Пример #1
0
def test_behavioral_response_Calculator(puf_1991, weights_1991):
    # create Records objects
    records_x = Records(data=puf_1991, weights=weights_1991, start_year=2009)
    records_y = Records(data=puf_1991, weights=weights_1991, start_year=2009)
    # create Policy objects
    policy_x = Policy()
    policy_y = Policy()
    # implement policy_y reform
    reform = {2013: {'_II_rt7': [0.496], '_PT_rt7': [0.496]}}
    policy_y.implement_reform(reform)
    # create two Calculator objects
    behavior_y = Behavior()
    calc_x = Calculator(policy=policy_x, records=records_x)
    calc_y = Calculator(policy=policy_y,
                        records=records_y,
                        behavior=behavior_y)
    # test incorrect use of Behavior._mtr_xy method
    with pytest.raises(ValueError):
        behv = Behavior._mtr_xy(calc_x,
                                calc_y,
                                mtr_of='e00200p',
                                tax_type='nonsense')
    # vary substitution and income effects in calc_y
    behavior1 = {2013: {'_BE_sub': [0.3], '_BE_cg': [0.0]}}
    behavior_y.update_behavior(behavior1)
    assert behavior_y.has_response() is True
    assert behavior_y.BE_sub == 0.3
    assert behavior_y.BE_inc == 0.0
    assert behavior_y.BE_cg == 0.0
    calc_y_behavior1 = Behavior.response(calc_x, calc_y)
    behavior2 = {2013: {'_BE_sub': [0.5], '_BE_cg': [-0.8]}}
    behavior_y.update_behavior(behavior2)
    calc_y_behavior2 = Behavior.response(calc_x, calc_y)
    behavior3 = {2013: {'_BE_inc': [-0.2], '_BE_cg': [-0.8]}}
    behavior_y.update_behavior(behavior3)
    calc_y_behavior3 = Behavior.response(calc_x, calc_y)
    behavior4 = {2013: {'_BE_cg': [-0.8]}}
    behavior_y.update_behavior(behavior4)
    calc_y_behavior4 = Behavior.response(calc_x, calc_y)
    # check that total income tax liability differs across the
    # four sets of behavioral-response elasticities
    assert (calc_y_behavior1.records._iitax.sum() !=
            calc_y_behavior2.records._iitax.sum() !=
            calc_y_behavior3.records._iitax.sum() !=
            calc_y_behavior4.records._iitax.sum())
    # test incorrect _mtr_xy() usage
    with pytest.raises(ValueError):
        Behavior._mtr_xy(calc_x, calc_y, mtr_of='e00200p', tax_type='?')
Пример #2
0
def run_reform(name, reform, behave):

    puf = pd.read_csv("../tax-calculator/puf.csv")
    policy_base = Policy(start_year=2013)
    records_base = Records(puf)
    policy_reform = Policy()
    records_reform = Records(puf)
    bhv = Behavior()
    calcbase = Calculator(policy=policy_base, records=records_base)
    calcreform = Calculator(policy=policy_reform,
                            records=records_reform,
                            behavior=bhv)
    policy_reform.implement_reform(reform)
    calcbase.advance_to_year(CURRENT_YEAR)
    calcreform.advance_to_year(CURRENT_YEAR)
    calcbase.calc_all()
    calcreform.calc_all()
    bhv.update_behavior(behave)
    calc_behav = Behavior.response(calcbase, calcreform)
    calc_behav.calc_all()
    base_list = multiyear_diagnostic_table(calcbase, 10)
    reform_list = multiyear_diagnostic_table(calc_behav, 10)
    difflist = (reform_list.iloc[18] - base_list.iloc[18])

