).max(), (bmat_splus1[0, :, :] - initial_b).max(), (bmat_splus1[1, :, :] - initial_b).max() # print 'r diffs = ', rnew[1]-r[1], rnew[100]-r[100], rnew[-1]-r[-1] BQnew = household.get_BQ(rnew[:T].reshape(T, 1), b_mat_shift, BQ_params) BQss2 = np.empty(J) for j in range(J): BQss_params = (omega[1, :], lambdas[j], rho, g_n_vector[1], 'SS') BQss2[j] = household.get_BQ(rnew[1], bmat_splus1[1, :, j], BQss_params) # print 'BQ test = ', BQss2-BQss, BQss-BQnew[1], BQss-BQnew[100], BQss-BQnew[-1] total_tax_params = np.zeros((T, S, J, etr_params.shape[2])) for i in range(etr_params.shape[2]): total_tax_params[:, :, :, i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) tax_receipt_params = (np.tile(e.reshape(1, S, J),(T,1,1)), lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', total_tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J) net_tax_receipts = np.array(list(tax.get_lump_sum(np.tile(rnew[:T].reshape(T, 1, 1),(1,S,J)), np.tile(wnew[:T].reshape(T, 1, 1),(1,S,J)), bmat_s, n_mat[:T,:,:], BQnew[:T].reshape(T, 1, J), factor, tax_receipt_params)) + [T_Hss] * S) r[:T] = utils.convex_combo(rnew[:T], r[:T], nu) BQ[:T] = utils.convex_combo(BQnew[:T], BQ[:T], nu) if fix_transfers: T_H_new = T_H G[:T] = net_tax_receipts[:T] - T_H[:T] else: T_H_new = net_tax_receipts T_H[:T] = utils.convex_combo(T_H_new[:T], T_H[:T], nu) G[:T] = 0.0 etr_params_path = np.zeros((T,S,J,etr_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_path[:,:,:,i] = np.tile( np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) tax_path_params = (np.tile(e.reshape(1, S, J),(T,1,1)), lambdas, 'TPI', retire, etr_params_path, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) b_to_use = np.zeros((T, S, J)) b_to_use[0, 1:, :] = initial_b[:-1, :] b_to_use[1:, 1:, :] = b_mat[:T-1, :-1, :] tax_path = tax.total_taxes( np.tile(r[:T].reshape(T, 1, 1),(1,S,J)), np.tile(w[:T].reshape(T, 1, 1),(1,S,J)), b_to_use, n_mat[:T,:,:], BQ[:T, :].reshape(T, 1, J), factor, T_H[:T].reshape(T, 1, 1), None, False, tax_path_params) y_path = (np.tile(r[:T].reshape(T, 1, 1), (1, S, J)) * b_to_use[:T, :, :] + np.tile(w[:T].reshape(T, 1, 1), (1, S, J)) * np.tile(e.reshape(1, S, J), (T, 1, 1)) * n_mat[:T, :, :]) cons_params = (e.reshape(1, S, J), lambdas.reshape(1, 1, J), g_y) c_path = household.get_cons(r[:T].reshape(T, 1, 1), w[:T].reshape(T, 1, 1), b_to_use[:T,:,:], b_mat[:T,:,:], n_mat[:T,:,:], BQ[:T].reshape(T, 1, J), tax_path, cons_params) guesses_b = utils.convex_combo(b_mat, guesses_b, nu) guesses_n = utils.convex_combo(n_mat, guesses_n, nu) if T_H.all() != 0: TPIdist = np.array(list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list(utils.pct_diff_func(T_H_new[:T], T_H[:T]))).max() print 'r dist = ', np.array(list(utils.pct_diff_func(rnew[:T], r[:T]))).max() print 'BQ dist = ', np.array(list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten())).max() print 'T_H dist = ', np.array(list(utils.pct_diff_func(T_H_new[:T], T_H[:T]))).max() print 'T_H path = ', T_H[:20] # print 'r old = ', r[:T] # print 'r new = ', rnew[:T] # print 'K old = ', K[:T] # print 'L old = ', L[:T] # print 'income = ', y_path[:, :, -1] # print 'taxes = ', tax_path[:, :, -1] # print 'labor supply = ', n_mat[:, :, -1] # print 'max and min labor = ', n_mat.max(), n_mat.min() # print 'max and min labor = ', np.argmax(n_mat), np.argmin(n_mat) # print 'max and min labor, j = 7 = ', n_mat[:,:,-1].max(), n_mat[:,:,-1].min() # print 'max and min labor, j = 6 = ', n_mat[:,:,-2].max(), n_mat[:,:,-2].min() # print 'max and min labor, j = 5 = ', n_mat[:,:,4].max(), n_mat[:,:,4].min() # print 'max and min labor, j = 4 = ', n_mat[:,:,3].max(), n_mat[:,:,3].min() # print 'max and min labor, j = 3 = ', n_mat[:,:,2].max(), n_mat[:,:,2].min() # print 'max and min labor, j = 2 = ', n_mat[:,:,1].max(), n_mat[:,:,1].min() # print 'max and min labor, j = 1 = ', n_mat[:,:,0].max(), n_mat[:,:,0].min() # print 'max and min labor, S = 80 = ', n_mat[:,-1,-1].max(), n_mat[:,-1,-1].min() # print "number > 1 = ", (n_mat > 1).sum() # print "number < 0, = ", (n_mat < 0).sum() # print "number > 1, j=7 = ", (n_mat[:T,:,-1] > 1).sum() # print "number < 0, j=7 = ", (n_mat[:T,:,-1] < 0).sum() # print "number > 1, s=80, j=7 = ", (n_mat[:T,-1,-1] > 1).sum() # print "number < 0, s=80, j=7 = ", (n_mat[:T,-1,-1] < 0).sum() # print "number > 1, j= 7, age 80= ", (n_mat[:T,-1,-1] > 1).sum() # print "number < 0, j = 7, age 80= ", (n_mat[:T,-1,-1] < 0).sum() # print "number > 1, j= 7, age 80, period 0 to 10= ", (n_mat[:30,-1,-1] > 1).sum() # print "number < 0, j = 7, age 80, period 0 to 10= ", (n_mat[:30,-1,-1] < 0).sum() # print "number > 1, j= 7, age 70-79, period 0 to 10= ", (n_mat[:30,70:80,-1] > 1).sum() # print "number < 0, j = 7, age 70-79, period 0 to 10= ", (n_mat[:30,70:80 ,-1] < 0).sum() # diag_dict = {'n_mat': n_mat, 'b_mat': b_mat, 'y_path': y_path, 'c_path': c_path} # pickle.dump(diag_dict, open('tpi_iter1.pkl', 'wb')) else: TPIdist = np.array(list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list(np.abs(T_H_new[:T]-T_H[:T]))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations # if TPIiter > 10: # if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0: # nu /= 2 # print 'New Value of nu:', nu TPIiter += 1 print '\tIteration:', TPIiter print '\t\tDistance:', TPIdist Y[:T] = Ynew # Solve HH problem in inner loop guesses = (guesses_b, guesses_n) outer_loop_vars = (r, w, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, ind) euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) bmat_s = np.zeros((T, S, J)) bmat_s[0, 1:, :] = initial_b[:-1, :] bmat_s[1:, 1:, :] = b_mat[:T-1, :-1, :] bmat_splus1 = np.zeros((T, S, J)) bmat_splus1[:, :, :] = b_mat[:T, :, :] K[0] = K0 K_params = (omega[:T-1].reshape(T-1, S, 1), lambdas.reshape(1, 1, J), imm_rates[:T-1].reshape(T-1,S,1), g_n_vector[1:T], 'TPI') K[1:T] = household.get_K(bmat_splus1[:T-1], K_params) L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') L[:T] = firm.get_L(n_mat[:T], L_params) Y_params = (alpha, Z) Ynew = firm.get_Y(K[:T], L[:T], Y_params) r_params = (alpha, delta) rnew = firm.get_r(Ynew[:T], K[:T], r_params) wnew = firm.get_w_from_r(rnew, w_params) omega_shift = np.append(omega_S_preTP.reshape(1,S),omega[:T-1,:],axis=0) BQ_params = (omega_shift.reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), g_n_vector[:T].reshape(T, 1), 'TPI') b_mat_shift = np.append(np.reshape(initial_b,(1,S,J)),b_mat[:T-1,:,:],axis=0) BQnew = household.get_BQ(rnew[:T].reshape(T, 1), b_mat_shift, BQ_params) total_tax_params = np.zeros((T,S,J,etr_params.shape[2])) for i in range(etr_params.shape[2]): total_tax_params[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) tax_receipt_params = (np.tile(e.reshape(1, S, J),(T,1,1)), lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', total_tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J) net_tax_receipts = np.array(list(tax.get_lump_sum(np.tile(rnew[:T].reshape(T, 1, 1),(1,S,J)), np.tile(wnew[:T].reshape(T, 1, 1),(1,S,J)), bmat_s, n_mat[:T,:,:], BQnew[:T].reshape(T, 1, J), factor, tax_receipt_params)) + [T_Hss] * S) if fix_transfers: G[:T] = net_tax_receipts[:T] - T_H[:T] else: T_H[:T] = net_tax_receipts[:T] G[:T] = 0.0 etr_params_path = np.zeros((T,S,J,etr_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_path[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) tax_path_params = (np.tile(e.reshape(1, S, J),(T,1,1)), lambdas, 'TPI', retire, etr_params_path, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_path = tax.total_taxes(np.tile(r[:T].reshape(T, 1, 1),(1,S,J)), np.tile(w[:T].reshape(T, 1, 1),(1,S,J)), bmat_s, n_mat[:T,:,:], BQ[:T, :].reshape(T, 1, J), factor, T_H[:T].reshape(T, 1, 1), None, False, tax_path_params) cons_params = (e.reshape(1, S, J), lambdas.reshape(1, 1, J), g_y) c_path = household.get_cons(r[:T].reshape(T, 1, 1), w[:T].reshape(T, 1, 1), bmat_s, bmat_splus1, n_mat[:T,:,:], BQ[:T].reshape(T, 1, J), tax_path, cons_params) C_params = (omega[:T].reshape(T, S, 1), lambdas, 'TPI') C = household.get_C(c_path, C_params) I_params = (delta, g_y, omega[:T].reshape(T, S, 1), lambdas, imm_rates[:T].reshape(T, S, 1), g_n_vector[1:T+1], 'TPI') I = firm.get_I(bmat_splus1[:T], K[1:T+1], K[:T], I_params) rc_error = Y[:T] - C[:T] - I[:T] - G[:T] print 'Resource Constraint Difference:', rc_error # compute utility u_params = (sigma, np.tile(chi_n.reshape(1, S, 1), (T, 1, J)), b_ellipse, ltilde, upsilon, np.tile(rho.reshape(1, S, 1), (T, 1, J)), np.tile(chi_b.reshape(1, 1, J), (T, S, 1))) utility_path = household.get_u(c_path[:T, :, :], n_mat[:T, :, :], bmat_splus1[:T, :, :], u_params) # compute before and after-tax income y_path = (np.tile(r[:T].reshape(T, 1, 1), (1, S, J)) * bmat_s[:T, :, :] + np.tile(w[:T].reshape(T, 1, 1), (1, S, J)) * np.tile(e.reshape(1, S, J), (T, 1, 1)) * n_mat[:T, :, :]) inctax_params = (np.tile(e.reshape(1, S, J), (T, 1, 1)), etr_params_path) y_aftertax_path = (y_path - tax.tau_income(np.tile(r[:T].reshape(T, 1, 1), (1, S, J)), np.tile(w[:T].reshape(T, 1, 1), (1, S, J)), bmat_s[:T,:,:], n_mat[:T,:,:], factor, inctax_params)) # compute after-tax wealth wtax_params = (h_wealth, p_wealth, m_wealth) b_aftertax_path = bmat_s[:T,:,:] - tax.tau_wealth(bmat_s[:T,:,:], wtax_params) print'Checking time path for violations of constaints.' for t in xrange(T): household.constraint_checker_TPI( b_mat[t], n_mat[t], c_path[t], t, ltilde) eul_savings = euler_errors[:, :S, :].max(1).max(1) eul_laborleisure = euler_errors[:, S:, :].max(1).max(1) print 'Max Euler error, savings: ', eul_savings print 'Max Euler error labor supply: ', eul_laborleisure ''' ------------------------------------------------------------------------ Save variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' output = {'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'G': G, 'T_H': T_H, 'r': r, 'w': w, 'b_mat': b_mat, 'n_mat': n_mat, 'c_path': c_path, 'tax_path': tax_path, 'bmat_s': bmat_s, 'utility_path': utility_path, 'b_aftertax_path': b_aftertax_path, 'y_aftertax_path': y_aftertax_path, 'y_path': y_path, 'eul_savings': eul_savings, 'eul_laborleisure': eul_laborleisure} macro_output = {'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'G': G, 'T_H': T_H, 'r': r, 'w': w, 'tax_path': tax_path} # if ((TPIiter >= maxiter) or (np.absolute(TPIdist) > mindist_TPI)) and ENFORCE_SOLUTION_CHECKS : # raise RuntimeError("Transition path equlibrium not found") # # if ((np.any(np.absolute(rc_error) >= 1e-6)) # and ENFORCE_SOLUTION_CHECKS): # raise RuntimeError("Transition path equlibrium not found") # # if ((np.any(np.absolute(eul_savings) >= mindist_TPI) or # (np.any(np.absolute(eul_laborleisure) > mindist_TPI))) # and ENFORCE_SOLUTION_CHECKS): # raise RuntimeError("Transition path equlibrium not found") return output, macro_output
def FOC_savings(r, w, b, b_splus1, b_splus2, n, BQ, factor, T_H, params): ''' Computes Euler errors for the FOC for savings in the steady state. This function is usually looped through over J, so it does one lifetime income group at a time. Inputs: r = scalar, interest rate w = scalar, wage rate b = [S,J] array, distribution of wealth/capital b_splus1 = [S,J] array, distribution of wealth/capital, one period ahead b_splus2 = [S,J] array, distribution of wealth/capital, two periods ahead n = [S,J] array, distribution of labor supply BQ = [J,] vector, aggregate bequests by lifetime income group factor = scalar, scaling factor to convert model income to dollars T_H = scalar, lump sum transfer params = length 18 tuple (e, sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, etr_params, mtry_params, h_wealth, p_wealth, m_wealth, tau_payroll, tau_bq) e = [S,J] array, effective labor units sigma = scalar, coefficient of relative risk aversion beta = scalar, discount factor g_y = scalar, exogenous labor augmenting technological growth chi_b = [J,] vector, utility weight on bequests for each lifetime income group theta = [J,] vector, replacement rate for each lifetime income group tau_bq = scalar, bequest tax rate (scalar) rho = [S,] vector, mortality rates lambdas = [J,] vector, ability weights J = integer, number of lifetime income groups S = integer, number of economically active periods in lifetime etr_params = [S,12] array, parameters of effective income tax rate function mtry_params = [S,12] array, parameters of marginal tax rate on capital income function h_wealth = scalar, parameter in wealth tax function p_wealth = scalar, parameter in wealth tax function m_wealth = scalar, parameter in wealth tax function tau_payroll = scalar, payroll tax rate tau_bq = scalar, bequest tax rate Functions called: get_cons marg_ut_cons tax.total_taxes tax.MTR_capital Objects in function: tax1 = [S,J] array, net taxes in the current period tax2 = [S,J] array, net taxes one period ahead cons1 = [S,J] array, consumption in the current period cons2 = [S,J] array, consumption one period ahead deriv = [S,J] array, after-tax return on capital savings_ut = [S,J] array, marginal utility from savings euler = [S,J] array, Euler error from FOC for savings Returns: euler ''' (e, sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, j, J, S, analytical_mtrs, etr_params, mtry_params, h_wealth, p_wealth, m_wealth, tau_payroll, retire, method) = params # In order to not have 2 savings euler equations (one that solves # the first S-1 equations, and one that solves the last one), we # combine them. In order to do this, we have to compute a # consumption term in period t+1, which requires us to have a shifted # e and n matrix. We append a zero on the end of both of these so # they will be the right size. We could append any value to them, # since in the euler