Пример #1
0
    def get_animation(self, s=300., fs=20., prop_type='real', figsize=None):
        '''
        Get time evolution animation.

        :param s: Default value 300. Circle size.
        :param fs: Default value 20. Fontsize.
        :param figsize: Tuple. Default value None. Figsize.
        :param prop_type: Default value None. Figsize.

        :returns:
          * **ani** -- Animation.
        '''
        error_handling.empty_ndarray(self.prop, 'get_propagation or get_pumping')
        error_handling.positive_real(s, 's')
        error_handling.positive_real(fs, 'fs')
        error_handling.prop_type(prop_type)
        error_handling.tuple_2elem(figsize, 'figsize')
        if os.name == 'posix':
            blit = False
        else:
            blit = True
        if prop_type == 'real':
            color = self.prop.real
            max_val = max(np.max(color), -np.min(color))
            ticks = [-max_val, max_val]
            cmap = 'seismic'
        elif prop_type == 'imag':
            color = self.prop.imag
            max_val = max(np.max(color), -np.min(color))
            ticks = [-max_val, max_val]
            cmap = 'seismic'
        else:
            color = np.abs(self.prop) ** 2
            ticks = [0., np.max(color)]
            cmap = 'Reds'
        fig, ax = plt.subplots(figsize=figsize)
        plt.xlim([self.lat.coor['x'][0]-1., self.lat.coor['x'][-1]+1.])
        plt.ylim([self.lat.coor['y'][0]-1., self.lat.coor['y'][-1]+1.])
        scat = plt.scatter(self.lat.coor['x'], self.lat.coor['y'], c=color[:, 0],
                                   s=s, vmin=ticks[0], vmax=ticks[1],
                                   cmap=plt.get_cmap(cmap))
        frame = plt.gca()
        frame.axes.get_xaxis().set_ticks([])
        frame.axes.get_yaxis().set_ticks([])
        ax.set_aspect('equal')
        if prop_type == 'norm':
            cbar = fig.colorbar(scat, ticks=ticks)
            cbar.ax.set_yticklabels(['0','max'])
        else:
            cbar = fig.colorbar(scat, ticks=[ticks[0], 0, ticks[1]])
            cbar.ax.set_yticklabels(['min', '0','max'])

        def update(i, color, scat):
            scat.set_array(color[:, i])
            return scat,

        ani = animation.FuncAnimation(fig, update, frames=self.steps,
                                                  fargs=(color, scat), blit=blit, repeat=False)
        return ani
Пример #2
0
    def intensity_disk(self,
                       intensity,
                       s=200.,
                       fs=20.,
                       lims=None,
                       figsize=None,
                       title=r'$|\psi|^2$'):
        '''
        Plot the intensity. Colormap with identical disk shape.

        :param intensity: np.array.Field intensity.
        :param s: Default value 200. Disk size.
        :param fs: Default value 20. Font size.
        :param lims: List. Default value None. Colormap limits.
        :param figsize: Tuple. Default value None. Figure size.
        :param title: String. Default value '$|\psi_n|^2$'. Title.