    return difflist
Пример #3
0
def test_behavioral_response_Calculator(puf_1991, weights_1991):
    # create Records objects
    records_x = Records(data=puf_1991, weights=weights_1991, start_year=2009)
    records_y = Records(data=puf_1991, weights=weights_1991, start_year=2009)
    # create Policy objects
    policy_x = Policy()
    policy_y = Policy()
    # implement policy_y reform
    reform = {2013: {"_II_rt7": [0.496], "_PT_rt7": [0.496]}}
    policy_y.implement_reform(reform)
    # create two Calculator objects
    behavior_y = Behavior()
    calc_x = Calculator(policy=policy_x, records=records_x)
    calc_y = Calculator(policy=policy_y, records=records_y, behavior=behavior_y)
    # test incorrect use of Behavior._mtr_xy method
    with pytest.raises(ValueError):
        behv = Behavior._mtr_xy(calc_x, calc_y, mtr_of="e00200p", tax_type="nonsense")
    # vary substitution and income effects in calc_y
    behavior1 = {2013: {"_BE_sub": [0.3], "_BE_cg": [0.0]}}
    behavior_y.update_behavior(behavior1)
    assert behavior_y.has_response() is True
    assert behavior_y.BE_sub == 0.3
    assert behavior_y.BE_inc == 0.0
    assert behavior_y.BE_cg == 0.0
    calc_y_behavior1 = Behavior.response(calc_x, calc_y)
    behavior2 = {2013: {"_BE_sub": [0.5], "_BE_cg": [-0.8]}}
    behavior_y.update_behavior(behavior2)
    calc_y_behavior2 = Behavior.response(calc_x, calc_y)
    behavior3 = {2013: {"_BE_inc": [-0.2], "_BE_cg": [-0.8]}}
    behavior_y.update_behavior(behavior3)
    calc_y_behavior3 = Behavior.response(calc_x, calc_y)
    behavior4 = {2013: {"_BE_cg": [-0.8]}}
    behavior_y.update_behavior(behavior4)
    calc_y_behavior4 = Behavior.response(calc_x, calc_y)
    # check that total income tax liability differs across the
    # four sets of behavioral-response elasticities
    assert (
        calc_y_behavior1.records._iitax.sum()
        != calc_y_behavior2.records._iitax.sum()
        != calc_y_behavior3.records._iitax.sum()
        != calc_y_behavior4.records._iitax.sum()
    )
    # test incorrect _mtr_xy() usage
    with pytest.raises(ValueError):
        Behavior._mtr_xy(calc_x, calc_y, mtr_of="e00200p", tax_type="?")
def test_behavioral_response_Calculator():
    # create Records objects
    records_x = Records(data=TAXDATA, weights=WEIGHTS, start_year=2009)
    records_y = Records(data=TAXDATA, weights=WEIGHTS, start_year=2009)
    # create Policy objects
    policy_x = Policy()
    policy_y = Policy()
    # implement policy_y reform
    reform = {2013: {'_II_rt7': [0.496]}}
    policy_y.implement_reform(reform)
    # create two Calculator objects
    behavior_y = Behavior()
    calc_x = Calculator(policy=policy_x, records=records_x)
    calc_y = Calculator(policy=policy_y, records=records_y,
                        behavior=behavior_y)
    # test incorrect use of Behavior._mtr_xy method
    with pytest.raises(ValueError):
        behv = Behavior._mtr_xy(calc_x, calc_y,
                                mtr_of='e00200p',
                                tax_type='nonsense')
    # vary substitution and income effects in calc_y
    behavior1 = {2013: {'_BE_sub': [0.4], '_BE_inc': [-0.1]}}
    behavior_y.update_behavior(behavior1)
    assert behavior_y.has_response() is True
    assert behavior_y.BE_sub == 0.4
    assert behavior_y.BE_inc == -0.1
    calc_y_behavior1 = Behavior.response(calc_x, calc_y)
    behavior2 = {2013: {'_BE_sub': [0.5], '_BE_cg': [0.8]}}
    behavior_y.update_behavior(behavior2)
    calc_y_behavior2 = Behavior.response(calc_x, calc_y)
    behavior3 = {2013: {'_BE_inc': [-0.2], '_BE_cg': [0.6]}}
    behavior_y.update_behavior(behavior3)
    calc_y_behavior3 = Behavior.response(calc_x, calc_y)
    # check that total income tax liability differs across the
    # three sets of behavioral-response elasticities
    assert (calc_y_behavior1.records._iitax.sum() !=
            calc_y_behavior2.records._iitax.sum() !=
            calc_y_behavior3.records._iitax.sum())
    # test incorrect _mtr_xy() usage
    with pytest.raises(ValueError):
        Behavior._mtr_xy(calc_x, calc_y, mtr_of='e00200p', tax_type='?')
Пример #5
0
def reform_results(reform_dict, puf_data, reform_2017_law):
    """
    Return actual results of the reform specified in reform_dict.
    """
    # pylint: disable=too-many-locals
    rec = Records(data=puf_data)
    # create baseline Calculator object, calc1
    pol = Policy()
    if reform_dict['baseline'] == '2017_law.json':
        pol.implement_reform(reform_2017_law)
    elif reform_dict['baseline'] == 'current_law_policy.json':
        pass
    else:
        msg = 'illegal baseline value {}'
        raise ValueError(msg.format(reform_dict['baseline']))
    calc1 = Calculator(policy=pol, records=rec, verbose=False, behavior=None)
    # create reform Calculator object, calc2, with possible behavioral response
    start_year = reform_dict['start_year']
    beh = Behavior()
    if '_BE_cg' in reform_dict['value']:
        elasticity = reform_dict['value']['_BE_cg']
        del reform_dict['value']['_BE_cg']  # in order to have a valid reform
        beh_assump = {start_year: {'_BE_cg': elasticity}}
        beh.update_behavior(beh_assump)
    reform = {start_year: reform_dict['value']}
    pol.implement_reform(reform)
    calc2 = Calculator(policy=pol, records=rec, verbose=False, behavior=beh)
    # increment both Calculator objects to reform's start_year
    calc1.advance_to_year(start_year)
    calc2.advance_to_year(start_year)
    # calculate prereform and postreform output for several years
    output_type = reform_dict['output_type']
    num_years = 4
    results = list()
    for _ in range(0, num_years):
        calc1.calc_all()
        prereform = calc1.array(output_type)
        if calc2.behavior_has_response():
            calc2_br = Behavior.response(calc1, calc2)
            postreform = calc2_br.array(output_type)
        else:
            calc2.calc_all()
            postreform = calc2.array(output_type)
        diff = postreform - prereform
        weighted_sum_diff = (diff * calc1.array('s006')).sum() * 1.0e-9
        results.append(weighted_sum_diff)
        calc1.increment_year()
        calc2.increment_year()
    # write actual results to actual_str
    actual_str = 'Tax-Calculator'
    for iyr in range(0, num_years):
        actual_str += ',{:.1f}'.format(results[iyr])
    return actual_str
Пример #6
0
def test_behavioral_response_Calculator(cps_subsample):
    # create Records objects
    records_x = Records.cps_constructor(data=cps_subsample)
    records_y = Records.cps_constructor(data=cps_subsample)
    year = records_x.current_year
    # create Policy objects
    policy_x = Policy()
    policy_y = Policy()
    # implement policy_y reform
    reform = {year: {'_II_rt7': [0.496],
                     '_PT_rt7': [0.496]}}
    policy_y.implement_reform(reform)
    # create two Calculator objects
    behavior_y = Behavior()
    calc_x = Calculator(policy=policy_x, records=records_x)
    calc_y = Calculator(policy=policy_y, records=records_y,
                        behavior=behavior_y)
    # test incorrect use of Behavior._mtr_xy method
    with pytest.raises(ValueError):
        behv = Behavior._mtr_xy(calc_x, calc_y,
                                mtr_of='e00200p',
                                tax_type='nonsense')
    # vary substitution and income effects in calc_y
    behavior0 = {year: {'_BE_sub': [0.0],
                        '_BE_cg': [0.0],
                        '_BE_charity': [[0.0, 0.0, 0.0]]}}
    behavior_y.update_behavior(behavior0)
    calc_y_behavior0 = Behavior.response(calc_x, calc_y)
    behavior1 = {year: {'_BE_sub': [0.3], '_BE_inc': [-0.1], '_BE_cg': [0.0],
                        '_BE_subinc_wrt_earnings': [True]}}
    behavior_y.update_behavior(behavior1)
    assert behavior_y.has_response() is True
    epsilon = 1e-9
    assert abs(behavior_y.BE_sub - 0.3) < epsilon
    assert abs(behavior_y.BE_inc - -0.1) < epsilon
    assert abs(behavior_y.BE_cg - 0.0) < epsilon
    calc_y_behavior1 = Behavior.response(calc_x, calc_y)
    behavior2 = {year: {'_BE_sub': [0.5], '_BE_cg': [-0.8]}}
    behavior_y.update_behavior(behavior2)
    calc_y_behavior2 = Behavior.response(calc_x, calc_y)
    behavior3 = {year: {'_BE_inc': [-0.2], '_BE_cg': [-0.8]}}
    behavior_y.update_behavior(behavior3)
    calc_y_behavior3 = Behavior.response(calc_x, calc_y)
    behavior4 = {year: {'_BE_cg': [-0.8]}}
    behavior_y.update_behavior(behavior4)
    calc_y_behavior4 = Behavior.response(calc_x, calc_y)
    behavior5 = {year: {'_BE_charity': [[-0.5, -0.5, -0.5]]}}
    behavior_y.update_behavior(behavior5)
    calc_y_behavior5 = Behavior.response(calc_x, calc_y)
    # check that total income tax liability differs across the
    # six sets of behavioral-response elasticities
    assert (calc_y_behavior0.records.iitax.sum() !=
            calc_y_behavior1.records.iitax.sum() !=
            calc_y_behavior2.records.iitax.sum() !=
            calc_y_behavior3.records.iitax.sum() !=
            calc_y_behavior4.records.iitax.sum() !=
            calc_y_behavior5.records.iitax.sum())
    # test incorrect _mtr_xy() usage
    with pytest.raises(ValueError):
        Behavior._mtr_xy(calc_x, calc_y, mtr_of='e00200p', tax_type='?')
Пример #7
0
def reform_results(reform_dict, puf_data):
    """
    Return actual results of the reform specified in reform_dict.
    """
    # pylint: disable=too-many-locals
    # create current-law-policy Calculator object
    pol1 = Policy()
    rec1 = Records(data=puf_data)
    calc1 = Calculator(policy=pol1, records=rec1, verbose=False, behavior=None)
    # create reform Calculator object with possible behavioral responses
    start_year = reform_dict['start_year']
    beh2 = Behavior()
    if '_BE_cg' in reform_dict['value']:
        elasticity = reform_dict['value']['_BE_cg']
        del reform_dict['value']['_BE_cg']  # in order to have a valid reform
        beh_assump = {start_year: {'_BE_cg': elasticity}}
        beh2.update_behavior(beh_assump)
    reform = {start_year: reform_dict['value']}
    pol2 = Policy()
    pol2.implement_reform(reform)