equation, the coefficient on the marginal # utility of consumption for this term will be zero (since rho is # one). e_extended = np.array(list(e) + [0]) n_extended = np.array(list(n) + [0]) etr_params_extended = np.append(etr_params, np.reshape(etr_params[-1, :], (1, etr_params.shape[1])), axis=0)[1:, :] mtry_params_extended = np.append(mtry_params, np.reshape(mtry_params[-1, :], (1, mtry_params.shape[1])), axis=0)[1:, :] if method == 'TPI': r_extended = np.append(r, r[-1]) w_extended = np.append(w, w[-1]) BQ_extended = np.append(BQ, BQ[-1]) T_H_extended = np.append(T_H, T_H[-1]) elif method == 'SS': r_extended = np.array([r, r]) w_extended = np.array([w, w]) BQ_extended = np.array([BQ, BQ]) T_H_extended = np.array([T_H, T_H]) tax1_params = (e, lambdas, method, retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax1 = tax.total_taxes(r, w, b, n, BQ, factor, T_H, j, False, tax1_params) tax2_params = (e_extended[1:], lambdas, method, retire, etr_params_extended, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax2 = tax.total_taxes(r_extended[1:], w_extended[1:], b_splus1, n_extended[1:], BQ_extended[1:], factor, T_H_extended[1:], j, True, tax2_params) cons1_params = (e, lambdas, g_y) cons1 = get_cons(r, w, b, b_splus1, n, BQ, tax1, cons1_params) cons2_params = (e_extended[1:], lambdas, g_y) cons2 = get_cons(r_extended[1:], w_extended[1:], b_splus1, b_splus2, n_extended[1:], BQ_extended[1:], tax2, cons2_params) cons2[-1] = 0.01 # set to small positive number to avoid exception # errors when negative b/c this period value doesn't matter - # it's consumption after the last period of life mtr_cap_params = (e_extended[1:], etr_params_extended, mtry_params_extended, analytical_mtrs) deriv = ((1 + r_extended[1:]) - r_extended[1:] * (tax.MTR_capital(r_extended[1:], w_extended[1:], b_splus1, n_extended[1:], factor, mtr_cap_params)) - (tax.tau_w_prime(b_splus1, (h_wealth, p_wealth, m_wealth)) * b_splus1) - tax.tau_wealth(b_splus1, (h_wealth, p_wealth, m_wealth))) savings_ut = (rho * np.exp(-sigma * g_y) * chi_b * b_splus1 ** (-sigma)) euler_error = (marg_ut_cons(cons1, sigma) - beta * (1 - rho) * deriv * marg_ut_cons(cons2, sigma) * np.exp(-sigma * g_y) - savings_ut) return euler_error
def run_TPI(income_tax_params, tpi_params, iterative_params, small_open_params, initial_values, SS_values, fiscal_params, biz_tax_params, output_dir="./OUTPUT", baseline_spending=False): # unpack tuples of parameters analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params maxiter, mindist_SS, mindist_TPI = iterative_params J, S, T, BW, beta, sigma, alpha, gamma, epsilon, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, imm_rates, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n, theta = tpi_params # K0, b_sinit, b_splus1init, L0, Y0,\ # w0, r0, BQ0, T_H_0, factor, tax0, c0, initial_b, initial_n, omega_S_preTP = initial_values small_open, tpi_firm_r, tpi_hh_r = small_open_params B0, b_sinit, b_splus1init, factor, initial_b, initial_n, omega_S_preTP, initial_debt = initial_values Kss, Bss, Lss, rss, wss, BQss, T_Hss, revenue_ss, bssmat_splus1, nssmat, Yss, Gss = SS_values tau_b, delta_tau = biz_tax_params if baseline_spending==False: budget_balance, ALPHA_T, ALPHA_G, tG1, tG2, rho_G, debt_ratio_ss = fiscal_params else: budget_balance, ALPHA_T, ALPHA_G, tG1, tG2, rho_G, debt_ratio_ss, T_Hbaseline, Gbaseline = fiscal_params print 'Government spending breakpoints are tG1: ', tG1, '; and tG2:', tG2 TPI_FIG_DIR = output_dir # Initialize guesses at time paths # Make array of initial guesses for labor supply and savings domain = np.linspace(0, T, T) domain2 = np.tile(domain.reshape(T, 1, 1), (1, S, J)) ending_b = bssmat_splus1 guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b ending_b_tail = np.tile(ending_b.reshape(1, S, J), (S, 1, 1)) guesses_b = np.append(guesses_b, ending_b_tail, axis=0) domain3 = np.tile(np.linspace(0, 1, T).reshape(T, 1, 1), (1, S, J)) guesses_n = domain3 * (nssmat - initial_n) + initial_n ending_n_tail = np.tile(nssmat.reshape(1, S, J), (S, 1, 1)) guesses_n = np.append(guesses_n, ending_n_tail, axis=0) b_mat = guesses_b#np.zeros((T + S, S, J)) n_mat = guesses_n#np.zeros((T + S, S, J)) ind = np.arange(S) L_init = np.ones((T+S,))*Lss B_init = np.ones((T+S,))*Bss L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') L_init[:T] = firm.get_L(n_mat[:T], L_params) B_params = (omega[:T-1].reshape(T-1, S, 1), lambdas.reshape(1, 1, J), imm_rates[:T-1].reshape(T-1,S,1), g_n_vector[1:T], 'TPI') B_init[1:T] = household.get_K(b_mat[:T-1], B_params) B_init[0] = B0 if small_open == False: if budget_balance: K_init = B_init else: K_init = B_init * Kss/Bss else: K_params = (Z, gamma, epsilon, delta, tau_b, delta_tau) K_init = firm.get_K(L_init, tpi_firm_r, K_params) K = K_init # if np.any(K < 0): # print 'K_init has negative elements. Setting them positive to prevent NAN.' # K[:T] = np.fmax(K[:T], 0.05*B[:T]) L = L_init B = B_init Y_params = (Z, gamma, epsilon) Y = firm.get_Y(K, L, Y_params) w_params = (Z, gamma, epsilon) w = firm.get_w(Y, L, w_params) if small_open == False: r_params = (Z, gamma, epsilon, delta, tau_b, delta_tau) r = firm.get_r(Y, K, r_params) else: r = tpi_hh_r BQ = np.zeros((T + S, J)) BQ0_params = (omega_S_preTP.reshape(S, 1), lambdas, rho.reshape(S, 1), g_n_vector[0], 'SS') BQ0 = household.get_BQ(r[0], initial_b, BQ0_params) for j in xrange(J): BQ[:, j] = list(np.linspace(BQ0[j], BQss[j], T)) + [BQss[j]] * S BQ = np.array(BQ) if budget_balance: if np.abs(T_Hss) < 1e-13 : T_Hss2 = 0.0 # sometimes SS is very small but not zero, even if taxes are zero, this get's rid of the approximation error, which affects the perc changes below else: T_Hss2 = T_Hss T_H = np.ones(T + S) * T_Hss2 REVENUE = T_H G = np.zeros(T + S) elif baseline_spending==False: T_H = ALPHA_T * Y elif baseline_spending==True: T_H = T_Hbaseline T_H_new = T_H # Need to set T_H_new for later reference G = Gbaseline G_0 = Gbaseline[0] # Initialize some inputs # D = np.zeros(T + S) D = debt_ratio_ss*Y omega_shift = np.append(omega_S_preTP.reshape(1,S),omega[:T-1,:],axis=0) BQ_params = (omega_shift.reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), g_n_vector[:T].reshape(T, 1), 'TPI') tax_params = np.zeros((T,S,J,etr_params.shape[2])) for i in range(etr_params.shape[2]): tax_params[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) REVENUE_params = (np.tile(e.reshape(1, S, J),(T,1,1)), lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J, tau_b, delta_tau) # print 'D/Y:', D[:T]/Y[:T] # print 'T/Y:', T_H[:T]/Y[:T] # print 'G/Y:', G[:T]/Y[:T] # print 'Int payments to GDP:', (r[:T]*D[:T])/Y[:T] # quit() TPIiter = 0 TPIdist = 10 PLOT_TPI = False report_tG1 = False euler_errors = np.zeros((T, 2 * S, J)) TPIdist_vec = np.zeros(maxiter) print 'analytical mtrs in tpi = ', analytical_mtrs while (TPIiter < maxiter) and (TPIdist >= mindist_TPI): # Plot TPI for K for each iteration, so we can see if there is a # problem if PLOT_TPI is True: #K_plot = list(K) + list(np.ones(10) * Kss) D_plot = list(D) + list(np.ones(10) * Yss * debt_ratio_ss) plt.figure() plt.axhline( y=Kss, color='black', linewidth=2, label=r"Steady State $\hat{K}$", ls='--') plt.plot(np.arange( T + 10), D_plot[:T + 10], 'b', linewidth=2, label=r"TPI time path $\hat{K}_t$") plt.savefig(os.path.join(TPI_FIG_DIR, "TPI_D")) if report_tG1 is True: print '\tAt time tG1-1:' print '\t\tG = ', G[tG1-1] print '\t\tK = ', K[tG1-1] print '\t\tr = ', r[tG1-1] print '\t\tD = ', D[tG1-1] guesses = (guesses_b, guesses_n) outer_loop_vars = (r, w, K, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, ind) # Solve HH problem in inner loop euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) bmat_s = np.zeros((T, S, J)) bmat_s[0, 1:, :] = initial_b[:-1, :] bmat_s[1:, 1:, :] = b_mat[:T-1, :-1, :] bmat_splus1 = np.zeros((T, S, J)) bmat_splus1[:, :, :] = b_mat[:T, :, :] #L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') # defined above L[:T] = firm.get_L(n_mat[:T], L_params) #B_params = (omega[:T-1].reshape(T-1, S, 1), lambdas.reshape(1, 1, J), imm_rates[:T-1].reshape(T-1,S,1), g_n_vector[1:T], 'TPI') # defined above B[1:T] = household.get_K(bmat_splus1[:T-1], B_params) if np.any(B) < 0: print 'B has negative elements. B[0:9]:', B[0:9] print 'B[T-2:T]:', B[T-2,T] if small_open == False: if budget_balance: K[:T] = B[:T] else: if baseline_spending == False: Y = T_H/ALPHA_T #SBF 3/3: This seems totally unnecessary as both these variables are defined above. # tax_params = np.zeros((T,S,J,etr_params.shape[2])) # for i in range(etr_params.shape[2]): # tax_params[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) # REVENUE_params = (np.tile(e.reshape(1, S, J),(T,1,1)), lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', # tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J, tau_b, delta_tau) # define above REVENUE = np.array(list(tax.revenue(np.tile(r[:T].reshape(T, 1, 1),(1,S,J)), np.tile(w[:T].reshape(T, 1, 1),(1,S,J)), bmat_s, n_mat[:T,:,:], BQ[:T].reshape(T, 1, J), Y[:T], L[:T], K[:T], factor, REVENUE_params)) + [revenue_ss] * S) D_0 = initial_debt * Y[0] other_dg_params = (T, r, g_n_vector, g_y) if baseline_spending==False: G_0 = ALPHA_G[0] * Y[0] dg_fixed_values = (Y, REVENUE, T_H, D_0,G_0) Dnew, G = fiscal.D_G_path(dg_fixed_values, fiscal_params, other_dg_params, baseline_spending=baseline_spending) K[:T] = B[:T] - Dnew[:T] if np.any(K < 0): print 'K has negative elements. Setting them positive to prevent NAN.' K[:T] = np.fmax(K[:T], 0.05*B[:T]) else: # K_params previously set to = (Z, gamma, epsilon, delta, tau_b, delta_tau) K[:T] = firm.get_K(L[:T], tpi_firm_r[:T], K_params) Y_params = (Z, gamma, epsilon) Ynew = firm.get_Y(K[:T], L[:T], Y_params) Y = Ynew w_params = (Z, gamma, epsilon) wnew = firm.get_w(Ynew[:T], L[:T], w_params) if small_open == False: r_params = (Z, gamma, epsilon, delta, tau_b, delta_tau) rnew = firm.get_r(Ynew[:T], K[:T], r_params) else: rnew = r.copy() print 'Y and T_H: ', Y[3], T_H[3] # omega_shift = np.append(omega_S_preTP.reshape(1,S),omega[:T-1,:],axis=0) # defined above # BQ_params = (omega_shift.reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), # g_n_vector[:T].reshape(T, 1), 'TPI') # defined above b_mat_shift = np.append(np.reshape(initial_b,(1,S,J)),b_mat[:T-1,:,:],axis=0) BQnew = household.get_BQ(rnew[:T].reshape(T, 1), b_mat_shift, BQ_params) # tax_params = np.zeros((T,S,J,etr_params.shape[2])) # for i in range(etr_params.shape[2]): # tax_params[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) # REVENUE_params = (np.tile(e.reshape(1, S, J),(T,1,1)), lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', # tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J, tau_b, delta_tau) # defined above REVENUE = np.array(list(tax.revenue(np.tile(rnew[:T].reshape(T, 1, 1),(1,S,J)), np.tile(wnew[:T].reshape(T, 1, 1),(1,S,J)), bmat_s, n_mat[:T,:,:], BQnew[:T].reshape(T, 1, J), Y[:T], L[:T], K[:T], factor, REVENUE_params)) + [revenue_ss] * S) if budget_balance: T_H_new = REVENUE elif baseline_spending==False: T_H_new = ALPHA_T[:T] * Y[:T] # If baseline_spending==True, no need to update T_H, which remains fixed. if small_open==True and budget_balance==False: # Loop through years to calculate debt and gov't spending. This is done earlier when small_open=False. D_0 = initial_debt * Y[0] other_dg_params = (T, r, g_n_vector, g_y) if baseline_spending==False: G_0 = ALPHA_G[0] * Y[0] dg_fixed_values = (Y, REVENUE, T_H, D_0,G_0) Dnew, G = fiscal.D_G_path(dg_fixed_values, fiscal_params, other_dg_params, baseline_spending=baseline_spending) w[:T] = utils.convex_combo(wnew[:T], w[:T], nu) r[:T] = utils.convex_combo(rnew[:T], r[:T], nu) BQ[:T] = utils.convex_combo(BQnew[:T], BQ[:T], nu) # D[:T] = utils.convex_combo(Dnew[:T], D[:T], nu) D = Dnew Y[:T] = utils.convex_combo(Ynew[:T], Y[:T], nu) if baseline_spending==False: T_H[:T] = utils.convex_combo(T_H_new[:T], T_H[:T], nu) guesses_b = utils.convex_combo(b_mat, guesses_b, nu) guesses_n = utils.convex_combo(n_mat, guesses_n, nu) print 'r diff: ', (rnew[:T]-r[:T]).max(), (rnew[:T]-r[:T]).min() print 'w diff: ', (wnew[:T]-w[:T]).max(), (wnew[:T]-w[:T]).min() print 'BQ diff: ', (BQnew[:T]-BQ[:T]).max(), (BQnew[:T]-BQ[:T]).min() print 'T_H diff: ', (T_H_new[:T]-T_H[:T]).max(), (T_H_new[:T]-T_H[:T]).min() if baseline_spending==False: if T_H.all() != 0: TPIdist = np.array(list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list( utils.pct_diff_func(wnew[:T], w[:T])) + list(utils.pct_diff_func(T_H_new[:T], T_H[:T]))).max() else: TPIdist = np.array(list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list( utils.pct_diff_func(wnew[:T], w[:T])) + list(np.abs(T_H[:T]))).max() else: # TPIdist = np.array(list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list( # utils.pct_diff_func(wnew[:T], w[:T])) + list(utils.pct_diff_func(Dnew[:T], D[:T]))).max() TPIdist = np.array(list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list( utils.pct_diff_func(wnew[:T], w[:T])) + list(utils.pct_diff_func(Ynew[:T], Y[:T]))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations # if TPIiter > 10: # if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0: # nu /= 2 # print 'New Value of nu:', nu TPIiter += 1 print 'Iteration:', TPIiter print '\tDistance:', TPIdist # print 'D/Y:', (D[:T]/Ynew[:T]).max(), (D[:T]/Ynew[:T]).min(), np.median(D[:T]/Ynew[:T]) # print 'T/Y:', (T_H_new[:T]/Ynew[:T]).max(), (T_H_new[:T]/Ynew[:T]).min(), np.median(T_H_new[:T]/Ynew[:T]) # print 'G/Y:', (G[:T]/Ynew[:T]).max(), (G[:T]/Ynew[:T]).min(), np.median(G[:T]/Ynew[:T]) # print 'Int payments to GDP:', ((r[:T]*D[:T])/Ynew[:T]).max(), ((r[:T]*D[:T])/Ynew[:T]).min(), np.median((r[:T]*D[:T])/Ynew[:T]) # # print 