        :returns:
            * **fig** -- Figure.
        '''
        error_handling.empty_ndarray(self.sys.lat.coor, 'sys.get_lattice')
        error_handling.ndarray(intensity, 'intensity', self.sys.lat.sites)
        error_handling.positive_real(s, 's')
        error_handling.positive_real(fs, 'fs')
        error_handling.tuple_2elem(figsize, 'figsize')
        error_handling.string(title, 'title')
        fig, ax = plt.subplots(figsize=figsize)
        plt.title(title, fontsize=fs + 5)
        map_red = plt.get_cmap('Reds')
        if lims is None:
            lims = [0., np.max(intensity)]
            y_ticks = ['0', 'max']
        else:
            y_ticks = lims
        plt.scatter(self.sys.lat.coor['x'],
                    self.sys.lat.coor['y'],
                    c=intensity,
                    s=s,
                    cmap=map_red,
                    vmin=lims[0],
                    vmax=lims[1])
        cbar = plt.colorbar(ticks=lims)
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_xlim(
            np.min(self.sys.lat.coor['x']) - 1.,
            np.max(self.sys.lat.coor['x']) + 1.)
        ax.set_ylim(
            np.min(self.sys.lat.coor['y']) - 1.,
            np.max(self.sys.lat.coor['y']) + 1.)
        cbar.ax.set_yticklabels([y_ticks[0], y_ticks[1]])
        cbar.ax.tick_params(labelsize=fs)
        ax.set_aspect('equal')
        fig.set_tight_layout(True)
        plt.draw()
        return fig
Пример #3
0
 def lattice_generic(self, coor, ms, lw, c, fs, axis, plt_hop, plt_hop_low,
                     plt_index, figsize):
     '''
     Private method called by *lattice* and *lattice_hop*.
     '''
     error_handling.positive_real(ms, 'ms')
     error_handling.positive_real(lw, 'lw')
     error_handling.positive_real(c, 'c')
     error_handling.positive_real(fs, 'fs')
     error_handling.boolean(axis, 'axis')
     error_handling.boolean(plt_hop, 'plt_hop')
     error_handling.boolean(plt_hop_low, 'plt_hop_low')
     error_handling.boolean(plt_index, 'plt_index')
     error_handling.tuple_2elem(figsize, 'figsize')
     fig, ax = plt.subplots(figsize=figsize)
     # hoppings
     if plt_hop:
         error_handling.empty_ndarray(self.sys.hop, 'sys.hop')
         self.plt_hopping(coor, self.sys.hop[self.sys.hop['ang'] >= 0], c)
     if plt_hop_low:
         error_handling.empty_ndarray(self.sys.hop, 'sys.hop')
         self.plt_hopping(coor, self.sys.hop[self.sys.hop['ang'] < 0], c)
     # plot sites
     for color, tag in zip(self.colors, self.sys.lat.tags):
         plt.plot(coor['x'][coor['tag'] == tag],
                  coor['y'][coor['tag'] == tag],
                  'o',
                  color=color,
                  ms=ms,
                  markeredgecolor='none')
     ax.set_aspect('equal')
     ax.set_xlim([np.min(coor['x']) - 1., np.max(coor['x']) + 1.])
     ax.set_ylim([np.min(coor['y']) - 1., np.max(coor['y']) + 1.])
     if not axis:
         ax.axis('off')
     # plot indices
     if plt_index:
         indices = ['{}'.format(i) for i in range(self.sys.lat.sites)]
         for l, x, y in zip(indices, coor['x'], coor['y']):
             plt.annotate(l,
                          xy=(x, y),
                          xytext=(0, 0),
                          textcoords='offset points',
                          ha='right',
                          va='bottom',
                          size=fs)
     plt.draw()
     return fig
Пример #4
0
Файл: plot.py Проект: cpoli/tbee
    def intensity_area(self, intensity, s=1000., lw=1., fs=20., plt_hop=False,
                                  figsize=None, title=r'$|\psi|^2$'):
        '''
        Plot the intensity. Intensity propotional to disk shape.

        :param intensity: np.array. Intensity.
        :param s: Positive Float. Default value 1000. 
            Circle size given by s * intensity.
        :param lw: Positive Float. Default value 1. Hopping linewidths.
        :param fs: Positive Float. Default value 20. Fontsize.
        :param plt_hop: Boolean. Default value False. Plot hoppings.
        :param figsize: Tuple. Default value None. Figure size.
        :param title: String. Default value '$|\psi_{ij}|^2$'. Figure title.