    rec2 = Records(data=puf_data)
    calc2 = Calculator(policy=pol2, records=rec2, verbose=False, behavior=beh2)
    # increment both calculators to reform's start_year
    calc1.advance_to_year(start_year)
    calc2.advance_to_year(start_year)
    # calculate prereform and postreform output for several years
    output_type = reform_dict['output_type']
    num_years = 4
    results = list()
    for _ in range(0, num_years):
        calc1.calc_all()
        prereform = getattr(calc1.records, output_type)
        if calc2.behavior.has_response():
            calc_clp = calc2.current_law_version()
            calc2_br = Behavior.response(calc_clp, calc2)
            postreform = getattr(calc2_br.records, output_type)
        else:
            calc2.calc_all()
            postreform = getattr(calc2.records, output_type)
        diff = postreform - prereform
        weighted_sum_diff = (diff * calc1.records.s006).sum() * 1.0e-9
        results.append(weighted_sum_diff)
        calc1.increment_year()
        calc2.increment_year()
    # write actual results to actual_str
    reform_description = reform_dict['name']
    actual_str = '{}\n'.format(reform_description)
    actual_str += 'Tax-Calculator'
    for iyr in range(0, num_years):
        actual_str += ',{:.1f}'.format(results[iyr])
    return actual_str
Пример #8
0
def test_multiyear_diagnostic_table_w_behv(records_2009):
    pol = Policy()
    behv = Behavior()
    calc = Calculator(policy=pol, records=records_2009, behavior=behv)
    assert calc.current_year == 2013
    reform = {2013: {"_II_rt7": [0.33], "_PT_rt7": [0.33]}}
    pol.implement_reform(reform)
    reform_be = {2013: {"_BE_sub": [0.4], "_BE_cg": [-3.67]}}
    behv.update_behavior(reform_be)
    calc_clp = calc.current_law_version()
    calc_behv = Behavior.response(calc_clp, calc)
    calc_behv.calc_all()
    liabilities_x = (calc_behv.records._combined * calc_behv.records.s006).sum()
    adt = multiyear_diagnostic_table(calc_behv, 1)
    # extract combined liabilities as a float and
    # adopt units of the raw calculator data in liabilities_x
    liabilities_y = adt.iloc[18].tolist()[0] * 1000000000
    npt.assert_almost_equal(liabilities_x, liabilities_y, 2)
Пример #9
0
def results(year, calc):
    """
    Return aggregate, weighted income and payroll tax revenue (in billions).
    """
    calc.advance_to_year(year)
    if calc.behavior.has_response():
        calc_clp = calc.current_law_version()
        calc_br = Behavior.response(calc_clp, calc)
        # pylint: disable=protected-access
        itax_rev = (calc_br.records._iitax * calc.records.s006).sum()
        ptax_rev = (calc_br.records._payrolltax * calc.records.s006).sum()
        ltcg_amt = (calc_br.records.p23250 * calc.records.s006).sum()
    else:
        calc.calc_all()
        # pylint: disable=protected-access
        itax_rev = (calc.records._iitax * calc.records.s006).sum()
        ptax_rev = (calc.records._payrolltax * calc.records.s006).sum()
        ltcg_amt = (calc.records.p23250 * calc.records.s006).sum()
    return (round(itax_rev * 1.0e-9, 3), round(ptax_rev * 1.0e-9, 3), round(ltcg_amt * 1.0e-9, 3))
Пример #10
0
def test_myr_diag_table_w_behv(cps_subsample):
    pol = Policy()
    rec = Records.cps_constructor(data=cps_subsample)
    year = rec.current_year
    beh = Behavior()
    calc = Calculator(policy=pol, records=rec, behavior=beh)
    assert calc.current_year == year
    reform = {year: {'_II_rt7': [0.33], '_PT_rt7': [0.33]}}
    pol.implement_reform(reform)
    reform_behav = {year: {'_BE_sub': [0.4], '_BE_cg': [-3.67]}}
    beh.update_behavior(reform_behav)
    calc_clp = calc.current_law_version()
    calc_beh = Behavior.response(calc_clp, calc)
    calc_beh.calc_all()
    liabilities_x = (calc_beh.records.combined * calc_beh.records.s006).sum()
    adt = multiyear_diagnostic_table(calc_beh, 1)
    # extract combined liabilities as a float and
    # adopt units of the raw calculator data in liabilities_x
    liabilities_y = adt.iloc[19].tolist()[0] * 1e9
    assert np.allclose(liabilities_x, liabilities_y, atol=0.01, rtol=0.0)
Пример #11
0
def results(year, calc):
    """
    Return aggregate, weighted income and payroll tax revenue (in billions).
    """
    calc.advance_to_year(year)
    if calc.behavior.has_response():
        calc_clp = calc.current_law_version()
        calc_br = Behavior.response(calc_clp, calc)
        # pylint: disable=protected-access
        itax_rev = (calc_br.records._iitax * calc.records.s006).sum()
        ptax_rev = (calc_br.records._payrolltax * calc.records.s006).sum()
        ltcg_amt = (calc_br.records.p23250 * calc.records.s006).sum()
    else:
        calc.calc_all()
        # pylint: disable=protected-access
        itax_rev = (calc.records._iitax * calc.records.s006).sum()
        ptax_rev = (calc.records._payrolltax * calc.records.s006).sum()
        ltcg_amt = (calc.records.p23250 * calc.records.s006).sum()
    return (round(itax_rev * 1.0e-9, 3), round(ptax_rev * 1.0e-9,
                                               3), round(ltcg_amt * 1.0e-9, 3))
Пример #12
0
def test_myr_diag_table_w_behv(records_2009):
    pol = Policy()
    behv = Behavior()
    calc = Calculator(policy=pol, records=records_2009, behavior=behv)
    assert calc.current_year == 2013
    reform = {
        2013: {
            '_II_rt7': [0.33],
            '_PT_rt7': [0.33],
        }
    }
    pol.implement_reform(reform)
    reform_be = {2013: {'_BE_sub': [0.4], '_BE_cg': [-3.67]}}
    behv.update_behavior(reform_be)
    calc_clp = calc.current_law_version()
    calc_behv = Behavior.response(calc_clp, calc)
    calc_behv.calc_all()
    liabilities_x = (calc_behv.records.combined * calc_behv.records.s006).sum()
    adt = multiyear_diagnostic_table(calc_behv, 1)
    # extract combined liabilities as a float and
    # adopt units of the raw calculator data in liabilities_x
    liabilities_y = adt.iloc[19].tolist()[0] * 1000000000
    assert_almost_equal(liabilities_x, liabilities_y, 2)
Пример #13
0
def test_behavioral_response_calculator(cps_subsample):
    # create Records object
    rec = Records.cps_constructor(data=cps_subsample)
    year = rec.current_year
    # create Policy object
    pol = Policy()
    # create current-law Calculator object
    calc1 = Calculator(policy=pol, records=rec)
    # implement policy reform
    reform = {year: {'_II_rt7': [0.496],
                     '_PT_rt7': [0.496]}}
    pol.implement_reform(reform)
    # create reform Calculator object with no behavioral response
    behv = Behavior()
    calc2 = Calculator(policy=pol, records=rec, behavior=behv)
    # test incorrect use of Behavior._mtr_xy method
    with pytest.raises(ValueError):
        Behavior._mtr_xy(calc1, calc2, mtr_of='e00200p', tax_type='nonsense')
    # vary substitution and income effects in Behavior object
    behavior0 = {year: {'_BE_sub': [0.0],
                        '_BE_cg': [0.0],
                        '_BE_charity': [[0.0, 0.0, 0.0]]}}
    behv0 = Behavior()
    behv0.update_behavior(behavior0)
    calc2 = Calculator(policy=pol, records=rec, behavior=behv0)
    assert calc2.behavior.has_response() is False
    calc2_behv0 = Behavior.response(calc1, calc2)
    behavior1 = {year: {'_BE_sub': [0.3], '_BE_inc': [-0.1], '_BE_cg': [0.0],
                        '_BE_subinc_wrt_earnings': [True]}}
    behv1 = Behavior()
    behv1.update_behavior(behavior1)
    calc2 = Calculator(policy=pol, records=rec, behavior=behv1)
    assert calc2.behavior.has_response() is True
    epsilon = 1e-9
    assert abs(calc2.behavior.BE_sub - 0.3) < epsilon
    assert abs(calc2.behavior.BE_inc - -0.1) < epsilon
    assert abs(calc2.behavior.BE_cg - 0.0) < epsilon
    calc2_behv1 = Behavior.response(calc1, calc2)
    behavior2 = {year: {'_BE_sub': [0.5], '_BE_cg': [-0.8]}}
    behv2 = Behavior()
    behv2.update_behavior(behavior2)
    calc2 = Calculator(policy=pol, records=rec, behavior=behv2)
    assert calc2.behavior.has_response() is True
    calc2_behv2 = Behavior.response(calc1, calc2, trace=True)
    behavior3 = {year: {'_BE_inc': [-0.2], '_BE_cg': [-0.8]}}
    behv3 = Behavior()
    behv3.update_behavior(behavior3)
    calc2 = Calculator(policy=pol, records=rec, behavior=behv3)
    assert calc2.behavior.has_response() is True
    calc2_behv3 = Behavior.response(calc1, calc2)
    behavior4 = {year: {'_BE_cg': [-0.8]}}
    behv4 = Behavior()
    behv4.update_behavior(behavior4)
    calc2 = Calculator(policy=pol, records=rec, behavior=behv4)
    assert calc2.behavior.has_response() is True
    calc2_behv4 = Behavior.response(calc1, calc2)
    behavior5 = {year: {'_BE_charity': [[-0.5, -0.5, -0.5]]}}
    behv5 = Behavior()
    behv5.update_behavior(behavior5)
    calc2 = Calculator(policy=pol, records=rec, behavior=behv5)
    assert calc2.behavior.has_response() is True
    calc2_behv5 = Behavior.response(calc1, calc2)
    # check that total income tax liability differs across the
    # six sets of behavioral-response elasticities
    assert (calc2_behv0.records.iitax.sum() !=
            calc2_behv1.records.iitax.sum() !=
            calc2_behv2.records.iitax.sum() !=
            calc2_behv3.records.iitax.sum() !=
            calc2_behv4.records.iitax.sum() !=
            calc2_behv5.records.iitax.sum())
Пример #14
0
def calculator_objects(year_n, start_year,
                       use_puf_not_cps,
                       use_full_sample,
                       user_mods,
                       behavior_allowed):
    """
    This function assumes that the specified user_mods is a dictionary
      returned by the Calculator.read_json_param_objects() function.
    This function returns (calc1, calc2) where
      calc1 is pre-reform Calculator object calculated for year_n, and
      calc2 is post-reform Calculator object calculated for year_n.
    Set behavior_allowed to False when generating static results or
      set behavior_allowed to True when generating dynamic results.
    """
    # pylint: disable=too-many-arguments,too-many-locals
    # pylint: disable=too-many-branches,too-many-statements