'D/Y:', (D[:T]/Ynew[:T]) # print 'T/Y:', (T_H_new[:T]/Ynew[:T]) # print 'G/Y:', (G[:T]/Ynew[:T]) # # print 'deficit: ', REVENUE[:T] - T_H_new[:T] - G[:T] # Loop through years to calculate debt and gov't spending. The re-assignment of G0 & D0 is necessary because Y0 may change in the TPI loop. if budget_balance == False: D_0 = initial_debt * Y[0] other_dg_params = (T, r, g_n_vector, g_y) if baseline_spending==False: G_0 = ALPHA_G[0] * Y[0] dg_fixed_values = (Y, REVENUE, T_H, D_0,G_0) D, G = fiscal.D_G_path(dg_fixed_values, fiscal_params, other_dg_params, baseline_spending=baseline_spending) # Solve HH problem in inner loop guesses = (guesses_b, guesses_n) outer_loop_vars = (r, w, K, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, ind) euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) bmat_s = np.zeros((T, S, J)) bmat_s[0, 1:, :] = initial_b[:-1, :] bmat_s[1:, 1:, :] = b_mat[:T-1, :-1, :] bmat_splus1 = np.zeros((T, S, J)) bmat_splus1[:, :, :] = b_mat[:T, :, :] #L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') # defined above L[:T] = firm.get_L(n_mat[:T], L_params) #B_params = (omega[:T-1].reshape(T-1, S, 1), lambdas.reshape(1, 1, J), imm_rates[:T-1].reshape(T-1,S,1), g_n_vector[1:T], 'TPI') # defined above B[1:T] = household.get_K(bmat_splus1[:T-1], B_params) if small_open == False: K[:T] = B[:T] - D[:T] else: # K_params previously set to = (Z, gamma, epsilon, delta, tau_b, delta_tau) K[:T] = firm.get_K(L[:T], tpi_firm_r[:T], K_params) # Y_params previously set to = (Z, gamma, epsilon) Ynew = firm.get_Y(K[:T], L[:T], Y_params) # testing for change in Y ydiff = Ynew[:T] - Y[:T] ydiff_max = np.amax(np.abs(ydiff)) print 'ydiff_max = ', ydiff_max w_params = (Z, gamma, epsilon) wnew = firm.get_w(Ynew[:T], L[:T], w_params) if small_open == False: # r_params previously set to = (Z, gamma, epsilon, delta, tau_b, delta_tau) rnew = firm.get_r(Ynew[:T], K[:T], r_params) else: rnew = r # Note: previously, Y was not reassigned to equal Ynew at this point. Y = Ynew[:] # omega_shift = np.append(omega_S_preTP.reshape(1,S),omega[:T-1,:],axis=0) # BQ_params = (omega_shift.reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), # g_n_vector[:T].reshape(T, 1), 'TPI') b_mat_shift = np.append(np.reshape(initial_b,(1,S,J)),b_mat[:T-1,:,:],axis=0) BQnew = household.get_BQ(rnew[:T].reshape(T, 1), b_mat_shift, BQ_params) # tax_params = np.zeros((T,S,J,etr_params.shape[2])) # for i in range(etr_params.shape[2]): # tax_params[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) # REVENUE_params = (np.tile(e.reshape(1, S, J),(T,1,1)), lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', # tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J, tau_b, delta_tau) REVENUE = np.array(list(tax.revenue(np.tile(rnew[:T].reshape(T, 1, 1),(1,S,J)), np.tile(wnew[:T].reshape(T, 1, 1),(1,S,J)), bmat_s, n_mat[:T,:,:], BQnew[:T].reshape(T, 1, J), Ynew[:T], L[:T], K[:T], factor, REVENUE_params)) + [revenue_ss] * S) etr_params_path = np.zeros((T,S,J,etr_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_path[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) tax_path_params = (np.tile(e.reshape(1, S, J),(T,1,1)), lambdas, 'TPI', retire, etr_params_path, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_path = tax.total_taxes(np.tile(r[:T].reshape(T, 1, 1),(1,S,J)), np.tile(w[:T].reshape(T, 1, 1),(1,S,J)), bmat_s, n_mat[:T,:,:], BQ[:T, :].reshape(T, 1, J), factor, T_H[:T].reshape(T, 1, 1), None, False, tax_path_params) cons_params = (e.reshape(1, S, J), lambdas.reshape(1, 1, J), g_y) c_path = household.get_cons(r[:T].reshape(T, 1, 1), w[:T].reshape(T, 1, 1), bmat_s, bmat_splus1, n_mat[:T,:,:], BQ[:T].reshape(T, 1, J), tax_path, cons_params) C_params = (omega[:T].reshape(T, S, 1), lambdas, 'TPI') C = household.get_C(c_path, C_params) if budget_balance==False: D_0 = initial_debt * Y[0] other_dg_params = (T, r, g_n_vector, g_y) if baseline_spending==False: G_0 = ALPHA_G[0] * Y[0] dg_fixed_values = (Y, REVENUE, T_H, D_0,G_0) D, G = fiscal.D_G_path(dg_fixed_values, fiscal_params, other_dg_params, baseline_spending=baseline_spending) if small_open == False: I_params = (delta, g_y, omega[:T].reshape(T, S, 1), lambdas, imm_rates[:T].reshape(T, S, 1), g_n_vector[1:T+1], 'TPI') I = firm.get_I(bmat_splus1[:T], K[1:T+1], K[:T], I_params) rc_error = Y[:T] - C[:T] - I[:T] - G[:T] else: #InvestmentPlaceholder = np.zeros(bmat_splus1[:T].shape) #I_params = (delta, g_y, omega[:T].reshape(T, S, 1), lambdas, imm_rates[:T].reshape(T, S, 1), g_n_vector[1:T+1], 'TPI') I = (1+g_n_vector[:T])*np.exp(g_y)*K[1:T+1] - (1.0 - delta) * K[:T] #firm.get_I(InvestmentPlaceholder, K[1:T+1], K[:T], I_params) BI_params = (0.0, g_y, omega[:T].reshape(T, S, 1), lambdas, imm_rates[:T].reshape(T, S, 1), g_n_vector[1:T+1], 'TPI') BI = firm.get_I(bmat_splus1[:T], B[1:T+1], B[:T], BI_params) new_borrowing = D[1:T]*(1+g_n_vector[1:T])*np.exp(g_y) - D[:T-1] rc_error = Y[:T-1] + new_borrowing - (C[:T-1] + BI[:T-1] + G[:T-1] ) + (tpi_hh_r[:T-1] * B[:T-1] - (delta + tpi_firm_r[:T-1])*K[:T-1] - tpi_hh_r[:T-1]*D[:T-1]) #print 'Y(T-1):', Y[T-1], '\n','C(T-1):', C[T-1], '\n','K(T-1):', K[T-1], '\n','B(T-1):', B[T-1], '\n','BI(T-1):', BI[T-1], '\n','I(T-1):', I[T-1] rce_max = np.amax(np.abs(rc_error)) print 'Max absolute value resource constraint error:', rce_max print'Checking time path for violations of constraints.' for t in xrange(T): household.constraint_checker_TPI( b_mat[t], n_mat[t], c_path[t], t, ltilde) eul_savings = euler_errors[:, :S, :].max(1).max(1) eul_laborleisure = euler_errors[:, S:, :].max(1).max(1) # print 'Max Euler error, savings: ', eul_savings # print 'Max Euler error labor supply: ', eul_laborleisure ''' ------------------------------------------------------------------------ Save variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' output = {'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'REVENUE': REVENUE, 'T_H': T_H, 'G': G, 'D': D, 'r': r, 'w': w, 'b_mat': b_mat, 'n_mat': n_mat, 'c_path': c_path, 'tax_path': tax_path, 'eul_savings': eul_savings, 'eul_laborleisure': eul_laborleisure} tpi_dir = os.path.join(output_dir, "TPI") utils.mkdirs(tpi_dir) tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl") pickle.dump(output, open(tpi_vars, "wb")) macro_output = {'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'T_H': T_H, 'r': r, 'w': w, 'tax_path': tax_path} growth = (1+g_n_vector)*np.exp(g_y) with open('TPI_output.csv', 'wb') as csvfile: tpiwriter = csv.writer(csvfile) tpiwriter.writerow(Y) tpiwriter.writerow(D) tpiwriter.writerow(REVENUE) tpiwriter.writerow(G) tpiwriter.writerow(T_H) tpiwriter.writerow(C) tpiwriter.writerow(K) tpiwriter.writerow(I) tpiwriter.writerow(r) if small_open == True: tpiwriter.writerow(B) tpiwriter.writerow(BI) tpiwriter.writerow(new_borrowing) tpiwriter.writerow(growth) tpiwriter.writerow(rc_error) tpiwriter.writerow(ydiff) if np.any(G) < 0: print 'Government spending is negative along transition path to satisfy budget' if ((TPIiter >= maxiter) or (np.absolute(TPIdist) > mindist_TPI)) and ENFORCE_SOLUTION_CHECKS : raise RuntimeError("Transition path equlibrium not found (TPIdist)") if ((np.any(np.absolute(rc_error) >= mindist_TPI)) and ENFORCE_SOLUTION_CHECKS): raise RuntimeError("Transition path equlibrium not found (rc_error)") if ((np.any(np.absolute(eul_savings) >= mindist_TPI) or (np.any(np.absolute(eul_laborleisure) > mindist_TPI))) and ENFORCE_SOLUTION_CHECKS): raise RuntimeError("Transition path equlibrium not found (eulers)") # Non-stationary output # macro_ns_output = {'K_ns_path': K_ns_path, 'C_ns_path': C_ns_path, 'I_ns_path': I_ns_path, # 'L_ns_path': L_ns_path, 'BQ_ns_path': BQ_ns_path, # 'rinit': rinit, 'Y_ns_path': Y_ns_path, 'T_H_ns_path': T_H_ns_path, # 'w_ns_path': w_ns_path} return output, macro_output
def firstdoughnutring(guesses, r, w, b, BQ, T_H, j, params): ''' Solves the first entries of the upper triangle of the twist doughnut. This is separate from the main TPI function because the the values of b and n are scalars, so it is easier to just have a separate function for these cases. Inputs: guesses = guess for b and n (2x1 list) winit = initial wage rate (scalar) rinit = initial rental rate (scalar) BQinit = initial aggregate bequest (scalar) T_H_init = initial lump sum tax (scalar) initial_b = initial distribution of capital (SxJ array) factor = steady state scaling factor (scalar) j = which ability type is being solved for (scalar) parameters = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rates (Jx1 array) Output: euler errors (2x1 list) ''' # unpack tuples of parameters income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, imm_rates, e, retire, mean_income_data,\ factor, T_H_baseline, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n, theta = tpi_params b_splus1 = float(guesses[0]) n = float(guesses[1]) b_s = float(initial_b[-2, j]) # Find errors from FOC for savings and FOC for labor supply retire_fd = 0 # this sets retire to true in these agents who are # in last period in life # Note using method = "SS" below because just for one period foc_save_params = (np.array([e[-1, j]]), sigma, beta, g_y, chi_b[j], theta[j], tau_bq[j], rho[-1], lambdas[j], j, J, S, analytical_mtrs, np.reshape(etr_params[-1, 0, :], (1, etr_params.shape[2])), np.reshape(mtry_params[-1, 0, :], (1, mtry_params.shape[2])), h_wealth, p_wealth, m_wealth, tau_payroll, retire_fd, 'SS') error1 = household.FOC_savings(np.array([r]), np.array([w]), b_s, b_splus1, 0., np.array([n]), np.array([BQ]), factor, np.array([T_H]), foc_save_params) foc_labor_params = (np.array([e[-1, j]]), sigma, g_y, theta[j], b_ellipse, upsilon, chi_n[-1], ltilde, tau_bq[j], lambdas[j], j, J, S, analytical_mtrs, np.reshape(etr_params[-1, 0, :], (1, etr_params.shape[2])), np.reshape(mtrx_params[-1, 0, :], (1, mtrx_params.shape[2])), h_wealth, p_wealth, m_wealth, tau_payroll, retire_fd, 'SS') error2 = household.FOC_labor(np.array([r]), np.array([w]), b_s, b_splus1, np.array([n]), np.array([BQ]), factor, np.array([T_H]), foc_labor_params) tax_params = (np.array([e[-1, j]]), lambdas[j], 'SS', retire_fd, np.reshape(etr_params[-1, 0, :], (1, etr_params.shape[2])), h_wealth, p_wealth, m_wealth, tau_payroll, theta[j], tau_bq[j], J, S) tax1 = tax.total_taxes(np.array([r]), np.array([w]), b_s, np.array([n]), np.array([BQ]), factor, np.array([T_H]), j, False, tax_params) cons_params = (np.array([e[-1, j]]), lambdas[j], g_y) cons = household.get_cons(np.array([r]), np.array([w]), b_s, b_splus1, np.array([n]), np.array([BQ]), tax1, cons_params) if n < 0 or n > ltilde: error2 = 1e12 if b_splus1 <= 0: error1 += 1e12 # if cons <= 0: # error1 += 1e12 return [np.squeeze(error1)] + [np.squeeze(error2)]
def run_TPI(income_tax_params, tpi_params, iterative_params, initial_values, SS_values, output_dir="./OUTPUT"): # unpack tuples of parameters analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params maxiter, mindist_SS, mindist_TPI = iterative_params J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params K0, b_sinit, b_splus1init, L0, Y0,\ w0, r0, BQ0, T_H_0, factor, tax0, c0, initial_b, initial_n = initial_values Kss, Lss, rss, wss, BQss, T_Hss, bssmat_splus1, nssmat = SS_values TPI_FIG_DIR = output_dir # Initialize guesses at time paths domain = np.linspace(0, T, T) K_init = (-1 / (domain + 1)) * (Kss - K0) + Kss K_init[-1] = Kss K_init = np.array(list(K_init) + list(np.ones(S) * Kss)) L_init = np.ones(T + S) * Lss K = K_init L = L_init Y_params = (alpha, Z) Y = firm.get_Y(K, L, Y_params) w = firm.get_w(Y, L, alpha) r_params = (alpha, delta) r = firm.get_r(Y, K, r_params) BQ = np.zeros((T + S, J)) for j in xrange(J): BQ[:, j] = list(np.linspace(BQ0[j], BQss[j], T)) + [BQss[j]] * S BQ = np.array(BQ) if T_Hss < 1e-13 and T_Hss > 0.0: T_Hss2 = 0.0 # sometimes SS is very small but not zero, even if taxes are zero, this get's rid of the approximation error, which affects the perc changes below else: T_Hss2 = T_Hss T_H = np.ones(T + S) * T_Hss2 # Make array of initial guesses for labor supply and savings domain2 = np.tile(domain.reshape(T, 1, 1), (1, S, J)) ending_b = bssmat_splus1 guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b ending_b_tail = np.tile(ending_b.reshape(1, S, J), (S, 1, 1)) guesses_b = np.append(guesses_b, ending_b_tail, axis=0) domain3 = np.tile(np.linspace(0, 1, T).reshape(T, 1, 1), (1, S, J)) guesses_n = domain3 * (nssmat - initial_n) + initial_n ending_n_tail = np.tile(nssmat.reshape(1, S, J), (S, 1, 1)) guesses_n = np.append(guesses_n, ending_n_tail, axis=0) b_mat = np.zeros((T + S, S, J)) n_mat = np.zeros((T + S, S, J)) ind = np.arange(S) TPIiter = 0 TPIdist = 10 PLOT_TPI = False euler_errors = np.zeros((T, 2 * S, J)) TPIdist_vec = np.zeros(maxiter) while (TPIiter < maxiter) and (TPIdist >= mindist_TPI): # Plot TPI for K for each iteration, so we can see if there is a # problem if PLOT_TPI is True: K_plot = list(K) + list(np.ones(10) * Kss) L_plot = list(L) + list(np.ones(10) * Lss) plt.figure() plt.axhline(y=Kss, color='black', linewidth=2, label=r"Steady State $\hat{K}$", ls='--') plt.plot(np.arange(T + 10), Kpath_plot[:T + 10], 'b', linewidth=2, label=r"TPI time path $\hat{K}_t$") plt.savefig(os.path.join(TPI_FIG_DIR, "TPI_K")) # Uncomment the following print statements to make sure all euler equations are converging. # If they don't, then you'll have negative consumption or consumption spikes. If they don't, # it is the initial guesses. You might need to scale them differently. It is rather delicate for the first # few periods and high ability groups. # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J, )) guesses = (guesses_b, guesses_n) outer_loop_vars = (r, w, K, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, theta, ind) # Solve HH problem in inner loop euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) # if euler_errors.max() > 1e-6: # print 't-loop:', euler_errors.max() # Force the initial distribution of capital to be as given above. b_mat[0, :, :] = initial_b K_params = (omega[:T].reshape(T, S, 1), lambdas.reshape(1, 1, J), g_n_vector[:T], 'TPI') K[:T] = household.get_K(b_mat[:T], K_params) L_params = (e.reshape(1, S, J), omega[:T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') L[:T] = firm.get_L(n_mat[:T], L_params) Y_params = (alpha, Z) Ynew = firm.get_Y(K[:T], L[:T], Y_params) wnew = firm.get_w(Ynew[:T], L[:T], alpha) r_params = (alpha, delta) rnew = firm.get_r(Ynew[:T], K[:T], r_params) BQ_params = (omega[:T].reshape(T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), g_n_vector[:T].reshape(T, 1), 'TPI') BQnew = household.get_BQ(rnew[:T].reshape(T, 1), b_mat[:T, :, :], BQ_params) bmat_s = np.zeros((T, S, J)) bmat_s[:, 1:, :] = b_mat[:T, :-1, :] bmat_splus1 = np.zeros((T, S, J)) bmat_splus1[:, :, :] = b_mat[1:T + 1, :, :] TH_tax_params = np.zeros((T, S, J, etr_params.shape[2])) for i in range(etr_params.shape[2]): TH_tax_params[:, :, :, i] = np.tile( np.reshape(np.transpose(etr_params[:, :T, i]), (T, S, 1)), (1, 1, J)) T_H_params = (np.tile(e.reshape(1, S, J), (T, 1, 1)), lambdas.reshape(1, 1, J), omega[:T].reshape(T, S, 1), 'TPI', TH_tax_params, theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J) T_H_new = np.array( list( tax.get_lump_sum(np.tile(rnew[:T].reshape(T, 1, 1), ( 1, S, J)), np.tile(wnew[:T].reshape(T, 1, 1), ( 1, S, J)), bmat_s, n_mat[:T, :, :], BQnew[:T].reshape( T, 1, J), factor, T_H_params)) + [T_Hss] * S) w[:T] = utils.convex_combo(wnew[:T], w[:T], nu) r[:T] = utils.convex_combo(rnew[:T], r[:T], nu) BQ[:T] = utils.convex_combo(BQnew[:T], BQ[:T], nu) T_H[:T] = utils.convex_combo(T_H_new[:T], T_H[:T], nu) guesses_b = utils.convex_combo(b_mat, guesses_b, nu) guesses_n = utils.convex_combo(n_mat, guesses_n, nu) if T_H.all() != 0: TPIdist = np.array( list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list(utils.pct_diff_func(wnew[:T], w[:T])) + list(utils.pct_diff_func(T_H_new[:T], T_H[:T]))).max() else: TPIdist = np.array( list(utils.pct_diff_func(rnew[:T], r[:T])) + list(utils.pct_diff_func(BQnew[:T], BQ[:T]).flatten()) + list(utils.pct_diff_func(wnew[:T], w[:T])) + list(np.abs(T_H_new[:T], T_H[:T]))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations # if TPIiter > 10: # if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0: # nu /= 2 # print 'New Value of nu:', nu TPIiter += 1 print '\tIteration:', TPIiter print '\t\tDistance:', TPIdist if ((TPIiter >= maxiter) or (np.absolute(TPIdist) > mindist_TPI)) and ENFORCE_SOLUTION_CHECKS: raise RuntimeError("Transition path equlibrium not found") Y[:T] = Ynew # Solve HH problem in inner loop guesses = (guesses_b, guesses_n) outer_loop_vars = (r, w, K, BQ, T_H) inner_loop_params = (income_tax_params, tpi_params, initial_values, theta, ind) euler_errors, b_mat, n_mat = inner_loop(guesses, outer_loop_vars, inner_loop_params) b_mat[0, :, :] = initial_b K_params = (omega[:T].reshape(T, S, 1), lambdas.reshape(1, 1, J), g_n_vector[:T], 'TPI') K[:T] = household.get_K( b_mat[:T], K_params) # this is what old code does, but it's strange - why use # b_mat -- what is going on with initial period, etc. etr_params_path = np.zeros((T, S, J, etr_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_path[:, :, :, i] = np.tile( np.reshape(np.transpose(etr_params[:, :T, i]), (T, S, 1)), (1, 1, J)) tax_path_params = (np.tile(e.reshape(1, S, J), (T, 1, 1)), lambdas, 'TPI', retire, etr_params_path, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_path = tax.total_taxes(np.tile(r[:T].reshape(T, 1, 1), (1, S, J)), np.tile(w[:T].reshape(T, 1, 1), (1, S, J)), bmat_s, n_mat[:T, :, :], BQ[:T, :].reshape(T, 1, J), factor, T_H[:T].reshape(T, 1, 1), None, False, tax_path_params) cons_params = (e.reshape(1, S, J), lambdas.reshape(1, 1, J), g_y) c_path = household.get_cons(r[:T].reshape(T, 1, 1), w[:T].reshape(T, 1, 1), bmat_s, bmat_splus1, n_mat[:T, :, :], BQ[:T].reshape(T, 1, J), tax_path, cons_params) C_params = (omega[:T].reshape(T, S, 1), lambdas, 'TPI') C = household.get_C(c_path, C_params) I_params = (delta, g_y, g_n_vector[:T]) I = firm.get_I(K[1:T + 1], K[:T], I_params) print 'Resource Constraint Difference:', Y[:T] - C[:T] - I[:T] print 'Checking time path for violations of constaints.' for t in xrange(T): household.constraint_checker_TPI(b_mat[t], n_mat[t], c_path[t], t, ltilde) eul_savings = euler_errors[:, :S, :].max(1).max(1) eul_laborleisure = euler_errors[:, S:, :].max(1).max(1) print 'Max Euler error, savings: ', eul_savings print 'Max Euler error labor supply: ', eul_laborleisure if ((np.any(np.absolute(eul_savings) >= mindist_TPI) or (np.any(np.absolute(eul_laborleisure) > mindist_TPI))) and ENFORCE_SOLUTION_CHECKS): raise RuntimeError("Transition path equlibrium not found") ''' ------------------------------------------------------------------------ Save variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' output = { 'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'T_H': T_H, 'r': r, 'w': w, 'b_mat': b_mat, 'n_mat': n_mat, 'c_path': c_path, 'tax_path': tax_path, 'eul_savings': eul_savings, 'eul_laborleisure': eul_laborleisure } tpi_dir = os.path.join(output_dir, "TPI") utils.mkdirs(tpi_dir) tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl") pickle.dump(output, open(tpi_vars, "wb")) macro_output = { 'Y': Y, 'K': K, 'L': L, 'C': C, 'I': I, 'BQ': BQ, 'T_H': T_H, 'r': r, 'w': w, 'tax_path': tax_path } # Non-stationary output # macro_ns_output = {'K_ns_path': K_ns_path, 'C_ns_path': C_ns_path, 'I_ns_path': I_ns_path, # 'L_ns_path': L_ns_path, 'BQ_ns_path': BQ_ns_path, # 'rinit': rinit, 'Y_ns_path': Y_ns_path, 'T_H_ns_path': T_H_ns_path, # 'w_ns_path': w_ns_path} return output, macro_output
def FOC_savings(r, w, b, b_splus1, b_splus2, n, BQ, factor, T_H, params): ''' Computes Euler errors for the FOC for savings in the steady state. This function is usually looped through over J, so it does one lifetime income group at a time. Inputs: r = scalar, interest rate w = scalar, wage rate b = [S,J] array, distribution of wealth/capital holdings b_splus1 = [S,J] array, distribution of wealth/capital holdings one period ahead b_splus2 = [S,J] array, distribution of wealth/capital holdings two periods ahead n = [S,J] array, distribution of labor supply BQ = [J,] vector, aggregate bequests by lifetime income group factor = scalar, scaling factor to convert model income to dollars T_H = scalar, lump sum transfer params = length 18 tuple (e, sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, etr_params, mtry_params, h_wealth, p_wealth, m_wealth, tau_payroll, tau_bq) e = [S,J] array, effective labor units sigma = scalar, coefficient of relative risk aversion beta = scalar, discount factor g_y = scalar, exogenous labor augmenting technological growth chi_b = [J,] vector, utility weight on bequests for each lifetime income group theta = [J,] vector, replacement rate for each lifetime income group tau_bq = scalar, bequest tax rate (scalar) rho = [S,] vector, mortality rates lambdas = [J,] vector, ability weights J = integer, number of lifetime income groups S = integer, number of economically active periods in lifetime etr_params = [S,10] array, parameters of effective income tax rate function mtry_params = [S,10] array, parameters of marginal tax rate on capital income function h_wealth = scalar, parameter in wealth tax function p_wealth = scalar, parameter in wealth tax function m_wealth = scalar, parameter in wealth tax function tau_payroll = scalar, payroll tax rate tau_bq = scalar, bequest tax rate Functions called: get_cons marg_ut_cons tax.total_taxes tax.MTR_capital Objects in function: tax1 = [S,J] array, net taxes in the current period tax2 = [S,J] array, net taxes one period ahead cons1 = [S,J] array, consumption in the current period cons2 = [S,J] array, consumption one period ahead deriv = [S,J] array, after-tax return on capital savings_ut = [S,J] array, marginal utility from savings euler = [S,J] array, Euler error from FOC for savings Returns: euler ''' omega, e, sigma, BQ_dist, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, \ analytical_mtrs, etr_params, mtry_params, h_wealth, p_wealth, m_wealth, tau_payroll, retire, method = params # In order to not have 2 savings euler equations (one that solves the first S-1 equations, and one that solves the last one), # we combine them. In order to do this, we have to compute a consumption term in period t+1, which requires us to have a shifted # e and n matrix. We append a zero on the end of both of these so they will be the right size. We could append any value to them, # since in the euler equation, the coefficient on the marginal utility of # consumption for this term will be zero (since rho is one). if method == 'TPI_scalar': e_extended = np.array([e] + [0]) n_extended = np.array([n] + [0]) etr_params_to_use = etr_params mtry_params_to_use = mtry_params else: zeros = np.zeros((1, J)) e_extended = np.vstack((e , zeros )) n_extended = np.vstack((n ,zeros)) etr_params_to_use = etr_params mtry_params_to_use = mtry_params # etr_params_to_use = np.append(etr_params,np.reshape(etr_params[-1,:],(1,etr_params.shape[1])),axis=0)[1:,:] # mtry_params_to_use = np.append(mtry_params,np.reshape(mtry_params[-1,:],(1,mtry_params.shape[1])),axis=0)[1:,:] # tax1_params = (e, lambdas, method, retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) # tax1 = tax.total_taxes(r, w, b, n, BQ, factor, T_H, None, False, tax1_params) # tax2_params = (e_extended[1:], lambdas, method, retire, # np.append(etr_params,np.reshape(etr_params[-1,:],(1,etr_params.shape[1])),axis=0)[1:,:], # h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) # tax2 = tax.total_taxes(r, w, b_splus1, n_extended[1:], BQ, factor, T_H, None, True, tax2_params) # cons1_params = (e, lambdas, g_y) # cons1 = get_cons(r, w, b, b_splus1, n, BQ, tax1, cons1_params) # cons2_params = (e_extended[1:], lambdas, g_y) # cons2 = get_cons(r, w, b_splus1, b_splus2, n_extended[1:], BQ, tax2, cons2_params) # mtr_cap_params = (e_extended[1:], np.append(etr_params,np.reshape(etr_params[-1,:],(1,etr_params.shape[1])),axis=0)[1:,:], # np.append(mtry_params,np.reshape(mtry_params[-1,:],(1,mtry_params.shape[1])),axis=0)[1:,:],analytical_mtrs) # deriv = (1+r) - r*(tax.MTR_capital(r, w, b_splus1, n_extended[1:], factor, mtr_cap_params)) tax1_params = (e, BQ_dist, lambdas, method, retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax1 = tax.total_taxes(r, w, b, n, BQ, factor, T_H, None, False, tax1_params) tax2_params = (e_extended[1:, :], BQ_dist, lambdas, method, retire, etr_params_to_use, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax2 = tax.total_taxes(r, w, b_splus1, n_extended[1:, :], BQ, factor, T_H, None, True, tax2_params) cons1_params = (e, BQ_dist, lambdas, g_y) cons1 = get_cons(omega, r, w, b, b_splus1, n, BQ, tax1, cons1_params) cons2_params = (e_extended[1:, :], BQ_dist, lambdas, g_y) cons2 = get_cons(omega, r, w, b_splus1, b_splus2, n_extended[1:, :], BQ, tax2, cons2_params) mtr_cap_params = (e_extended[1:, :], etr_params_to_use, mtry_params_to_use, analytical_mtrs) deriv = (1+r) - r*(tax.MTR_capital(r, w, b_splus1, n_extended[1:, :], factor, mtr_cap_params)) savings_ut = rho * np.exp(-sigma * g_y) * chi_b * b_splus1 ** (-sigma) # Again, note timing in this equation, the (1-rho) term will zero out in the last period, so the last entry of cons2 can be complete # gibberish (which it is). It just has to exist so cons2 is the right # size to match all other arrays in the equation. # print marg_ut_cons(cons1, sigma).shape, np.exp(-sigma * g_y).shape, savings_ut.shape, beta.shape, (1 - rho).shape, deriv.shape, marg_ut_cons( # cons2, sigma).shape euler = marg_ut_cons(cons1, sigma) - beta * (1 - rho) * deriv * marg_ut_cons( cons2, sigma) * np.exp(-sigma * g_y) - savings_ut return euler