        :returns:
            * **fig** -- Figure.
        '''
        error_handling.empty_ndarray(self.sys.lat.coor, 'sys.get_lattice')
        error_handling.ndarray(intensity, 'intensity', self.sys.lat.sites)
        error_handling.positive_real(s, 's')
        error_handling.positive_real(fs, 'fs')
        error_handling.boolean(plt_hop, 'plt_hop')
        error_handling.tuple_2elem(figsize, 'figsize')
        error_handling.string(title, 'title')
        fig, ax = plt.subplots()
        ax.set_xlabel('$i$', fontsize=fs)
        ax.set_ylabel('$j$', fontsize=fs)
        ax.set_title(title, fontsize=fs)
        if plt_hop:
            plt.plot([self.sys.lat.coor['x'][self.sys.hop['i'][:]], 
                             self.sys.lat.coor['x'][self.sys.hop['j'][:]]],
                            [self.sys.lat.coor['y'][self.sys.hop['i'][:]],
                             self.sys.lat.coor['y'][self.sys.hop['j'][:]]],
                            'k', lw=lw)
        for tag, color in zip(self.sys.lat.tags, self.colors):
            plt.scatter(self.sys.lat.coor['x'][self.sys.lat.coor['tag'] == tag],
                        self.sys.lat.coor['y'][self.sys.lat.coor['tag'] == tag],
                        s=100*s*intensity[self.sys.lat.coor['tag'] == tag],
                        c=color, alpha=0.5)
        ax.set_aspect('equal')
        ax.axis('off')
        x_lim = [np.min(self.sys.lat.coor['x'])-2., np.max(self.sys.lat.coor['x'])+2.]
        y_lim = [np.min(self.sys.lat.coor['y'])-2., np.max(self.sys.lat.coor['y'])+2.]
        ax.set_xlim(x_lim)
        ax.set_ylim(y_lim)
        fig.set_tight_layout(True)
        plt.draw()
        return fig
Пример #5
0
    def plt_propagation_1d(self, prop_type="real", fs=20, figsize=None):
        """
        Plot time evolution for 1D systems. 

        :param fs: Default value 20. Fontsize.
        """
        error_handling.empty_ndarray(self.prop, "get_propagation or get_pumping")
        error_handling.positive_real(fs, "fs")
        error_handling.prop_type(prop_type)
        error_handling.tuple_2elem(figsize, "figsize")
        fig, ax = plt.subplots(figsize=figsize)
        plt.ylabel("n", fontsize=fs)
        plt.xlabel("z", fontsize=fs)
        if prop_type == "real":
            color = self.prop_smooth_1d(self.prop.real)
            max_val = max(np.max(color), -np.min(color))
            ticks = [-max_val, max_val]
            cmap = "seismic"
        elif prop_type == "imag":
            color = self.prop_smooth_1d(self.prop.imag)
            max_val = max(np.max(color), -np.min(color))
            ticks = [-max_val, max_val]
            cmap = "seismic"
        else:
            color = self.prop_smooth_1d(np.abs(self.prop) ** 2)
            ticks = [0.0, np.max(color[:, -1])]
            cmap = plt.cm.hot
        extent = (-0, self.steps * self.dz, self.lat.sites - 0.5, -0.5)
        aspect = "auto"
        interpolation = "nearest"
        im = plt.imshow(
            color, cmap=cmap, aspect=aspect, interpolation=interpolation, extent=extent, vmin=ticks[0], vmax=ticks[-1]
        )
        for label in ax.xaxis.get_majorticklabels():
            label.set_fontsize(fs)
        for label in ax.yaxis.get_majorticklabels():
            label.set_fontsize(fs)
        ax.get_yaxis().set_major_locator(plt.MaxNLocator(integer=True))
        if prop_type == "norm":
            cbar = fig.colorbar(im, ticks=ticks)
            cbar.ax.set_yticklabels(["0", "max"])
        else:
            cbar = fig.colorbar(im, ticks=[ticks[0], 0, ticks[1]])
            cbar.ax.set_yticklabels(["min", "0", "max"])
        cbar.ax.tick_params(labelsize=fs)
        return fig
Пример #6
0
    def plt_propagation_1d(self, prop_type='real', fs=20, figsize=None):
        '''
        Plot time evolution for 1D systems. 