    check_user_mods(user_mods)

    # specify Consumption instance
    consump = Consumption()
    consump_assumptions = user_mods['consumption']
    consump.update_consumption(consump_assumptions)

    # specify growdiff_baseline and growdiff_response
    growdiff_baseline = GrowDiff()
    growdiff_response = GrowDiff()
    growdiff_base_assumps = user_mods['growdiff_baseline']
    growdiff_resp_assumps = user_mods['growdiff_response']
    growdiff_baseline.update_growdiff(growdiff_base_assumps)
    growdiff_response.update_growdiff(growdiff_resp_assumps)

    # create pre-reform and post-reform GrowFactors instances
    growfactors_pre = GrowFactors()
    growdiff_baseline.apply_to(growfactors_pre)
    growfactors_post = GrowFactors()
    growdiff_baseline.apply_to(growfactors_post)
    growdiff_response.apply_to(growfactors_post)

    # create sample pd.DataFrame from specified input file and sampling scheme
    tbi_path = os.path.abspath(os.path.dirname(__file__))
    if use_puf_not_cps:
        # first try TaxBrain deployment path
        input_path = 'puf.csv.gz'
        if not os.path.isfile(input_path):
            # otherwise try local Tax-Calculator deployment path
            input_path = os.path.join(tbi_path, '..', '..', 'puf.csv')
        sampling_frac = 0.05
        sampling_seed = 2222
    else:  # if using cps input not puf input
        # first try Tax-Calculator code path
        input_path = os.path.join(tbi_path, '..', 'cps.csv.gz')
        if not os.path.isfile(input_path):
            # otherwise read from taxcalc package "egg"
            input_path = None  # pragma: no cover
            full_sample = read_egg_csv('cps.csv.gz')  # pragma: no cover
        sampling_frac = 0.03
        sampling_seed = 180
    if input_path:
        full_sample = pd.read_csv(input_path)
    if use_full_sample:
        sample = full_sample
    else:
        sample = full_sample.sample(frac=sampling_frac,
                                    random_state=sampling_seed)

    # create pre-reform Calculator instance
    if use_puf_not_cps:
        recs1 = Records(data=sample,
                        gfactors=growfactors_pre)
    else:
        recs1 = Records.cps_constructor(data=sample,
                                        gfactors=growfactors_pre)
    policy1 = Policy(gfactors=growfactors_pre)
    calc1 = Calculator(policy=policy1, records=recs1, consumption=consump)
    while calc1.current_year < start_year:
        calc1.increment_year()
    calc1.calc_all()
    assert calc1.current_year == start_year

    # specify Behavior instance
    behv = Behavior()
    behavior_assumps = user_mods['behavior']
    behv.update_behavior(behavior_assumps)

    # always prevent both behavioral response and growdiff response
    if behv.has_any_response() and growdiff_response.has_any_response():
        msg = 'BOTH behavior AND growdiff_response HAVE RESPONSE'
        raise ValueError(msg)

    # optionally prevent behavioral response
    if behv.has_any_response() and not behavior_allowed:
        msg = 'A behavior RESPONSE IS NOT ALLOWED'
        raise ValueError(msg)