def create_tpi_params(**sim_params): ''' ------------------------------------------------------------------------ Set factor and initial capital stock to SS from baseline ------------------------------------------------------------------------ ''' baseline_ss = os.path.join(sim_params['baseline_dir'], "SS/SS_vars.pkl") ss_baseline_vars = pickle.load(open(baseline_ss, "rb")) factor = ss_baseline_vars['factor_ss'] #initial_b = ss_baseline_vars['bssmat_s'] + ss_baseline_vars['BQss']/lambdas initial_b = ss_baseline_vars['bssmat_splus1'] initial_n = ss_baseline_vars['nssmat'] SS_values = (ss_baseline_vars['Kss'], ss_baseline_vars['Lss'], ss_baseline_vars['rss'], ss_baseline_vars['wss'], ss_baseline_vars['BQss'], ss_baseline_vars['T_Hss'], ss_baseline_vars['bssmat_splus1'], ss_baseline_vars['nssmat']) # Make a vector of all one dimensional parameters, to be used in the # following functions wealth_tax_params = [ sim_params['h_wealth'], sim_params['p_wealth'], sim_params['m_wealth'] ] ellipse_params = [sim_params['b_ellipse'], sim_params['upsilon']] chi_params = [sim_params['chi_b_guess'], sim_params['chi_n_guess']] N_tilde = sim_params['omega'].sum( 1 ) #this should just be one in each year given how we've constructed omega sim_params['omega'] = sim_params['omega'] / N_tilde.reshape( sim_params['T'] + sim_params['S'], 1) tpi_params = [sim_params['J'], sim_params['S'], sim_params['T'], sim_params['BW'], sim_params['beta'], sim_params['sigma'], sim_params['alpha'], sim_params['Z'], sim_params['delta'], sim_params['ltilde'], sim_params['nu'], sim_params['g_y'], sim_params['g_n_vector'], sim_params['tau_payroll'], sim_params['tau_bq'], sim_params['rho'], sim_params['omega'], N_tilde, sim_params['lambdas'], sim_params['e'], sim_params['retire'], sim_params['mean_income_data'], factor] + \ wealth_tax_params + ellipse_params + chi_params iterative_params = [ sim_params['maxiter'], sim_params['mindist_SS'], sim_params['mindist_TPI'] ] J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params ## Assumption for tax functions is that policy in last year of BW is # extended permanently etr_params_TP = np.zeros((S, T + S, sim_params['etr_params'].shape[2])) etr_params_TP[:, :BW, :] = sim_params['etr_params'] etr_params_TP[:, BW:, :] = np.reshape( sim_params['etr_params'][:, BW - 1, :], (S, 1, sim_params['etr_params'].shape[2])) mtrx_params_TP = np.zeros((S, T + S, sim_params['mtrx_params'].shape[2])) mtrx_params_TP[:, :BW, :] = sim_params['mtrx_params'] mtrx_params_TP[:, BW:, :] = np.reshape( sim_params['mtrx_params'][:, BW - 1, :], (S, 1, sim_params['mtrx_params'].shape[2])) mtry_params_TP = np.zeros((S, T + S, sim_params['mtry_params'].shape[2])) mtry_params_TP[:, :BW, :] = sim_params['mtry_params'] mtry_params_TP[:, BW:, :] = np.reshape( sim_params['mtry_params'][:, BW - 1, :], (S, 1, sim_params['mtry_params'].shape[2])) income_tax_params = (sim_params['analytical_mtrs'], etr_params_TP, mtrx_params_TP, mtry_params_TP) ''' ------------------------------------------------------------------------ Set other parameters and initial values ------------------------------------------------------------------------ ''' # Get an initial distribution of capital with the initial population # distribution K0_params = (omega[0].reshape(S, 1), lambdas, g_n_vector[0], 'SS') K0 = household.get_K(initial_b, K0_params) b_sinit = np.array(list(np.zeros(J).reshape(1, J)) + list(initial_b[:-1])) b_splus1init = initial_b L0_params = (e, omega[0].reshape(S, 1), lambdas, 'SS') L0 = firm.get_L(initial_n, L0_params) Y0_params = (alpha, Z) Y0 = firm.get_Y(K0, L0, Y0_params) w0 = firm.get_w(Y0, L0, alpha) r0_params = (alpha, delta) r0 = firm.get_r(Y0, K0, r0_params) BQ0_params = (omega[0].reshape(S, 1), lambdas, rho.reshape(S, 1), g_n_vector[0], 'SS') BQ0 = household.get_BQ(r0, initial_b, BQ0_params) theta_params = (e, J, omega[0].reshape(S, 1), lambdas) theta = tax.replacement_rate_vals(initial_n, w0, factor, theta_params) T_H_params = (e, lambdas, omega[0].reshape(S, 1), 'SS', etr_params_TP[:, 0, :], theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J) T_H_0 = tax.get_lump_sum(r0, w0, b_sinit, initial_n, BQ0, factor, T_H_params) etr_params_3D = np.tile( np.reshape(etr_params_TP[:, 0, :], (S, 1, etr_params_TP.shape[2])), (1, J, 1)) tax0_params = (e, lambdas, 'SS', retire, etr_params_3D, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax0 = tax.total_taxes(r0, w0, b_sinit, initial_n, BQ0, factor, T_H_0, None, False, tax0_params) c0_params = (e, lambdas.reshape(1, J), g_y) c0 = household.get_cons(r0, w0, b_sinit, b_splus1init, initial_n, BQ0.reshape(1, J), tax0, c0_params) initial_values = (K0, b_sinit, b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, factor, tax0, c0, initial_b, initial_n) return (income_tax_params, tpi_params, iterative_params, initial_values, SS_values)
def Steady_state_TPI_solver(guesses, winit, rinit, BQinit, T_H_init, factor, j, s, t, params, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n): ''' Parameters: guesses = distribution of capital and labor (various length list) winit = wage rate ((T+S)x1 array) rinit = rental rate ((T+S)x1 array) BQinit = aggregate bequests ((T+S)x1 array) T_H_init = lump sum tax over time ((T+S)x1 array) factor = scaling factor (scalar) j = which ability type is being solved for (scalar) s = which upper triangle loop is being solved for (scalar) t = which diagonal is being solved for (scalar) params = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rate (Jx1 array) rho = mortalit rate (Sx1 array) lambdas = ability weights (Jx1 array) e = ability type (SxJ array) initial_b = capital stock distribution in period 0 (SxJ array) chi_b = chi^b_j (Jx1 array) chi_n = chi^n_s (Sx1 array) Output: Value of Euler error (various length list) ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \ a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params length = len(guesses) / 2 b_guess = np.array(guesses[:length]) n_guess = np.array(guesses[length:]) if length == S: b_s = np.array([0] + list(b_guess[:-1])) else: b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1])) b_splus1 = b_guess b_splus2 = np.array(list(b_guess[1:]) + [0]) w_s = winit[t:t + length] w_splus1 = winit[t + 1:t + length + 1] r_s = rinit[t:t + length] r_splus1 = rinit[t + 1:t + length + 1] n_s = n_guess n_extended = np.array(list(n_guess[1:]) + [0]) e_s = e[-length:, j] e_extended = np.array(list(e[-length + 1:, j]) + [0]) BQ_s = BQinit[t:t + length] BQ_splus1 = BQinit[t + 1:t + length + 1] T_H_s = T_H_init[t:t + length] T_H_splus1 = T_H_init[t + 1:t + length + 1] # Savings euler equations tax_s = tax.total_taxes(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], factor, T_H_s, j, 'TPI', False, params, theta, tau_bq) tax_splus1 = tax.total_taxes(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[j], factor, T_H_splus1, j, 'TPI', True, params, theta, tau_bq) cons_s = household.get_cons(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], b_splus1, params, tax_s) cons_splus1 = household.get_cons(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[j], b_splus2, params, tax_splus1) income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \ chi_b[-(length):, j] * b_splus1 ** (-sigma) deriv_savings = 1 + r_splus1 * ( 1 - tax.tau_income(r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) - tax.tau_income_deriv(r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) * income_splus1 ) - tax.tau_w_prime(b_splus1, params) * b_splus1 - tax.tau_wealth( b_splus1, params) error1 = household.marg_ut_cons( cons_s, params) - beta * (1 - rho[-(length):]) * np.exp( -sigma * g_y) * deriv_savings * household.marg_ut_cons( cons_splus1, params) - savings_ut # Labor leisure euler equations income_s = (r_s * b_s + w_s * e_s * n_s) * factor deriv_laborleisure = 1 - tau_payroll - tax.tau_income( r_s, b_s, w_s, e_s, n_s, factor, params) - tax.tau_income_deriv( r_s, b_s, w_s, e_s, n_s, factor, params) * income_s error2 = household.marg_ut_cons(cons_s, params) * w_s * e[ -(length):, j] * deriv_laborleisure - household.marg_ut_labor( n_s, chi_n[-length:], params) # Check and punish constraint violations mask1 = n_guess < 0 error2[mask1] += 1e12 mask2 = n_guess > ltilde error2[mask2] += 1e12 mask3 = cons_s < 0 error2[mask3] += 1e12 mask4 = b_guess <= 0 error2[mask4] += 1e12 mask5 = cons_splus1 < 0 error2[mask5] += 1e12 return list(error1.flatten()) + list(error2.flatten())
def create_tpi_params(analytical_mtrs, etr_params, mtrx_params, mtry_params, b_ellipse, upsilon, J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, tau_payroll, retire, mean_income_data, run_params, input_dir="./OUTPUT", baseline_dir="./OUTPUT", **kwargs): globals().update(run_params) ss_init = os.path.join(input_dir, "SSinit/ss_init_vars.pkl") variables = pickle.load(open(ss_init, "rb")) for key in variables: globals()[key] = variables[key] ''' ------------------------------------------------------------------------ Set factor and initial capital stock to SS from baseline ------------------------------------------------------------------------ ''' baseline_ss = os.path.join(baseline_dir, "SSinit/ss_init_vars.pkl") ss_baseline_vars = pickle.load(open(baseline_ss, "rb")) factor = ss_baseline_vars['factor_ss'] #initial_b = ss_baseline_vars['bssmat_s'] + ss_baseline_vars['BQss']/lambdas initial_b= ss_baseline_vars['bssmat_splus1'] ''' ------------------------------------------------------------------------ Set other parameters and initial values ------------------------------------------------------------------------ ''' # Make a vector of all one dimensional parameters, to be used in the # following functions # Put income tax parameters in a tuple # Assumption here is that tax parameters of last year of budget # window continue forever and so will be SS values etr_params_TP = np.zeros((S,T+S,etr_params.shape[2])) etr_params_TP[:,:BW,:] = etr_params etr_params_TP[:,BW:,:] = np.reshape(etr_params[:,BW-1,:],(S,1,etr_params.shape[2])) mtrx_params_TP = np.zeros((S,T+S,mtrx_params.shape[2])) mtrx_params_TP[:,:BW,:] = mtrx_params mtrx_params_TP[:,BW:,:] = np.reshape(mtrx_params[:,BW-1,:],(S,1,mtrx_params.shape[2])) mtry_params_TP = np.zeros((S,T+S,mtry_params.shape[2])) mtry_params_TP[:,:BW,:] = mtry_params mtry_params_TP[:,BW:,:] = np.reshape(mtry_params[:,BW-1,:],(S,1,mtry_params.shape[2])) income_tax_params = (analytical_mtrs, etr_params_TP, mtrx_params_TP, mtry_params_TP) wealth_tax_params = [h_wealth, p_wealth, m_wealth] ellipse_params = [b_ellipse, upsilon] parameters = [J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data] + wealth_tax_params + ellipse_params N_tilde = omega.sum(1) omega_stationary = omega / N_tilde.reshape(T + S, 1) initial_n = nssmat # Get an initial distribution of capital with the initial population # distribution K0 = household.get_K(initial_b, omega_stationary[ 0].reshape(S, 1), lambdas, g_n_vector[0], 'SS') b_sinit = np.array(list(np.zeros(J).reshape(1, J)) + list(initial_b[:-1])) b_splus1init = initial_b L0 = firm.get_L(e, initial_n, omega_stationary[ 0].reshape(S, 1), lambdas, 'SS') Y0 = firm.get_Y(K0, L0, parameters) w0 = firm.get_w(Y0, L0, parameters) r0 = firm.get_r(Y0, K0, parameters) BQ0 = household.get_BQ(r0, initial_b, omega_stationary[0].reshape( S, 1), lambdas, rho.reshape(S, 1), g_n_vector[0], 'SS') T_H_0 = tax.get_lump_sum(r0, b_sinit, w0, e, initial_n, BQ0, lambdas, factor_ss, omega_stationary[ 0].reshape(S, 1), 'SS', etr_params_TP[:,0,:], parameters, theta, tau_bq) tax0_params = (J, S, retire, np.tile(np.reshape(etr_params_TP[:,0,:],(S,1,etr_params_TP.shape[2])),(1,J,1)), h_wealth, p_wealth, m_wealth, tau_payroll) tax0 = tax.total_taxes(r0, b_sinit, w0, e, initial_n, BQ0, lambdas, factor_ss, T_H_0, None, 'SS', False, tax0_params, theta, tau_bq) c0 = household.get_cons(r0, b_sinit, w0, e, initial_n, BQ0.reshape( 1, J), lambdas.reshape(1, J), b_splus1init, parameters, tax0) return (income_tax_params, wealth_tax_params, ellipse_params, parameters, N_tilde, omega_stationary, K0, b_sinit, b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, factor, tax0, c0, initial_b, initial_n)
def create_tpi_params(a_tax_income, b_tax_income, c_tax_income, d_tax_income, b_ellipse, upsilon, J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, tau_payroll, retire, mean_income_data, get_baseline=True, input_dir="./OUTPUT", **kwargs): if get_baseline: ss_init = os.path.join(input_dir, "SSinit/ss_init_vars.pkl") variables = pickle.load(open(ss_init, "rb")) for key in variables: globals()[key] = variables[key] else: params_path = os.path.join(input_dir, "Saved_moments/params_changed.pkl") variables = pickle.load(open(params_path, "rb")) for key in variables: globals()[key] = variables[key] var_path = os.path.join(input_dir, "SS/ss_vars.pkl") variables = pickle.load(open(var_path, "rb")) for key in variables: globals()[key] = variables[key] init_tpi_vars = os.path.join(input_dir, "SSinit/ss_init_tpi_vars.pkl") variables = pickle.load(open(init_tpi_vars, "rb")) for key in variables: globals()[key] = variables[key] ''' ------------------------------------------------------------------------ Set other parameters and initial values ------------------------------------------------------------------------ ''' # Make a vector of all one dimensional parameters, to be used in the # following functions income_tax_params = [ a_tax_income, b_tax_income, c_tax_income, d_tax_income ] wealth_tax_params = [h_wealth, p_wealth, m_wealth] ellipse_params = [b_ellipse, upsilon] parameters = [ J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data ] + income_tax_params + wealth_tax_params + ellipse_params N_tilde = omega.sum(1) omega_stationary = omega / N_tilde.reshape(T + S, 1) if get_baseline: initial_b = bssmat_splus1 initial_n = nssmat else: initial_b = bssmat_init initial_n = nssmat_init # Get an initial distribution of capital with the initial population # distribution K0 = household.get_K(initial_b, omega_stationary[0].reshape(S, 1), lambdas, g_n_vector[0], 'SS') b_sinit = np.array(list(np.zeros(J).reshape(1, J)) + list(initial_b[:-1])) b_splus1init = initial_b L0 = firm.get_L(e, initial_n, omega_stationary[0].reshape(S, 1), lambdas, 'SS') Y0 = firm.get_Y(K0, L0, parameters) w0 = firm.get_w(Y0, L0, parameters) r0 = firm.get_r(Y0, K0, parameters) BQ0 = household.get_BQ(r0, initial_b, omega_stationary[0].reshape(S, 1), lambdas, rho.reshape(S, 1), g_n_vector[0], 'SS') T_H_0 = tax.get_lump_sum(r0, b_sinit, w0, e, initial_n, BQ0, lambdas, factor_ss, omega_stationary[0].reshape(S, 1), 'SS', parameters, theta, tau_bq) tax0 = tax.total_taxes(r0, b_sinit, w0, e, initial_n, BQ0, lambdas, factor_ss, T_H_0, None, 'SS', False, parameters, theta, tau_bq) c0 = household.get_cons(r0, b_sinit, w0, e, initial_n, BQ0.reshape(1, J), lambdas.reshape(1, J), b_splus1init, parameters, tax0) return (income_tax_params, wealth_tax_params, ellipse_params, parameters, N_tilde, omega_stationary, K0, b_sinit, b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n)