        :param fs: Default value 20. Fontsize.
        '''
        error_handling.empty_ndarray(self.prop, 'get_propagation or get_pumping')
        error_handling.positive_real(fs, 'fs')
        error_handling.prop_type(prop_type)
        error_handling.tuple_2elem(figsize, 'figsize')
        fig, ax = plt.subplots(figsize=figsize)
        plt.ylabel('n', fontsize=fs)
        plt.xlabel('z', fontsize=fs)
        if prop_type == 'real':
            color = self.prop_smooth_1d(self.prop.real)
            max_val = max(np.max(color), -np.min(color))
            ticks = [-max_val, max_val]
            cmap = 'seismic'
        elif prop_type == 'imag':
            color = self.prop_smooth_1d(self.prop.imag)
            max_val = max(np.max(color), -np.min(color))
            ticks = [-max_val, max_val]
            cmap = 'seismic'
        else:
            color = self.prop_smooth_1d(np.abs(self.prop) ** 2)
            ticks = [0., np.max(color[:, -1])]
            cmap = plt.cm.hot
        extent = (-0, self.steps*self.dz, self.lat.sites-.5, -.5)
        aspect = 'auto'
        interpolation = 'nearest'
        im = plt.imshow(color, cmap=cmap, aspect=aspect,
                                  interpolation=interpolation, extent=extent,
                                  vmin=ticks[0], vmax=ticks[-1])
        for label in ax.xaxis.get_majorticklabels():
            label.set_fontsize(fs)
        for label in ax.yaxis.get_majorticklabels():
            label.set_fontsize(fs)
        ax.get_yaxis().set_major_locator(plt.MaxNLocator(integer=True))
        if prop_type == 'norm':
            cbar = fig.colorbar(im, ticks=ticks)
            cbar.ax.set_yticklabels(['0','max'])
        else:
            cbar = fig.colorbar(im, ticks=[ticks[0], 0, ticks[1]])
            cbar.ax.set_yticklabels(['min', '0','max'])
        cbar.ax.tick_params(labelsize=fs)
        return fig
Пример #7
0
Файл: plot.py Проект: cpoli/tbee
    def intensity_disk(self, intensity, s=200., fs=20., lims=None, figsize=None, 
                                 title=r'$|\psi|^2$'):
        '''
        Plot the intensity. Colormap with identical disk shape.

        :param intensity: np.array.Field intensity.
        :param s: Default value 200. Disk size.
        :param fs: Default value 20. Font size.
        :param lims: List. Default value None. Colormap limits.
        :param figsize: Tuple. Default value None. Figure size.
        :param title: String. Default value '$|\psi_n|^2$'. Title.