    # create post-reform Calculator instance
    if use_puf_not_cps:
        recs2 = Records(data=sample,
                        gfactors=growfactors_post)
    else:
        recs2 = Records.cps_constructor(data=sample,
                                        gfactors=growfactors_post)
    policy2 = Policy(gfactors=growfactors_post)
    policy_reform = user_mods['policy']
    policy2.implement_reform(policy_reform)
    calc2 = Calculator(policy=policy2, records=recs2,
                       consumption=consump, behavior=behv)
    while calc2.current_year < start_year:
        calc2.increment_year()
    assert calc2.current_year == start_year

    # delete objects now embedded in calc1 and calc2
    del sample
    del full_sample
    del consump
    del growdiff_baseline
    del growdiff_response
    del growfactors_pre
    del growfactors_post
    del behv
    del recs1
    del recs2
    del policy1
    del policy2

    # increment Calculator objects for year_n years and calculate
    for _ in range(0, year_n):
        calc1.increment_year()
        calc2.increment_year()
    calc1.calc_all()
    if calc2.behavior_has_response():
        calc2 = Behavior.response(calc1, calc2)
    else:
        calc2.calc_all()

    # return calculated Calculator objects
    return (calc1, calc2)
Пример #15
0
def test_behavioral_response(use_puf_not_cps, puf_subsample, cps_fullsample):
    """
    Test that behavioral-response results are the same
    when generated from standard Tax-Calculator calls and
    when generated from tbi.run_nth_year_taxcalc_model() calls
    """
    # specify reform and assumptions
    reform_json = """
    {"policy": {
        "_II_rt5": {"2020": [0.25]},
        "_II_rt6": {"2020": [0.25]},
        "_II_rt7": {"2020": [0.25]},
        "_PT_rt5": {"2020": [0.25]},
        "_PT_rt6": {"2020": [0.25]},
        "_PT_rt7": {"2020": [0.25]},
        "_II_em": {"2020": [1000]}
    }}
    """
    assump_json = """
    {"behavior": {"_BE_sub": {"2013": [0.25]}},
     "growdiff_baseline": {},
     "growdiff_response": {},
     "consumption": {},
     "growmodel": {}
    }
    """
    params = Calculator.read_json_param_objects(reform_json, assump_json)
    # specify keyword arguments used in tbi function call
    kwargs = {
        'start_year': 2019,
        'year_n': 0,
        'use_puf_not_cps': use_puf_not_cps,
        'use_full_sample': False,
        'user_mods': {
            'policy': params['policy'],
            'behavior': params['behavior'],
            'growdiff_baseline': params['growdiff_baseline'],
            'growdiff_response': params['growdiff_response'],
            'consumption': params['consumption'],
            'growmodel': params['growmodel']
        },
        'return_dict': False
    }
    # generate aggregate results two ways: using tbi and standard calls
    num_years = 9
    std_res = dict()
    tbi_res = dict()
    if use_puf_not_cps:
        rec = Records(data=puf_subsample)
    else:
        # IMPORTANT: must use same subsample as used in test_cpscsv.py because
        #            that is the subsample used by run_nth_year_taxcalc_model
        std_cps_subsample = cps_fullsample.sample(frac=0.03, random_state=180)
        rec = Records.cps_constructor(data=std_cps_subsample)
    for using_tbi in [True, False]:
        for year in range(0, num_years):
            cyr = year + kwargs['start_year']
            if using_tbi:
                kwargs['year_n'] = year
                tables = run_nth_year_taxcalc_model(**kwargs)
                tbi_res[cyr] = dict()
                for tbl in ['aggr_1', 'aggr_2', 'aggr_d']:
                    tbi_res[cyr][tbl] = tables[tbl]
            else:
                pol = Policy()
                calc1 = Calculator(policy=pol, records=rec)
                pol.implement_reform(params['policy'])
                assert not pol.parameter_errors
                beh = Behavior()
                beh.update_behavior(params['behavior'])
                calc2 = Calculator(policy=pol, records=rec, behavior=beh)
                assert calc2.behavior_has_response()
                calc1.advance_to_year(cyr)
                calc2.advance_to_year(cyr)
                calc2 = Behavior.response(calc1, calc2)
                std_res[cyr] = dict()
                for tbl in ['aggr_1', 'aggr_2', 'aggr_d']:
                    if tbl.endswith('_1'):
                        itax = calc1.weighted_total('iitax')
                        ptax = calc1.weighted_total('payrolltax')
                        ctax = calc1.weighted_total('combined')
                    elif tbl.endswith('_2'):
                        itax = calc2.weighted_total('iitax')
                        ptax = calc2.weighted_total('payrolltax')
                        ctax = calc2.weighted_total('combined')
                    elif tbl.endswith('_d'):
                        itax = (calc2.weighted_total('iitax') -
                                calc1.weighted_total('iitax'))
                        ptax = (calc2.weighted_total('payrolltax') -
                                calc1.weighted_total('payrolltax'))
                        ctax = (calc2.weighted_total('combined') -
                                calc1.weighted_total('combined'))
                    cols = ['0_{}'.format(year)]
                    rows = ['ind_tax', 'payroll_tax', 'combined_tax']
                    datalist = [itax, ptax, ctax]
                    std_res[cyr][tbl] = pd.DataFrame(data=datalist,
                                                     index=rows,
                                                     columns=cols)
                    for col in std_res[cyr][tbl].columns:
                        val = std_res[cyr][tbl][col] * 1e-9
                        std_res[cyr][tbl][col] = round(val, 3)

    # compare the two sets of results
    # NOTE that the PUF tbi results have been "fuzzed" for privacy reasons,
    #      so there is no expectation that those results should be identical.
    no_diffs = True
    cps_dump = False  # setting to True produces dump output and test failure
    if use_puf_not_cps:
        reltol = 0.004  # std and tbi differ if more than 0.4 percent different
        dataset = 'PUF'
        dumping = False
    else:  # CPS results are not "fuzzed", so
        reltol = 1e-9  # std and tbi should be virtually identical
        dataset = 'CPS'
        dumping = cps_dump
    for year in range(0, num_years):
        cyr = year + kwargs['start_year']
        do_dump = bool(dumping and cyr >= 2019 and cyr <= 2020)
        col = '0_{}'.format(year)
        for tbl in ['aggr_1', 'aggr_2', 'aggr_d']:
            tbi = tbi_res[cyr][tbl][col]
            if do_dump:
                txt = 'DUMP of {} {} table for year {}:'
                print(txt.format(dataset, tbl, cyr))
                print(tbi)
            std = std_res[cyr][tbl][col]
            if not np.allclose(tbi, std, atol=0.0, rtol=reltol):
                no_diffs = False
                txt = '***** {} diff in {} table for year {} (year_n={}):'
                print(txt.format(dataset, tbl, cyr, year))
                print('TBI RESULTS:')
                print(tbi)
                print('STD RESULTS:')
                print(std)
    assert no_diffs
    assert not dumping
Пример #16
0
def calculate_baseline_and_reform(year_n, start_year, taxrec_df, user_mods):
    """
    calculate_baseline_and_reform function assumes specified user_mods is
    a dictionary returned by the Calculator.read_json_parameter_files()
    function with an extra key:value pair that is specified as
    'gdp_elasticity': {'value': <float_value>}.
    """
    # pylint: disable=too-many-locals,too-many-branches,too-many-statements

    check_user_mods(user_mods)

    # Specify Consumption instance
    consump = Consumption()
    consump_assumptions = user_mods['consumption']
    consump.update_consumption(consump_assumptions)