def TP_solutions(winit, rinit, T_H_init, BQinit2, Kss, Lss, Yss, BQss, theta, income_tax_params, wealth_tax_params, ellipse_params, parameters, g_n_vector, omega_stationary, K0, b_sinit, b_splus1init, L0, Y0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n, factor_ss, tau_bq, chi_b, chi_n, output_dir="./OUTPUT", **kwargs): ''' This function returns the solutions for all variables along the time path. ''' J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \ h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = parameters analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params print 'Computing final solutions' # Extend time paths past T winit = np.array(list(winit) + list(np.ones(S) * wss)) rinit = np.array(list(rinit) + list(np.ones(S) * rss)) T_H_init = np.array(list(T_H_init) + list(np.ones(S) * T_Hss)) BQinit = np.zeros((T + S, J)) for j in xrange(J): BQinit[:, j] = list(BQinit2[:,j]) + [BQss[j]] * S BQinit = np.array(BQinit) # Make array of initial guesses domain = np.linspace(0, T, T) domain2 = np.tile(domain.reshape(T, 1, 1), (1, S, J)) ending_b = bssmat_splus1 guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b ending_b_tail = np.tile(ending_b.reshape(1, S, J), (S, 1, 1)) guesses_b = np.append(guesses_b, ending_b_tail, axis=0) domain3 = np.tile(np.linspace(0, 1, T).reshape(T, 1, 1), (1, S, J)) guesses_n = domain3 * (nssmat - initial_n) + initial_n ending_n_tail = np.tile(nssmat.reshape(1, S, J), (S, 1, 1)) guesses_n = np.append(guesses_n, ending_n_tail, axis=0) b_mat = np.zeros((T + S, S, J)) n_mat = np.zeros((T + S, S, J)) ind = np.arange(S) # initialize array of Euler errors euler_errors = np.zeros((T, 2 * S, J)) # As in SS, you need the final distributions of b and n to match the final # w, r, BQ, etc. Otherwise the euler errors are large. You need one more # fsolve. for j in xrange(J): b_mat[1, -1, j], n_mat[0, -1, j] = np.array(opt.fsolve(SS_TPI_firstdoughnutring, [guesses_b[1, -1, j], guesses_n[0, -1, j]], args=(winit[1], rinit[1], BQinit[1, j], T_H_init[1], initial_b, factor_ss, j, income_tax_params, parameters, theta, tau_bq), xtol=1e-13)) for s in xrange(S - 2): # Upper triangle ind2 = np.arange(s + 2) b_guesses_to_use = np.diag(guesses_b[1:S + 1, :, j], S - (s + 2)) n_guesses_to_use = np.diag(guesses_n[:S, :, j], S - (s + 2)) # initialize array of diagonal elements length_diag = (np.diag(np.transpose(etr_params[:S,:,0]),S-(s+2))).shape[0] etr_params_to_use = np.zeros((length_diag,etr_params.shape[2])) mtrx_params_to_use = np.zeros((length_diag,mtrx_params.shape[2])) mtry_params_to_use = np.zeros((length_diag,mtry_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_to_use[:,i] = np.diag(np.transpose(etr_params[:S,:,i]),S-(s+2)) mtrx_params_to_use[:,i] = np.diag(np.transpose(mtrx_params[:S,:,i]),S-(s+2)) mtry_params_to_use[:,i] = np.diag(np.transpose(mtry_params[:S,:,i]),S-(s+2)) inc_tax_params_upper = (analytical_mtrs, etr_params_to_use, mtrx_params_to_use, mtry_params_to_use) solutions = opt.fsolve(Steady_state_TPI_solver, list( b_guesses_to_use) + list(n_guesses_to_use), args=( winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, s, 0, inc_tax_params_upper, parameters, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:len(solutions) / 2] b_mat[1 + ind2, S - (s + 2) + ind2, j] = b_vec n_vec = solutions[len(solutions) / 2:] n_mat[ind2, S - (s + 2) + ind2, j] = n_vec for t in xrange(0, T): b_guesses_to_use = .75 * np.diag(guesses_b[t + 1:t + S + 1, :, j]) n_guesses_to_use = np.diag(guesses_n[t:t + S, :, j]) # initialize array of diagonal elements length_diag = (np.diag(np.transpose(etr_params[:,t:t+S,i]))).shape[0] etr_params_to_use = np.zeros((length_diag,etr_params.shape[2])) mtrx_params_to_use = np.zeros((length_diag,mtrx_params.shape[2])) mtry_params_to_use = np.zeros((length_diag,mtry_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_to_use[:,i] = np.diag(np.transpose(etr_params[:,t:t+S,i])) mtrx_params_to_use[:,i] = np.diag(np.transpose(mtrx_params[:,t:t+S,i])) mtry_params_to_use[:,i] = np.diag(np.transpose(mtry_params[:,t:t+S,i])) inc_tax_params_TP = (analytical_mtrs, etr_params_to_use, mtrx_params_to_use, mtry_params_to_use) solutions = opt.fsolve(Steady_state_TPI_solver, list( b_guesses_to_use) + list(n_guesses_to_use), args=( winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, inc_tax_params_TP, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:S] b_mat[t + 1 + ind, ind, j] = b_vec n_vec = solutions[S:] n_mat[t + ind, ind, j] = n_vec inputs = list(solutions) euler_errors[t, :, j] = np.abs(Steady_state_TPI_solver( inputs, winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, inc_tax_params_TP, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n)) b_mat[0, :, :] = initial_b ''' ------------------------------------------------------------------------ Generate variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' Kinit = household.get_K(b_mat[:T], omega_stationary[:T].reshape( T, S, 1), lambdas.reshape(1, 1, J), g_n_vector[:T], 'TPI') Linit = firm.get_L(e.reshape(1, S, J), n_mat[:T], omega_stationary[ :T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') Kpath_TPI = np.array(list(Kinit) + list(np.ones(10) * Kss)) Lpath_TPI = np.array(list(Linit) + list(np.ones(10) * Lss)) BQpath_TPI = np.array(list(BQinit) + list(np.ones((10, J)) * BQss)) b_s = np.zeros((T, S, J)) b_s[:, 1:, :] = b_mat[:T, :-1, :] b_splus1 = np.zeros((T, S, J)) b_splus1[:, :, :] = b_mat[1:T + 1, :, :] # initialize array etr_params_path = np.zeros((T,S,J,etr_params.shape[2])) for i in range(etr_params.shape[2]): etr_params_path[:,:,:,i] = np.tile(np.reshape(np.transpose(etr_params[:,:T,i]),(T,S,1)),(1,1,J)) tax_path_params = J, S, retire, etr_params_path, h_wealth, p_wealth, m_wealth, tau_payroll tax_path = tax.total_taxes(np.tile(rinit[:T].reshape(T, 1, 1),(1,S,J)), b_s, np.tile(winit[:T].reshape(T, 1, 1),(1,S,J)), np.tile(e.reshape(1, S, J),(T,1,1)), n_mat[:T,:,:], BQinit[:T, :].reshape(T, 1, J), lambdas, factor_ss, T_H_init[:T].reshape(T, 1, 1), None, 'TPI', False, tax_path_params, theta, tau_bq) c_path = household.get_cons(rinit[:T].reshape(T, 1, 1), b_s, winit[:T].reshape(T, 1, 1), e.reshape( 1, S, J), n_mat[:T], BQinit[:T].reshape(T, 1, J), lambdas.reshape(1, 1, J), b_splus1, parameters, tax_path) Y_path = firm.get_Y(Kpath_TPI[:T], Lpath_TPI[:T], parameters) C_path = household.get_C(c_path, omega_stationary[ :T].reshape(T, S, 1), lambdas, 'TPI') I_path = firm.get_I(Kpath_TPI[1:T + 1], Kpath_TPI[:T], delta, g_y, g_n_vector[:T]) print 'Resource Constraint Difference:', Y_path - C_path - I_path print'Checking time path for violations of constaints.' hh_constraint_params = ltilde for t in xrange(T): household.constraint_checker_TPI( b_mat[t], n_mat[t], c_path[t], t, hh_constraint_params) eul_savings = euler_errors[:, :S, :].max(1).max(1) eul_laborleisure = euler_errors[:, S:, :].max(1).max(1) print 'Max Euler error, savings: ', eul_savings print 'Max Euler error labor supply: ', eul_laborleisure ''' ------------------------------------------------------------------------ Create the unstationarized versions of the paths of macro aggregates ------------------------------------------------------------------------ ''' # tvec = np.linspace(0, len(C_path), len(C_path)) # growth_path = np.exp(g_y*tvec) # pop_path = np.zeros(len(C_path)) # for i in range(0,len(C_path)): # pop_path[i] = np.exp(g_n_vector[:i].sum()) # note that this normalizes the pop in the initial period to one # growth_pop_path = growth_path*pop_path # C_ns_path = C_path * growth_pop_path # K_ns_path = Kinit * growth_pop_path # BQ_ns_path = growth_pop_path * BQinit[:T] # L_ns_path = Linit * pop_path # T_H_ns_path = T_H_init[:T] * growth_pop_path # w_ns_path = winit*growth_path # I_ns_path = I_path * growth_pop_path # Y_ns_path = Y_path * growth_pop_path ''' ------------------------------------------------------------------------ Save variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' output = {'Kpath_TPI': Kpath_TPI, 'b_mat': b_mat, 'c_path': c_path, 'eul_savings': eul_savings, 'eul_laborleisure': eul_laborleisure, 'Lpath_TPI': Lpath_TPI, 'BQpath_TPI': BQpath_TPI, 'n_mat': n_mat, 'rinit': rinit, 'Y_path': Y_path, 'T_H_init': T_H_init, 'tax_path': tax_path, 'winit': winit} macro_output = {'Kpath_TPI': Kpath_TPI, 'C_path': C_path, 'I_path': I_path, 'Lpath_TPI': Lpath_TPI, 'BQpath_TPI': BQpath_TPI, 'rinit': rinit, 'Y_path': Y_path, 'T_H_init': T_H_init, 'winit': winit, 'tax_path': tax_path} # macro_ns_output = {'K_ns_path': K_ns_path, 'C_ns_path': C_ns_path, 'I_ns_path': I_ns_path, # 'L_ns_path': L_ns_path, 'BQ_ns_path': BQ_ns_path, # 'rinit': rinit, 'Y_ns_path': Y_ns_path, 'T_H_ns_path': T_H_ns_path, # 'w_ns_path': w_ns_path} tpi_dir = os.path.join(output_dir, "TPI") utils.mkdirs(tpi_dir) tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl") pickle.dump(output, open(tpi_vars, "wb")) tpi_dir = os.path.join(output_dir, "TPI") utils.mkdirs(tpi_dir) tpi_vars = os.path.join(tpi_dir, "TPI_macro_vars.pkl") pickle.dump(macro_output, open(tpi_vars, "wb"))
def FOC_labor(r, w, b, b_splus1, n, BQ, factor, T_H, params): ''' Computes Euler errors for the FOC for labor supply in the steady state. This function is usually looped through over J, so it does one lifetime income group at a time. Inputs: r = scalar, interest rate w = scalar, wage rate b = [S,J] array, distribution of wealth/capital holdings b_splus1 = [S,J] array, distribution of wealth/capital holdings one period ahead n = [S,J] array, distribution of labor supply BQ = [J,] vector, aggregate bequests by lifetime income group factor = scalar, scaling factor to convert model income to dollars T_H = scalar, lump sum transfer params = length 19 tuple (e, sigma, g_y, theta, b_ellipse, upsilon, ltilde, chi_n, tau_bq, lambdas, J, S, etr_params, mtrx_params, h_wealth, p_wealth, m_wealth, tau_payroll, tau_bq) e = [S,J] array, effective labor units sigma = scalar, coefficient of relative risk aversion g_y = scalar, exogenous labor augmenting technological growth theta = [J,] vector, replacement rate for each lifetime income group b_ellipse = scalar, scaling parameter in elliptical utility function upsilon = curvature parameter in elliptical utility function chi_n = [S,] vector, utility weights on disutility of labor ltilde = scalar, upper bound of household labor supply tau_bq = scalar, bequest tax rate (scalar) lambdas = [J,] vector, ability weights J = integer, number of lifetime income groups S = integer, number of economically active periods in lifetime etr_params = [S,10] array, parameters of effective income tax rate function mtrx_params = [S,10] array, parameters of marginal tax rate on labor income function h_wealth = scalar, parameter in wealth tax function p_wealth = scalar, parameter in wealth tax function m_wealth = scalar, parameter in wealth tax function tau_payroll = scalar, payroll tax rate tau_bq = scalar, bequest tax rate Functions called: get_cons marg_ut_cons marg_ut_labor tax.total_taxes tax.MTR_labor Objects in function: tax = [S,J] array, net taxes in the current period cons = [S,J] array, consumption in the current period deriv = [S,J] array, net of tax share of labor income euler = [S,J] array, Euler error from FOC for labor supply Returns: euler ''' omega, e, BQ_dist, sigma, g_y, theta, b_ellipse, upsilon, chi_n, ltilde, tau_bq, lambdas, J, S, \ analytical_mtrs, etr_params, mtrx_params, h_wealth, p_wealth, m_wealth, tau_payroll, retire, method = params tax1_params = (e, BQ_dist, lambdas, method, retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax1 = tax.total_taxes(r, w, b, n, BQ, factor, T_H, None, False, tax1_params) cons_params = (e, BQ_dist, lambdas, g_y) cons = get_cons(omega, r, w, b, b_splus1, n, BQ, tax1, cons_params) mtr_lab_params = (e, etr_params, mtrx_params, analytical_mtrs) deriv = (1 - tau_payroll - tax.MTR_labor(r, b, w, n, factor, mtr_lab_params)) lab_params = (b_ellipse, upsilon, ltilde, chi_n) euler = marg_ut_cons(cons, sigma) * w * deriv * e - \ marg_ut_labor(n, lab_params) return euler