        :returns:
            * **fig** -- Figure.
        '''
        error_handling.empty_ndarray(self.sys.lat.coor, 'sys.get_lattice')
        error_handling.ndarray(intensity, 'intensity', self.sys.lat.sites)
        error_handling.positive_real(s, 's')
        error_handling.positive_real(fs, 'fs')
        error_handling.tuple_2elem(figsize, 'figsize')
        error_handling.string(title, 'title')
        fig, ax = plt.subplots(figsize=figsize)
        plt.title(title, fontsize=fs+5)
        map_red = plt.get_cmap('Reds')
        if lims is None:
            lims = [0., np.max(intensity)]
            y_ticks = ['0', 'max']
        else:
            y_ticks = lims
        plt.scatter(self.sys.lat.coor['x'], self.sys.lat.coor['y'], c=intensity, s=s,
                         cmap=map_red, vmin=lims[0], vmax=lims[1])
        cbar = plt.colorbar(ticks=lims)
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_xlim(np.min(self.sys.lat.coor['x'])-1., np.max(self.sys.lat.coor['x'])+1.)
        ax.set_ylim(np.min(self.sys.lat.coor['y'])-1., np.max(self.sys.lat.coor['y'])+1.)
        cbar.ax.set_yticklabels([y_ticks[0], y_ticks[1]])
        cbar.ax.tick_params(labelsize=fs)
        ax.set_aspect('equal')
        fig.set_tight_layout(True)
        plt.draw()
        return fig
Пример #8
0
Файл: plot.py Проект: cpoli/tbee
 def lattice_generic(self, coor, ms, lw, c, fs, axis, plt_hop,
                               plt_hop_low, plt_index, figsize):
     '''
     Private method called by *lattice* and *lattice_hop*.
     '''
     error_handling.positive_real(ms, 'ms')
     error_handling.positive_real(lw, 'lw')
     error_handling.positive_real(c, 'c')
     error_handling.positive_real(fs, 'fs')
     error_handling.boolean(axis, 'axis')
     error_handling.boolean(plt_hop, 'plt_hop')
     error_handling.boolean(plt_hop_low, 'plt_hop_low')
     error_handling.boolean(plt_index, 'plt_index')
     error_handling.tuple_2elem(figsize, 'figsize')
     fig, ax = plt.subplots(figsize=figsize)
     # hoppings
     if plt_hop:
         error_handling.empty_ndarray(self.sys.hop, 'sys.hop')
         self.plt_hopping(coor, self.sys.hop[self.sys.hop['ang']>=0], c)
     if plt_hop_low:
         error_handling.empty_ndarray(self.sys.hop, 'sys.hop')
         self.plt_hopping(coor, self.sys.hop[self.sys.hop['ang']<0], c)
     # plot sites
     for color, tag in zip(self.colors, self.sys.lat.tags):
         plt.plot(coor['x'][coor['tag'] == tag],
                    coor['y'][coor['tag'] == tag],
                    'o', color=color, ms=ms, markeredgecolor='none')
     ax.set_aspect('equal')
     ax.set_xlim([np.min(coor['x'])-1., np.max(coor['x'])+1.])
     ax.set_ylim([np.min(coor['y'])-1., np.max(coor['y'])+1.])
     if not axis:
         ax.axis('off')
     # plot indices
     if plt_index:
         indices = ['{}'.format(i) for i in range(self.sys.lat.sites)]
         for l, x, y in zip(indices, coor['x'], coor['y']):
             plt.annotate(l, xy=(x, y), xytext=(0, 0),
                                 textcoords='offset points',
                                 ha='right', va='bottom', size=fs)
     plt.draw()
     return fig
Пример #9
0
    def intensity_area(self,
                       intensity,
                       s=1000.,
                       lw=1.,
                       fs=20.,
                       plt_hop=False,
                       figsize=None,
                       title=r'$|\psi|^2$'):
        '''
        Plot the intensity. Intensity propotional to disk shape.

        :param intensity: np.array. Intensity.
        :param s: Positive Float. Default value 1000. 
            Circle size given by s * intensity.
        :param lw: Positive Float. Default value 1. Hopping linewidths.
        :param fs: Positive Float. Default value 20. Fontsize.
        :param plt_hop: Boolean. Default value False. Plot hoppings.
        :param figsize: Tuple. Default value None. Figure size.
        :param title: String. Default value '$|\psi_{ij}|^2$'. Figure title.