    # Specify growdiff_baseline and growdiff_response
    growdiff_baseline = Growdiff()
    growdiff_response = Growdiff()
    growdiff_base_assumps = user_mods['growdiff_baseline']
    growdiff_resp_assumps = user_mods['growdiff_response']
    growdiff_baseline.update_growdiff(growdiff_base_assumps)
    growdiff_response.update_growdiff(growdiff_resp_assumps)

    # Create pre-reform and post-reform Growfactors instances
    growfactors_pre = Growfactors()
    growdiff_baseline.apply_to(growfactors_pre)
    growfactors_post = Growfactors()
    growdiff_baseline.apply_to(growfactors_post)
    growdiff_response.apply_to(growfactors_post)

    # Create pre-reform Calculator instance
    recs1 = Records(data=taxrec_df.copy(deep=True), gfactors=growfactors_pre)
    policy1 = Policy(gfactors=growfactors_pre)
    calc1 = Calculator(policy=policy1, records=recs1, consumption=consump)
    while calc1.current_year < start_year:
        calc1.increment_year()
    calc1.calc_all()
    assert calc1.current_year == start_year

    # Create pre-reform Calculator instance with extra income
    recs1p = Records(data=taxrec_df.copy(deep=True), gfactors=growfactors_pre)
    # add one dollar to total wages and salaries of each filing unit
    recs1p.e00200 += 1.0  # pylint: disable=no-member
    policy1p = Policy(gfactors=growfactors_pre)
    calc1p = Calculator(policy=policy1p, records=recs1p, consumption=consump)
    while calc1p.current_year < start_year:
        calc1p.increment_year()
    calc1p.calc_all()
    assert calc1p.current_year == start_year

    # Construct mask to show which of the calc1 and calc1p results differ
    soit1 = results(calc1)
    soit1p = results(calc1p)
    mask = (soit1._iitax != soit1p._iitax)  # pylint: disable=protected-access

    # Specify Behavior instance
    behv = Behavior()
    behavior_assumps = user_mods['behavior']
    behv.update_behavior(behavior_assumps)

    # Prevent both behavioral response and growdiff response
    if behv.has_any_response() and growdiff_response.has_any_response():
        msg = 'BOTH behavior AND growdiff_response HAVE RESPONSE'
        raise ValueError(msg)

    # Create post-reform Calculator instance with behavior
    recs2 = Records(data=taxrec_df.copy(deep=True), gfactors=growfactors_post)
    policy2 = Policy(gfactors=growfactors_post)
    policy_reform = user_mods['policy']
    policy2.implement_reform(policy_reform)
    calc2 = Calculator(policy=policy2,
                       records=recs2,
                       consumption=consump,
                       behavior=behv)
    while calc2.current_year < start_year:
        calc2.increment_year()
    calc2.calc_all()
    assert calc2.current_year == start_year

    # Seed random number generator with a seed value based on user_mods
    seed = random_seed(user_mods)
    print('seed={}'.format(seed))
    np.random.seed(seed)  # pylint: disable=no-member

    # Increment Calculator objects for year_n years and calculate
    for _ in range(0, year_n):
        calc1.increment_year()
        calc2.increment_year()
    calc1.calc_all()
    if calc2.behavior.has_response():
        calc2 = Behavior.response(calc1, calc2)
    else:
        calc2.calc_all()

    # Return calculated results and mask
    soit1 = results(calc1)
    soit2 = results(calc2)
    return soit1, soit2, mask
Пример #17
0
def run_nth_year(year_n, start_year, is_strict, tax_dta="", user_mods="", return_json=True):


    #########################################################################
    #   Create Calculators and Masks
    #########################################################################
    records = Records(tax_dta.copy(deep=True))
    records2 = copy.deepcopy(records)
    records3 = copy.deepcopy(records)
    # add 1 dollar to gross income
    records2.e00200 += 1
    # Default Plans
    # Create a default Policy object
    params = Policy(start_year=2013)
    # Create a Calculator
    calc1 = Calculator(policy=params, records=records)

    if is_strict:
        unknown_params = get_unknown_parameters(user_mods, start_year)
        if unknown_params:
            raise ValueError("Unknown parameters: {}".format(unknown_params))

    growth_assumptions = only_growth_assumptions(user_mods, start_year)
    if growth_assumptions:
        calc1.growth.update_economic_growth(growth_assumptions)

    while calc1.current_year < start_year:
        calc1.increment_year()
    calc1.calc_all()
    assert calc1.current_year == start_year

    params2 = Policy(start_year=2013)
    # Create a Calculator with one extra dollar of income
    calc2 = Calculator(policy=params2, records=records2)
    if growth_assumptions:
        calc2.growth.update_economic_growth(growth_assumptions)

    while calc2.current_year < start_year:
        calc2.increment_year()
    calc2.calc_all()
    assert calc2.current_year == start_year

    # where do the results differ..
    soit1 = results(calc1)
    soit2 = results(calc2)
    mask = (soit1._iitax != soit2._iitax)

    # User specified Plans
    behavior_assumptions = only_behavior_assumptions(user_mods, start_year)

    reform_mods = only_reform_mods(user_mods, start_year)

    params3 = Policy(start_year=2013)
    params3.implement_reform(reform_mods)

    behavior3 = Behavior(start_year=2013)
    # Create a Calculator for the user specified plan
    calc3 = Calculator(policy=params3, records=records3, behavior=behavior3)
    if growth_assumptions:
        calc3.growth.update_economic_growth(growth_assumptions)

    if behavior_assumptions:
        calc3.behavior.update_behavior(behavior_assumptions)

    while calc3.current_year < start_year:
        calc3.increment_year()
    assert calc3.current_year == start_year

    calc3.calc_all()
    # Get a random seed based on user specified plan
    seed = random_seed_from_plan(calc3)
    np.random.seed(seed)

    start_time = time.time()
    for i in range(0, year_n):
        calc1.increment_year()
        calc3.increment_year()

    calc1.calc_all()
    if calc3.behavior.has_response():
        calc3 = Behavior.response(calc1, calc3)
    else:
        calc3.calc_all()
    soit1 = results(calc1)
    soit3 = results(calc3)
    # Means of plan Y by decile
    # diffs of plan Y by decile
    # Means of plan Y by income bin
    # diffs of plan Y by income bin
    mY_dec, mX_dec, df_dec, pdf_dec, cdf_dec, mY_bin, mX_bin, df_bin, \
        pdf_bin, cdf_bin, diff_sum, payrolltax_diff_sum, combined_diff_sum = \
        groupby_means_and_comparisons(soit1, soit3, mask)

    elapsed_time = time.time() - start_time
    print("elapsed time for this run: ", elapsed_time)
    start_year += 1

    #num_fiscal_year_total = format_print(diff_sum)
    #fica_fiscal_year_total = format_print(payrolltax_diff_sum)
    #combined_fiscal_year_total = format_print(combined_diff_sum)
    tots = [diff_sum, payrolltax_diff_sum, combined_diff_sum]
    fiscal_tots= pd.DataFrame(data=tots, index=total_row_names)