def Steady_state_TPI_solver(guesses, winit, rinit, BQinit, T_H_init, factor, j, s, t, params, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n): ''' Parameters: guesses = distribution of capital and labor (various length list) winit = wage rate ((T+S)x1 array) rinit = rental rate ((T+S)x1 array) BQinit = aggregate bequests ((T+S)x1 array) T_H_init = lump sum tax over time ((T+S)x1 array) factor = scaling factor (scalar) j = which ability type is being solved for (scalar) s = which upper triangle loop is being solved for (scalar) t = which diagonal is being solved for (scalar) params = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rate (Jx1 array) rho = mortalit rate (Sx1 array) lambdas = ability weights (Jx1 array) e = ability type (SxJ array) initial_b = capital stock distribution in period 0 (SxJ array) chi_b = chi^b_j (Jx1 array) chi_n = chi^n_s (Sx1 array) Output: Value of Euler error (various length list) ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \ a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params length = len(guesses) / 2 b_guess = np.array(guesses[:length]) n_guess = np.array(guesses[length:]) if length == S: b_s = np.array([0] + list(b_guess[:-1])) else: b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1])) b_splus1 = b_guess b_splus2 = np.array(list(b_guess[1:]) + [0]) w_s = winit[t:t + length] w_splus1 = winit[t + 1:t + length + 1] r_s = rinit[t:t + length] r_splus1 = rinit[t + 1:t + length + 1] n_s = n_guess n_extended = np.array(list(n_guess[1:]) + [0]) e_s = e[-length:, j] e_extended = np.array(list(e[-length + 1:, j]) + [0]) BQ_s = BQinit[t:t + length] BQ_splus1 = BQinit[t + 1:t + length + 1] T_H_s = T_H_init[t:t + length] T_H_splus1 = T_H_init[t + 1:t + length + 1] # Savings euler equations tax_s = tax.total_taxes(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[ j], factor, T_H_s, j, 'TPI', False, params, theta, tau_bq) tax_splus1 = tax.total_taxes(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[ j], factor, T_H_splus1, j, 'TPI', True, params, theta, tau_bq) cons_s = household.get_cons(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[ j], b_splus1, params, tax_s) cons_splus1 = household.get_cons(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[ j], b_splus2, params, tax_splus1) income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \ chi_b[-(length):, j] * b_splus1 ** (-sigma) deriv_savings = 1 + r_splus1 * (1 - tax.tau_income( r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) - tax.tau_income_deriv( r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) * income_splus1) - tax.tau_w_prime( b_splus1, params) * b_splus1 - tax.tau_wealth(b_splus1, params) error1 = household.marg_ut_cons(cons_s, params) - beta * (1 - rho[-(length):]) * np.exp(-sigma * g_y) * deriv_savings * household.marg_ut_cons( cons_splus1, params) - savings_ut # Labor leisure euler equations income_s = (r_s * b_s + w_s * e_s * n_s) * factor deriv_laborleisure = 1 - tau_payroll - tax.tau_income(r_s, b_s, w_s, e_s, n_s, factor, params) - tax.tau_income_deriv( r_s, b_s, w_s, e_s, n_s, factor, params) * income_s error2 = household.marg_ut_cons(cons_s, params) * w_s * e[-( length):, j] * deriv_laborleisure - household.marg_ut_labor(n_s, chi_n[-length:], params) # Check and punish constraint violations mask1 = n_guess < 0 error2[mask1] += 1e12 mask2 = n_guess > ltilde error2[mask2] += 1e12 mask3 = cons_s < 0 error2[mask3] += 1e12 mask4 = b_guess <= 0 error2[mask4] += 1e12 mask5 = cons_splus1 < 0 error2[mask5] += 1e12 return list(error1.flatten()) + list(error2.flatten())
def twist_doughnut(guesses, r, w, BQ, T_H, j, s, t, params): ''' Parameters: guesses = distribution of capital and labor (various length list) w = wage rate ((T+S)x1 array) r = rental rate ((T+S)x1 array) BQ = aggregate bequests ((T+S)x1 array) T_H = lump sum tax over time ((T+S)x1 array) factor = scaling factor (scalar) j = which ability type is being solved for (scalar) s = which upper triangle loop is being solved for (scalar) t = which diagonal is being solved for (scalar) params = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rate (Jx1 array) rho = mortality rate (Sx1 array) lambdas = ability weights (Jx1 array) e = ability type (SxJ array) initial_b = capital stock distribution in period 0 (SxJ array) chi_b = chi^b_j (Jx1 array) chi_n = chi^n_s (Sx1 array) Output: Value of Euler error (various length list) ''' income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BQ_dist, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params length = len(guesses) / 2 b_guess = np.array(guesses[:length]) n_guess = np.array(guesses[length:]) if length == S: b_s = np.array([0] + list(b_guess[:-1])) else: b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1])) b_splus1 = b_guess b_splus2 = np.array(list(b_guess[1:]) + [0]) w_s = w[t:t + length] w_splus1 = w[t + 1:t + length + 1] r_s = r[t:t + length] r_splus1 = r[t + 1:t + length + 1] n_s = n_guess n_extended = np.array(list(n_guess[1:]) + [0]) e_s = e[-length:, j] e_extended = np.array(list(e[-length + 1:, j]) + [0]) BQ_s = BQ[t:t + length] BQ_splus1 = BQ[t + 1:t + length + 1] T_H_s = T_H[t:t + length] T_H_splus1 = T_H[t + 1:t + length + 1] omega = omega[t, -length:] BQ_dist = BQ_dist[-length:, j] # Savings euler equations # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J,)) tax_s_params = (e_s, BQ_dist, lambdas[j], 'TPI', retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_s = tax.total_taxes(r_s, w_s, b_s, n_s, BQ_s, factor, T_H_s, j, False, tax_s_params) etr_params_sp1 = np.append(etr_params,np.reshape(etr_params[-1,:],(1,etr_params.shape[1])),axis=0)[1:,:] taxsp1_params = (e_extended, BQ_dist, lambdas[j], 'TPI', retire, etr_params_sp1, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_splus1 = tax.total_taxes(r_splus1, w_splus1, b_splus1, n_extended, BQ_splus1, factor, T_H_splus1, j, True, taxsp1_params) cons_s_params = (e_s, BQ_dist, lambdas[j], g_y) cons_s = household.get_cons(omega, r_s, w_s, b_s, b_splus1, n_s, BQ_s, tax_s, cons_s_params) cons_sp1_params = (e_extended, BQ_dist, lambdas[j], g_y) cons_splus1 = household.get_cons(omega, r_splus1, w_splus1, b_splus1, b_splus2, n_extended, BQ_splus1, tax_splus1, cons_sp1_params) income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \ chi_b[j] * b_splus1 ** (-sigma) mtry_params_sp1 = np.append(mtry_params,np.reshape(mtry_params[-1,:],(1,mtry_params.shape[1])),axis=0)[1:,:] mtr_capital_params = (e_extended, etr_params_sp1, mtry_params_sp1, analytical_mtrs) deriv_savings = 1 + r_splus1 * (1 - tax.MTR_capital(r_splus1, w_splus1, b_splus1, n_extended, factor, mtr_capital_params)) error1 = household.marg_ut_cons(cons_s, sigma) - beta * (1 - rho[-(length):]) * np.exp(-sigma * g_y) * deriv_savings * household.marg_ut_cons( cons_splus1, sigma) - savings_ut # Labor leisure euler equations income_s = (r_s * b_s + w_s * e_s * n_s) * factor mtr_labor_params = (e_s, etr_params, mtrx_params, analytical_mtrs) deriv_laborleisure = 1 - tau_payroll - tax.MTR_labor(r_s, w_s, b_s, n_s, factor, mtr_labor_params) mu_labor_params = (b_ellipse, upsilon, ltilde, chi_n[-length:]) error2 = household.marg_ut_cons(cons_s, sigma) * w_s * e[-( length):, j] * deriv_laborleisure - household.marg_ut_labor(n_s, mu_labor_params) # Check and punish constraint violations mask1 = n_guess < 0 error2[mask1] += 1e12 mask2 = n_guess > ltilde error2[mask2] += 1e12 mask3 = cons_s < 0 error2[mask3] += 1e12 mask4 = b_guess <= 0 error2[mask4] += 1e12 mask5 = cons_splus1 < 0 error2[mask5] += 1e12 return list(error1.flatten()) + list(error2.flatten())
def run_time_path_iteration(Kss, Lss, Yss, BQss, theta, parameters, g_n_vector, omega_stationary, K0, b_sinit, b_splus1init, L0, Y0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n, factor_ss, tau_bq, chi_b, chi_n, get_baseline=False, output_dir="./OUTPUT", **kwargs): TPI_FIG_DIR = output_dir # Initialize Time paths domain = np.linspace(0, T, T) Kinit = (-1 / (domain + 1)) * (Kss - K0) + Kss Kinit[-1] = Kss Kinit = np.array(list(Kinit) + list(np.ones(S) * Kss)) Linit = np.ones(T + S) * Lss Yinit = firm.get_Y(Kinit, Linit, parameters) winit = firm.get_w(Yinit, Linit, parameters) rinit = firm.get_r(Yinit, Kinit, parameters) BQinit = np.zeros((T + S, J)) for j in xrange(J): BQinit[:, j] = list(np.linspace(BQ0[j], BQss[j], T)) + [BQss[j]] * S BQinit = np.array(BQinit) T_H_init = np.ones(T + S) * T_Hss # Make array of initial guesses domain2 = np.tile(domain.reshape(T, 1, 1), (1, S, J)) ending_b = bssmat_splus1 guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b ending_b_tail = np.tile(ending_b.reshape(1, S, J), (S, 1, 1)) guesses_b = np.append(guesses_b, ending_b_tail, axis=0) domain3 = np.tile(np.linspace(0, 1, T).reshape(T, 1, 1), (1, S, J)) guesses_n = domain3 * (nssmat - initial_n) + initial_n ending_n_tail = np.tile(nssmat.reshape(1, S, J), (S, 1, 1)) guesses_n = np.append(guesses_n, ending_n_tail, axis=0) b_mat = np.zeros((T + S, S, J)) n_mat = np.zeros((T + S, S, J)) ind = np.arange(S) TPIiter = 0 TPIdist = 10 euler_errors = np.zeros((T, 2 * S, J)) TPIdist_vec = np.zeros(maxiter) while (TPIiter < maxiter) and (TPIdist >= mindist_TPI): Kpath_TPI = list(Kinit) + list(np.ones(10) * Kss) Lpath_TPI = list(Linit) + list(np.ones(10) * Lss) # Plot TPI for K for each iteration, so we can see if there is a # problem if PLOT_TPI is True: plt.figure() plt.axhline( y=Kss, color='black', linewidth=2, label=r"Steady State $\hat{K}$", ls='--') plt.plot(np.arange( T + 10), Kpath_TPI[:T + 10], 'b', linewidth=2, label=r"TPI time path $\hat{K}_t$") plt.savefig(os.path.join(TPI_FIG_DIR, "TPI_K")) # Uncomment the following print statements to make sure all euler equations are converging. # If they don't, then you'll have negative consumption or consumption spikes. If they don't, # it is the initial guesses. You might need to scale them differently. It is rather delicate for the first # few periods and high ability groups. for j in xrange(J): b_mat[1, -1, j], n_mat[0, -1, j] = np.array(opt.fsolve(SS_TPI_firstdoughnutring, [guesses_b[1, -1, j], guesses_n[0, -1, j]], args=(winit[1], rinit[1], BQinit[1, j], T_H_init[1], initial_b, factor_ss, j, parameters, theta, tau_bq), xtol=1e-13)) # if np.array(SS_TPI_firstdoughnutring([b_mat[1, -1, j], n_mat[0, -1, j]], winit[1], rinit[1], BQinit[1, j], T_H_init[1], initial_b, factor_ss, j, parameters, theta, tau_bq)).max() > 1e-6: # print 'minidoughnut:', # np.array(SS_TPI_firstdoughnutring([b_mat[1, -1, j], n_mat[0, -1, # j]], winit[1], rinit[1], BQinit[1, j], T_H_init[1], initial_b, # factor_ss, j, parameters, theta, tau_bq)).max() for s in xrange(S - 2): # Upper triangle ind2 = np.arange(s + 2) b_guesses_to_use = np.diag( guesses_b[1:S + 1, :, j], S - (s + 2)) n_guesses_to_use = np.diag(guesses_n[:S, :, j], S - (s + 2)) solutions = opt.fsolve(Steady_state_TPI_solver, list( b_guesses_to_use) + list(n_guesses_to_use), args=( winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, s, 0, parameters, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:len(solutions) / 2] b_mat[1 + ind2, S - (s + 2) + ind2, j] = b_vec n_vec = solutions[len(solutions) / 2:] n_mat[ind2, S - (s + 2) + ind2, j] = n_vec # if abs(np.array(Steady_state_TPI_solver(solutions, winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, s, 0, parameters, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n))).max() > 1e-6: # print 's-loop:', # abs(np.array(Steady_state_TPI_solver(solutions, winit, rinit, # BQinit[:, j], T_H_init, factor_ss, j, s, 0, parameters, # theta, tau_bq, rho, lambdas, e, initial_b, chi_b, # chi_n))).max() for t in xrange(0, T): b_guesses_to_use = .75 * \ np.diag(guesses_b[t + 1:t + S + 1, :, j]) n_guesses_to_use = np.diag(guesses_n[t:t + S, :, j]) solutions = opt.fsolve(Steady_state_TPI_solver, list( b_guesses_to_use) + list(n_guesses_to_use), args=( winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:S] b_mat[t + 1 + ind, ind, j] = b_vec n_vec = solutions[S:] n_mat[t + ind, ind, j] = n_vec inputs = list(solutions) euler_errors[t, :, j] = np.abs(Steady_state_TPI_solver( inputs, winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n)) # if euler_errors.max() > 1e-6: # print 't-loop:', euler_errors.max() # Force the initial distribution of capital to be as given above. b_mat[0, :, :] = initial_b Kinit = household.get_K(b_mat[:T], omega_stationary[:T].reshape( T, S, 1), lambdas.reshape(1, 1, J), g_n_vector[:T], 'TPI') Linit = firm.get_L(e.reshape(1, S, J), n_mat[:T], omega_stationary[ :T, :].reshape(T, S, 1), lambdas.reshape(1, 1, J), 'TPI') Ynew = firm.get_Y(Kinit, Linit, parameters) wnew = firm.get_w(Ynew, Linit, parameters) rnew = firm.get_r(Ynew, Kinit, parameters) # the following needs a g_n term BQnew = household.get_BQ(rnew.reshape(T, 1), b_mat[:T], omega_stationary[:T].reshape( T, S, 1), lambdas.reshape(1, 1, J), rho.reshape(1, S, 1), g_n_vector[:T].reshape(T, 1), 'TPI') bmat_s = np.zeros((T, S, J)) bmat_s[:, 1:, :] = b_mat[:T, :-1, :] T_H_new = np.array(list(tax.get_lump_sum(rnew.reshape(T, 1, 1), bmat_s, wnew.reshape( T, 1, 1), e.reshape(1, S, J), n_mat[:T], BQnew.reshape(T, 1, J), lambdas.reshape( 1, 1, J), factor_ss, omega_stationary[:T].reshape(T, S, 1), 'TPI', parameters, theta, tau_bq)) + [T_Hss] * S) winit[:T] = utils.convex_combo(wnew, winit[:T], parameters) rinit[:T] = utils.convex_combo(rnew, rinit[:T], parameters) BQinit[:T] = utils.convex_combo(BQnew, BQinit[:T], parameters) T_H_init[:T] = utils.convex_combo( T_H_new[:T], T_H_init[:T], parameters) guesses_b = utils.convex_combo(b_mat, guesses_b, parameters) guesses_n = utils.convex_combo(n_mat, guesses_n, parameters) if T_H_init.all() != 0: TPIdist = np.array(list(utils.perc_dif_func(rnew, rinit[:T])) + list(utils.perc_dif_func(BQnew, BQinit[:T]).flatten()) + list( utils.perc_dif_func(wnew, winit[:T])) + list(utils.perc_dif_func(T_H_new, T_H_init))).max() else: TPIdist = np.array(list(utils.perc_dif_func(rnew, rinit[:T])) + list(utils.perc_dif_func(BQnew, BQinit[:T]).flatten()) + list( utils.perc_dif_func(wnew, winit[:T])) + list(np.abs(T_H_new, T_H_init))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations if TPIiter > 10: if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0: nu /= 2 print 'New Value of nu:', nu TPIiter += 1 print '\tIteration:', TPIiter print '\t\tDistance:', TPIdist print 'Computing final solutions' # As in SS, you need the final distributions of b and n to match the final # w, r, BQ, etc. Otherwise the euler errors are large. You need one more # fsolve. for j in xrange(J): b_mat[1, -1, j], n_mat[0, -1, j] = np.array(opt.fsolve(SS_TPI_firstdoughnutring, [guesses_b[1, -1, j], guesses_n[0, -1, j]], args=(winit[1], rinit[1], BQinit[1, j], T_H_init[1], initial_b, factor_ss, j, parameters, theta, tau_bq), xtol=1e-13)) for s in xrange(S - 2): # Upper triangle ind2 = np.arange(s + 2) b_guesses_to_use = np.diag(guesses_b[1:S + 1, :, j], S - (s + 2)) n_guesses_to_use = np.diag(guesses_n[:S, :, j], S - (s + 2)) solutions = opt.fsolve(Steady_state_TPI_solver, list( b_guesses_to_use) + list(n_guesses_to_use), args=( winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, s, 0, parameters, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:len(solutions) / 2] b_mat[1 + ind2, S - (s + 2) + ind2, j] = b_vec n_vec = solutions[len(solutions) / 2:] n_mat[ind2, S - (s + 2) + ind2, j] = n_vec for t in xrange(0, T): b_guesses_to_use = .75 * np.diag(guesses_b[t + 1:t + S + 1, :, j]) n_guesses_to_use = np.diag(guesses_n[t:t + S, :, j]) solutions = opt.fsolve(Steady_state_TPI_solver, list( b_guesses_to_use) + list(n_guesses_to_use), args=( winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n), xtol=1e-13) b_vec = solutions[:S] b_mat[t + 1 + ind, ind, j] = b_vec n_vec = solutions[S:] n_mat[t + ind, ind, j] = n_vec inputs = list(solutions) euler_errors[t, :, j] = np.abs(Steady_state_TPI_solver( inputs, winit, rinit, BQinit[:, j], T_H_init, factor_ss, j, None, t, parameters, theta, tau_bq, rho, lambdas, e, None, chi_b, chi_n)) b_mat[0, :, :] = initial_b ''' ------------------------------------------------------------------------ Generate variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' Kpath_TPI = np.array(list(Kinit) + list(np.ones(10) * Kss)) Lpath_TPI = np.array(list(Linit) + list(np.ones(10) * Lss)) BQpath_TPI = np.array(list(BQinit) + list(np.ones((10, J)) * BQss)) b_s = np.zeros((T, S, J)) b_s[:, 1:, :] = b_mat[:T, :-1, :] b_splus1 = np.zeros((T, S, J)) b_splus1[:, :, :] = b_mat[1:T + 1, :, :] tax_path = tax.total_taxes(rinit[:T].reshape(T, 1, 1), b_s, winit[:T].reshape(T, 1, 1), e.reshape( 1, S, J), n_mat[:T], BQinit[:T, :].reshape(T, 1, J), lambdas, factor_ss, T_H_init[:T].reshape(T, 1, 1), None, 'TPI', False, parameters, theta, tau_bq) c_path = household.get_cons(rinit[:T].reshape(T, 1, 1), b_s, winit[:T].reshape(T, 1, 1), e.reshape( 1, S, J), n_mat[:T], BQinit[:T].reshape(T, 1, J), lambdas.reshape(1, 1, J), b_splus1, parameters, tax_path) Y_path = firm.get_Y(Kpath_TPI[:T], Lpath_TPI[:T], parameters) C_path = household.get_C(c_path, omega_stationary[ :T].reshape(T, S, 1), lambdas, 'TPI') I_path = firm.get_I(Kpath_TPI[1:T + 1], Kpath_TPI[:T], delta, g_y, g_n_vector[:T]) print 'Resource Constraint Difference:', Y_path - C_path - I_path print'Checking time path for violations of constaints.' for t in xrange(T): household.constraint_checker_TPI( b_mat[t], n_mat[t], c_path[t], t, parameters) eul_savings = euler_errors[:, :S, :].max(1).max(1) eul_laborleisure = euler_errors[:, S:, :].max(1).max(1) ''' ------------------------------------------------------------------------ Save variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' output = {'Kpath_TPI': Kpath_TPI, 'b_mat': b_mat, 'c_path': c_path, 'eul_savings': eul_savings, 'eul_laborleisure': eul_laborleisure, 'Lpath_TPI': Lpath_TPI, 'BQpath_TPI': BQpath_TPI, 'n_mat': n_mat, 'rinit': rinit, 'Yinit': Yinit, 'T_H_init': T_H_init, 'tax_path': tax_path, 'winit': winit} if get_baseline: tpi_init_dir = os.path.join(output_dir, "TPIinit") utils.mkdirs(tpi_init_dir) tpi_init_vars = os.path.join(tpi_init_dir, "TPIinit_vars.pkl") pickle.dump(output, open(tpi_init_vars, "wb")) else: tpi_dir = os.path.join(output_dir, "TPI") utils.mkdirs(tpi_dir) tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl") pickle.dump(output, open(tpi_vars, "wb"))
def create_tpi_params(**sim_params): ''' ------------------------------------------------------------------------ Set factor and initial capital stock to SS from baseline ------------------------------------------------------------------------ ''' baseline_ss = os.path.join(sim_params['baseline_dir'], "SS/SS_vars.pkl") ss_baseline_vars = pickle.load(open(baseline_ss, "rb")) factor = ss_baseline_vars['factor_ss'] #initial_b = ss_baseline_vars['bssmat_s'] + ss_baseline_vars['BQss']/lambdas initial_b = ss_baseline_vars['bssmat_splus1'] initial_n = ss_baseline_vars['nssmat'] SS_values = (ss_baseline_vars['Kss'],ss_baseline_vars['Lss'], ss_baseline_vars['rss'], ss_baseline_vars['wss'], ss_baseline_vars['BQss'], ss_baseline_vars['T_Hss'], ss_baseline_vars['bssmat_splus1'], ss_baseline_vars['nssmat']) # Make a vector of all one dimensional parameters, to be used in the # following functions wealth_tax_params = [sim_params['h_wealth'], sim_params['p_wealth'], sim_params['m_wealth']] ellipse_params = [sim_params['b_ellipse'], sim_params['upsilon']] chi_params = [sim_params['chi_b_guess'], sim_params['chi_n_guess']] N_tilde = sim_params['omega'].sum(1) #this should just be one in each year given how we've constructed omega sim_params['omega'] = sim_params['omega'] / N_tilde.reshape(sim_params['T'] + sim_params['S'], 1) tpi_params = [sim_params['J'], sim_params['S'], sim_params['T'], sim_params['BQ_dist'], sim_params['BW'], sim_params['beta'], sim_params['sigma'], sim_params['alpha'], sim_params['Z'], sim_params['delta'], sim_params['ltilde'], sim_params['nu'], sim_params['g_y'], sim_params['g_n_vector'], sim_params['tau_payroll'], sim_params['tau_bq'], sim_params['rho'], sim_params['omega'], N_tilde, sim_params['lambdas'], sim_params['e'], sim_params['retire'], sim_params['mean_income_data'], factor] + \ wealth_tax_params + ellipse_params + chi_params iterative_params = [sim_params['maxiter'], sim_params['mindist_SS'], sim_params['mindist_TPI']] J, S, T, BQ_dist, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params ## Assumption for tax functions is that policy in last year of BW is # extended permanently etr_params_TP = np.zeros((S,T+S,sim_params['etr_params'].shape[2])) etr_params_TP[:,:BW,:] = sim_params['etr_params'] etr_params_TP[:,BW:,:] = np.reshape(sim_params['etr_params'][:,BW-1,:],(S,1,sim_params['etr_params'].shape[2])) mtrx_params_TP = np.zeros((S,T+S,sim_params['mtrx_params'].shape[2])) mtrx_params_TP[:,:BW,:] = sim_params['mtrx_params'] mtrx_params_TP[:,BW:,:] = np.reshape(sim_params['mtrx_params'][:,BW-1,:],(S,1,sim_params['mtrx_params'].shape[2])) mtry_params_TP = np.zeros((S,T+S,sim_params['mtry_params'].shape[2])) mtry_params_TP[:,:BW,:] = sim_params['mtry_params'] mtry_params_TP[:,BW:,:] = np.reshape(sim_params['mtry_params'][:,BW-1,:],(S,1,sim_params['mtry_params'].shape[2])) income_tax_params = (sim_params['analytical_mtrs'], etr_params_TP, mtrx_params_TP, mtry_params_TP) ''' ------------------------------------------------------------------------ Set other parameters and initial values ------------------------------------------------------------------------ ''' # Get an initial distribution of capital with the initial population # distribution K0_params = (omega[0].reshape(S, 1), lambdas, g_n_vector[0], 'SS') K0 = household.get_K(initial_b, K0_params) b_sinit = np.array(list(np.zeros(J).reshape(1, J)) + list(initial_b[:-1])) b_splus1init = initial_b L0_params = (e, omega[0].reshape(S, 1), lambdas, 'SS') L0 = firm.get_L(initial_n, L0_params) Y0_params = (alpha, Z) Y0 = firm.get_Y(K0, L0, Y0_params) w0 = firm.get_w(Y0, L0, alpha) r0_params = (alpha, delta) r0 = firm.get_r(Y0, K0, r0_params) BQ0_params = (omega[0].reshape(S, 1), lambdas, rho.reshape(S, 1), g_n_vector[0], 'SS') BQ0 = household.get_BQ(r0, initial_b, BQ0_params) theta_params = (e, J, omega[0].reshape(S, 1), lambdas) theta = tax.replacement_rate_vals(initial_n, w0, factor, theta_params) T_H_params = (e, BQ_dist, lambdas, omega[0].reshape(S, 1), 'SS', etr_params_TP[:,0,:], theta, tau_bq, tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J) T_H_0 = tax.get_lump_sum(r0, w0, b_sinit, initial_n, BQ0, factor, T_H_params) etr_params_3D = np.tile(np.reshape(etr_params_TP[:,0,:],(S,1,etr_params_TP.shape[2])),(1,J,1)) tax0_params = (e, BQ_dist, lambdas, 'SS', retire, etr_params_3D, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax0 = tax.total_taxes(r0, w0, b_sinit, initial_n, BQ0, factor, T_H_0, None, False, tax0_params) c0_params = (e, BQ_dist, lambdas.reshape(1, J), g_y) c0 = household.get_cons(omega[0].reshape(S, 1), r0, w0, b_sinit, b_splus1init, initial_n, BQ0.reshape( 1, J), tax0, c0_params) initial_values = (K0, b_sinit, b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, factor, tax0, c0, initial_b, initial_n) return (income_tax_params, tpi_params, iterative_params, initial_values, SS_values)
def create_tpi_params(a_tax_income, b_tax_income, c_tax_income, d_tax_income, b_ellipse, upsilon, J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, tau_payroll, retire, mean_income_data, get_baseline=True, input_dir="./OUTPUT", **kwargs): if get_baseline: ss_init = os.path.join(input_dir, "SSinit/ss_init_vars.pkl") variables = pickle.load(open(ss_init, "rb")) for key in variables: globals()[key] = variables[key] else: params_path = os.path.join( input_dir, "Saved_moments/params_changed.pkl") variables = pickle.load(open(params_path, "rb")) for key in variables: globals()[key] = variables[key] var_path = os.path.join(input_dir, "SS/ss_vars.pkl") variables = pickle.load(open(var_path, "rb")) for key in variables: globals()[key] = variables[key] init_tpi_vars = os.path.join(input_dir, "SSinit/ss_init_tpi_vars.pkl") variables = pickle.load(open(init_tpi_vars, "rb")) for key in variables: globals()[key] = variables[key] ''' ------------------------------------------------------------------------ Set other parameters and initial values ------------------------------------------------------------------------ ''' # Make a vector of all one dimensional parameters, to be used in the # following functions income_tax_params = [a_tax_income, b_tax_income, c_tax_income, d_tax_income] wealth_tax_params = [h_wealth, p_wealth, m_wealth] ellipse_params = [b_ellipse, upsilon] parameters = [J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data] + income_tax_params + wealth_tax_params + ellipse_params N_tilde = omega.sum(1) omega_stationary = omega / N_tilde.reshape(T + S, 1) if get_baseline: initial_b = bssmat_splus1 initial_n = nssmat else: initial_b = bssmat_init initial_n = nssmat_init # Get an initial distribution of capital with the initial population # distribution K0 = household.get_K(initial_b, omega_stationary[ 0].reshape(S, 1), lambdas, g_n_vector[0], 'SS') b_sinit = np.array(list(np.zeros(J).reshape(1, J)) + list(initial_b[:-1])) b_splus1init = initial_b L0 = firm.get_L(e, initial_n, omega_stationary[ 0].reshape(S, 1), lambdas, 'SS') Y0 = firm.get_Y(K0, L0, parameters) w0 = firm.get_w(Y0, L0, parameters) r0 = firm.get_r(Y0, K0, parameters) BQ0 = household.get_BQ(r0, initial_b, omega_stationary[0].reshape( S, 1), lambdas, rho.reshape(S, 1), g_n_vector[0], 'SS') T_H_0 = tax.get_lump_sum(r0, b_sinit, w0, e, initial_n, BQ0, lambdas, factor_ss, omega_stationary[ 0].reshape(S, 1), 'SS', parameters, theta, tau_bq) tax0 = tax.total_taxes(r0, b_sinit, w0, e, initial_n, BQ0, lambdas, factor_ss, T_H_0, None, 'SS', False, parameters, theta, tau_bq) c0 = household.get_cons(r0, b_sinit, w0, e, initial_n, BQ0.reshape( 1, J), lambdas.reshape(1, J), b_splus1init, parameters, tax0) return (income_tax_params, wealth_tax_params, ellipse_params, parameters, N_tilde, omega_stationary, K0, b_sinit, b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n)
def FOC_labor(r, w, b, b_splus1, n, BQ, factor, T_H, params): ''' Computes Euler errors for the FOC for labor supply in the steady state. This function is usually looped through over J, so it does one lifetime income group at a time. Inputs: r = scalar, interest rate w = scalar, wage rate b = [S,J] array, distribution of wealth/capital holdings b_splus1 = [S,J] array, distribution of wealth/capital holdings one period ahead n = [S,J] array, distribution of labor supply BQ = [J,] vector, aggregate bequests by lifetime income group factor = scalar, scaling factor to convert model income to dollars T_H = scalar, lump sum transfer params = length 19 tuple (e, sigma, g_y, theta, b_ellipse, upsilon, ltilde, chi_n, tau_bq, lambdas, J, S, etr_params, mtrx_params, h_wealth, p_wealth, m_wealth, tau_payroll, tau_bq) e = [S,J] array, effective labor units sigma = scalar, coefficient of relative risk aversion g_y = scalar, exogenous labor augmenting technological growth theta = [J,] vector, replacement rate for each lifetime income group b_ellipse = scalar, scaling parameter in elliptical utility function upsilon = curvature parameter in elliptical utility function chi_n = [S,] vector, utility weights on disutility of labor ltilde = scalar, upper bound of household labor supply tau_bq = scalar, bequest tax rate (scalar) lambdas = [J,] vector, ability weights J = integer, number of lifetime income groups S = integer, number of economically active periods in lifetime etr_params = [S,10] array, parameters of effective income tax rate function mtrx_params = [S,10] array, parameters of marginal tax rate on labor income function h_wealth = scalar, parameter in wealth tax function p_wealth = scalar, parameter in wealth tax function m_wealth = scalar, parameter in wealth tax function tau_payroll = scalar, payroll tax rate tau_bq = scalar, bequest tax rate Functions called: get_cons marg_ut_cons marg_ut_labor tax.total_taxes tax.MTR_labor Objects in function: tax = [S,J] array, net taxes in the current period cons = [S,J] array, consumption in the current period deriv = [S,J] array, net of tax share of labor income euler = [S,J] array, Euler error from FOC for labor supply Returns: euler ''' e, sigma, g_y, theta, b_ellipse, upsilon, chi_n, ltilde, tau_bq, lambdas, J, S, \ analytical_mtrs, etr_params, mtrx_params, h_wealth, p_wealth, m_wealth, tau_payroll, retire, method = params tax1_params = (e, lambdas, method, retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax1 = tax.total_taxes(r, w, b, n, BQ, factor, T_H, None, False, tax1_params) cons_params = (e, lambdas, g_y) cons = get_cons(r, w, b, b_splus1, n, BQ, tax1, cons_params) mtr_lab_params = (e, etr_params, mtrx_params, analytical_mtrs) deriv = (1 - tau_payroll - tax.MTR_labor(r, b, w, n, factor, mtr_lab_params)) lab_params = (b_ellipse, upsilon, ltilde, chi_n) euler = marg_ut_cons(cons, sigma) * w * deriv * e - \ marg_ut_labor(n, lab_params) return euler