    # Get rid of negative incomes
    df_bin.drop(df_bin.index[0], inplace=True)
    pdf_bin.drop(pdf_bin.index[0], inplace=True)
    cdf_bin.drop(cdf_bin.index[0], inplace=True)
    mY_bin.drop(mY_bin.index[0], inplace=True)
    mX_bin.drop(mX_bin.index[0], inplace=True)

    if not return_json:
        return (mY_dec, mX_dec, df_dec, pdf_dec, cdf_dec, mY_bin, mX_bin,
                df_bin, pdf_bin, cdf_bin, fiscal_tots)


    decile_row_names_i = [x+'_'+str(year_n) for x in decile_row_names]

    bin_row_names_i = [x+'_'+str(year_n) for x in bin_row_names]

    total_row_names_i = [x+'_'+str(year_n) for x in total_row_names]

    mY_dec_table_i = create_json_table(mY_dec,
                                        row_names=decile_row_names_i,
                                        column_types=planY_column_types)
    mX_dec_table_i = create_json_table(mX_dec,
                                        row_names=decile_row_names_i,
                                        column_types=planY_column_types)
    df_dec_table_i = create_json_table(df_dec,
                                        row_names=decile_row_names_i,
                                        column_types=diff_column_types)

    pdf_dec_table_i = create_json_table(pdf_dec,
                                        row_names=decile_row_names_i,
                                        column_types=diff_column_types)

    cdf_dec_table_i = create_json_table(cdf_dec,
                                        row_names=decile_row_names_i,
                                        column_types=diff_column_types)

    mY_bin_table_i = create_json_table(mY_bin,
                                        row_names=bin_row_names_i,
                                        column_types=planY_column_types)
    mX_bin_table_i = create_json_table(mX_bin,
                                        row_names=bin_row_names_i,
                                        column_types=planY_column_types)

    df_bin_table_i = create_json_table(df_bin,
                                        row_names=bin_row_names_i,
                                        column_types=diff_column_types)

    pdf_bin_table_i = create_json_table(pdf_bin,
                                        row_names=bin_row_names_i,
                                        column_types=diff_column_types)

    cdf_bin_table_i = create_json_table(cdf_bin,
                                        row_names=bin_row_names_i,
                                        column_types=diff_column_types)

    fiscal_yr_total = create_json_table(fiscal_tots, row_names=total_row_names_i)
    # Make the one-item lists of strings just strings
    fiscal_yr_total = dict((k, v[0]) for k,v in fiscal_yr_total.items())

    return (mY_dec_table_i, mX_dec_table_i, df_dec_table_i, pdf_dec_table_i,
            cdf_dec_table_i, mY_bin_table_i, mX_bin_table_i, df_bin_table_i,
            pdf_bin_table_i, cdf_bin_table_i, fiscal_yr_total)
Пример #18
0
    calc2 = Calculator(policy=pol2, records=rec2, verbose=False, behavior=beh2)
    output_type = REFORMS_JSON.get(this_reform).get("output_type")
    reform_name = REFORMS_JSON.get(this_reform).get("name")

    # increment both calculators to reform's start_year
    calc1.advance_to_year(start_year)
    calc2.advance_to_year(start_year)

    # calculate prereform and postreform for num_years
    reform_results = []
    for _ in range(0, NUM_YEARS):
        calc1.calc_all()
        prereform = getattr(calc1.records, output_type)
        if calc2.behavior.has_response():
            calc_clp = calc2.current_law_version()
            calc2_br = Behavior.response(calc_clp, calc2)
            postreform = getattr(calc2_br.records, output_type)
        else:
            calc2.calc_all()
            postreform = getattr(calc2.records, output_type)
        diff = postreform - prereform
        weighted_sum_diff = (diff * calc1.records.s006).sum() * 1.0e-9
        reform_results.append(weighted_sum_diff)
        calc1.increment_year()
        calc2.increment_year()

    # put reform_results in the dictionary of all results
    RESULTS[reform_name] = reform_results

# write RESULTS to text file
OFILE = open('reform_results.txt', 'w')
Пример #19
0
def dropq_calculate(year_n, start_year, taxrec_df, user_mods, behavior_allowed,
                    mask_computed):
    """
    The dropq_calculate function assumes specified user_mods is
      a dictionary returned by the Calculator.read_json_parameter_files()
      function with an extra key:value pair that is specified as
      'gdp_elasticity': {'value': <float_value>}.
    The function returns (calc1, calc2, mask) where
      calc1 is pre-reform Calculator object calculated for year_n,
      calc2 is post-reform Calculator object calculated for year_n, and
      mask is boolean array if compute_mask=True or None otherwise
    """
    # pylint: disable=too-many-arguments,too-many-locals,too-many-statements

    check_user_mods(user_mods)

    # specify Consumption instance
    consump = Consumption()
    consump_assumptions = user_mods['consumption']
    consump.update_consumption(consump_assumptions)

    # specify growdiff_baseline and growdiff_response
    growdiff_baseline = Growdiff()
    growdiff_response = Growdiff()
    growdiff_base_assumps = user_mods['growdiff_baseline']
    growdiff_resp_assumps = user_mods['growdiff_response']
    growdiff_baseline.update_growdiff(growdiff_base_assumps)
    growdiff_response.update_growdiff(growdiff_resp_assumps)

    # create pre-reform and post-reform Growfactors instances
    growfactors_pre = Growfactors()
    growdiff_baseline.apply_to(growfactors_pre)
    growfactors_post = Growfactors()
    growdiff_baseline.apply_to(growfactors_post)
    growdiff_response.apply_to(growfactors_post)

    # create pre-reform Calculator instance
    recs1 = Records(data=taxrec_df.copy(deep=True), gfactors=growfactors_pre)
    policy1 = Policy(gfactors=growfactors_pre)
    calc1 = Calculator(policy=policy1, records=recs1, consumption=consump)
    while calc1.current_year < start_year:
        calc1.increment_year()
    calc1.calc_all()
    assert calc1.current_year == start_year

    # optionally compute mask
    if mask_computed:
        # create pre-reform Calculator instance with extra income
        recs1p = Records(data=taxrec_df.copy(deep=True),
                         gfactors=growfactors_pre)
        # add one dollar to total wages and salaries of each filing unit
        recs1p.e00200 += 1.0  # pylint: disable=no-member
        recs1p.e00200p += 1.0  # pylint: disable=no-member
        policy1p = Policy(gfactors=growfactors_pre)
        # create Calculator with recs1p and calculate for start_year
        calc1p = Calculator(policy=policy1p,
                            records=recs1p,
                            consumption=consump)
        while calc1p.current_year < start_year:
            calc1p.increment_year()
        calc1p.calc_all()
        assert calc1p.current_year == start_year
        # compute mask that shows which of the calc1 and calc1p results differ
        res1 = results(calc1.records)
        res1p = results(calc1p.records)
        mask = (res1.iitax != res1p.iitax)
    else:
        mask = None

    # specify Behavior instance
    behv = Behavior()
    behavior_assumps = user_mods['behavior']
    behv.update_behavior(behavior_assumps)

    # always prevent both behavioral response and growdiff response
    if behv.has_any_response() and growdiff_response.has_any_response():
        msg = 'BOTH behavior AND growdiff_response HAVE RESPONSE'
        raise ValueError(msg)

    # optionally prevent behavioral response
    if behv.has_any_response() and not behavior_allowed:
        msg = 'A behavior RESPONSE IS NOT ALLOWED'
        raise ValueError(msg)

    # create post-reform Calculator instance
    recs2 = Records(data=taxrec_df.copy(deep=True), gfactors=growfactors_post)
    policy2 = Policy(gfactors=growfactors_post)
    policy_reform = user_mods['policy']
    policy2.implement_reform(policy_reform)
    calc2 = Calculator(policy=policy2,
                       records=recs2,
                       consumption=consump,
                       behavior=behv)
    while calc2.current_year < start_year:
        calc2.increment_year()
    calc2.calc_all()
    assert calc2.current_year == start_year

    # increment Calculator objects for year_n years and calculate
    for _ in range(0, year_n):
        calc1.increment_year()
        calc2.increment_year()
    calc1.calc_all()
    if calc2.behavior.has_response():
        calc2 = Behavior.response(calc1, calc2)
    else:
        calc2.calc_all()

    # return calculated Calculator objects and mask
    return (calc1, calc2, mask)
Пример #20
0
def calculate(year_n, start_year, use_puf_not_cps, use_full_sample, user_mods,
              behavior_allowed):
    """
    The calculate function assumes the specified user_mods is a dictionary
      returned by the Calculator.read_json_param_objects() function.
    The function returns (calc1, calc2, mask) where
      calc1 is pre-reform Calculator object calculated for year_n,
      calc2 is post-reform Calculator object calculated for year_n, and
      mask is boolean array marking records with reform-induced iitax diffs
    Set behavior_allowed to False when generating static results or
      set behavior_allowed to True when generating dynamic results.
    """
    # pylint: disable=too-many-arguments,too-many-locals
    # pylint: disable=too-many-branches,too-many-statements

    check_user_mods(user_mods)

    # specify Consumption instance
    consump = Consumption()
    consump_assumptions = user_mods['consumption']
    consump.update_consumption(consump_assumptions)

    # specify growdiff_baseline and growdiff_response
    growdiff_baseline = Growdiff()
    growdiff_response = Growdiff()
    growdiff_base_assumps = user_mods['growdiff_baseline']
    growdiff_resp_assumps = user_mods['growdiff_response']
    growdiff_baseline.update_growdiff(growdiff_base_assumps)
    growdiff_response.update_growdiff(growdiff_resp_assumps)

    # create pre-reform and post-reform Growfactors instances
    growfactors_pre = Growfactors()
    growdiff_baseline.apply_to(growfactors_pre)
    growfactors_post = Growfactors()
    growdiff_baseline.apply_to(growfactors_post)
    growdiff_response.apply_to(growfactors_post)

    # create sample pd.DataFrame from specified input file and sampling scheme
    stime = time.time()
    tbi_path = os.path.abspath(os.path.dirname(__file__))
    if use_puf_not_cps:
        # first try TaxBrain deployment path
        input_path = 'puf.csv.gz'
        if not os.path.isfile(input_path):
            # otherwise try local Tax-Calculator deployment path
            input_path = os.path.join(tbi_path, '..', '..', 'puf.csv')
        sampling_frac = 0.05
        sampling_seed = 180
    else:  # if using cps input not puf input
        # first try Tax-Calculator code path
        input_path = os.path.join(tbi_path, '..', 'cps.csv.gz')
        if not os.path.isfile(input_path):
            # otherwise read from taxcalc package "egg"
            input_path = None  # pragma: no cover
            full_sample = read_egg_csv('cps.csv.gz')  # pragma: no cover
        sampling_frac = 0.03
        sampling_seed = 180
    if input_path:
        full_sample = pd.read_csv(input_path)
    if use_full_sample:
        sample = full_sample
    else:
        sample = full_sample.sample(  # pylint: disable=no-member
            frac=sampling_frac,
            random_state=sampling_seed)
    if use_puf_not_cps:
        print('puf-read-time= {:.1f}'.format(time.time() - stime))
    else:
        print('cps-read-time= {:.1f}'.format(time.time() - stime))

    # create pre-reform Calculator instance
    if use_puf_not_cps:
        recs1 = Records(data=copy.deepcopy(sample), gfactors=growfactors_pre)
    else:
        recs1 = Records.cps_constructor(data=copy.deepcopy(sample),
                                        gfactors=growfactors_pre)
    policy1 = Policy(gfactors=growfactors_pre)
    calc1 = Calculator(policy=policy1, records=recs1, consumption=consump)
    while calc1.current_year < start_year:
        calc1.increment_year()
    calc1.calc_all()
    assert calc1.current_year == start_year

    # compute mask array
    res1 = calc1.dataframe(DIST_VARIABLES)
    if use_puf_not_cps:
        # create pre-reform Calculator instance with extra income
        recs1p = Records(data=copy.deepcopy(sample), gfactors=growfactors_pre)
        # add one dollar to the income of each filing unit to determine
        # which filing units undergo a resulting change in tax liability
        recs1p.e00200 += 1.0  # pylint: disable=no-member
        recs1p.e00200p += 1.0  # pylint: disable=no-member
        policy1p = Policy(gfactors=growfactors_pre)
        # create Calculator with recs1p and calculate for start_year
        calc1p = Calculator(policy=policy1p,
                            records=recs1p,
                            consumption=consump)
        while calc1p.current_year < start_year:
            calc1p.increment_year()
        calc1p.calc_all()
        assert calc1p.current_year == start_year
        # compute mask showing which of the calc1 and calc1p results differ;
        # mask is true if a filing unit's income tax liability changed after
        # a dollar was added to the filing unit's wage and salary income
        res1p = calc1p.dataframe(DIST_VARIABLES)
        mask = np.logical_not(  # pylint: disable=no-member
            np.isclose(res1.iitax, res1p.iitax, atol=0.001, rtol=0.0))
        assert np.any(mask)
    else:  # if use_cps_not_cps is False
        # indicate that no fuzzing of reform results is required
        mask = np.zeros(res1.shape[0], dtype=np.int8)

    # specify Behavior instance
    behv = Behavior()
    behavior_assumps = user_mods['behavior']
    behv.update_behavior(behavior_assumps)

    # always prevent both behavioral response and growdiff response
    if behv.has_any_response() and growdiff_response.has_any_response():
        msg = 'BOTH behavior AND growdiff_response HAVE RESPONSE'
        raise ValueError(msg)

    # optionally prevent behavioral response
    if behv.has_any_response() and not behavior_allowed:
        msg = 'A behavior RESPONSE IS NOT ALLOWED'
        raise ValueError(msg)

    # create post-reform Calculator instance
    if use_puf_not_cps:
        recs2 = Records(data=copy.deepcopy(sample), gfactors=growfactors_post)
    else:
        recs2 = Records.cps_constructor(data=copy.deepcopy(sample),
                                        gfactors=growfactors_post)
    policy2 = Policy(gfactors=growfactors_post)
    policy_reform = user_mods['policy']
    policy2.implement_reform(policy_reform)
    calc2 = Calculator(policy=policy2,
                       records=recs2,
                       consumption=consump,
                       behavior=behv)
    while calc2.current_year < start_year:
        calc2.increment_year()
    calc2.calc_all()
    assert calc2.current_year == start_year

    # increment Calculator objects for year_n years and calculate
    for _ in range(0, year_n):
        calc1.increment_year()
        calc2.increment_year()
    calc1.calc_all()
    if calc2.behavior_has_response():
        calc2 = Behavior.response(calc1, calc2)
    else:
        calc2.calc_all()

    # return calculated Calculator objects and mask
    return (calc1, calc2, mask)