        :returns:
            * **fig** -- Figure.
        '''
        error_handling.empty_ndarray(self.sys.lat.coor, 'sys.get_lattice')
        error_handling.ndarray(intensity, 'intensity', self.sys.lat.sites)
        error_handling.positive_real(s, 's')
        error_handling.positive_real(fs, 'fs')
        error_handling.boolean(plt_hop, 'plt_hop')
        error_handling.tuple_2elem(figsize, 'figsize')
        error_handling.string(title, 'title')
        fig, ax = plt.subplots()
        ax.set_xlabel('$i$', fontsize=fs)
        ax.set_ylabel('$j$', fontsize=fs)
        ax.set_title(title, fontsize=fs)
        if plt_hop:
            plt.plot([
                self.sys.lat.coor['x'][self.sys.hop['i'][:]],
                self.sys.lat.coor['x'][self.sys.hop['j'][:]]
            ], [
                self.sys.lat.coor['y'][self.sys.hop['i'][:]],
                self.sys.lat.coor['y'][self.sys.hop['j'][:]]
            ],
                     'k',
                     lw=lw)
        for tag, color in zip(self.sys.lat.tags, self.colors):
            plt.scatter(
                self.sys.lat.coor['x'][self.sys.lat.coor['tag'] == tag],
                self.sys.lat.coor['y'][self.sys.lat.coor['tag'] == tag],
                s=100 * s * intensity[self.sys.lat.coor['tag'] == tag],
                c=color,
                alpha=0.5)
        ax.set_aspect('equal')
        ax.axis('off')
        x_lim = [
            np.min(self.sys.lat.coor['x']) - 2.,
            np.max(self.sys.lat.coor['x']) + 2.
        ]
        y_lim = [
            np.min(self.sys.lat.coor['y']) - 2.,
            np.max(self.sys.lat.coor['y']) + 2.
        ]
        ax.set_xlim(x_lim)
        ax.set_ylim(y_lim)
        fig.set_tight_layout(True)
        plt.draw()
        return fig
Пример #10
0
    def get_animation_nb(self, s=300.0, fs=20.0, prop_type="real", figsize=None):
        """
        Get time evolution animation for iPython notebooks.

        :param s: Default value 300. Circle shape.
        :param fs: Default value 20. Fontsize.

        :returns:
           * **ani** -- Animation.
        """
        """
        Get time evolution animation.

        :param s: Default value 300. Circle size.
        :param fs: Default value 20. Fontsize.
        :param figsize: Tuple. Default value None. Figsize.
        :param prop_type: Default value None. Figsize.

        :returns:
          * **ani** -- Animation.
        """
        error_handling.empty_ndarray(self.prop, "get_propagation or get_pumping")
        error_handling.positive_real(s, "s")
        error_handling.positive_real(fs, "fs")
        error_handling.prop_type(prop_type)
        error_handling.tuple_2elem(figsize, "figsize")
        if prop_type == "real" or prop_type == "imag":
            color = self.prop.real
            max_val = max(np.max(color[:, -1]), -np.min(color[:, -1]))
            ticks = [-max_val, max_val]
            cmap = "seismic"
        else:
            color = np.abs(self.prop) ** 2
            ticks = [0.0, np.max(color)]
            cmap = "Reds"
        fig = plt.figure()
        ax = plt.axes(
            xlim=(np.min(self.lat.coor["x"] - 0.5), np.max(self.lat.coor["x"] + 0.5)),
            ylim=(np.min(self.lat.coor["y"] - 0.5), np.max(self.lat.coor["y"] + 0.5)),
        )
        ax.set_aspect("equal")
        frame = plt.gca()
        frame.axes.get_xaxis().set_ticks([])
        frame.axes.get_yaxis().set_ticks([])
        scat = plt.scatter(
            self.lat.coor["x"], self.lat.coor["y"], c=color[:, 0], s=s, vmin=ticks[0], vmax=ticks[1], cmap=cmap
        )
        if prop_type == "real" or prop_type == "imag":
            cbar = fig.colorbar(scat, ticks=[ticks[0], 0, ticks[1]])
            cbar.ax.set_yticklabels(["min", "0", "max"])
        else:
            cbar = fig.colorbar(scat, ticks=[0, ticks[1]])
            cbar.ax.set_yticklabels(["0", "max"])

        def init():
            scat.set_array(color[:, 0])
            return (scat,)

        def animate(i):
            scat.set_array(color[:, i])
            return (scat,)

        return animation.FuncAnimation(fig, animate, init_func=init, frames=self.steps, interval=120, blit=True)
Пример #11
0
    def get_animation(self, s=300.0, fs=20.0, prop_type="real", figsize=None):
        """
        Get time evolution animation.

        :param s: Default value 300. Circle size.
        :param fs: Default value 20. Fontsize.
        :param figsize: Tuple. Default value None. Figsize.
        :param prop_type: Default value None. Figsize.

        :returns:
          * **ani** -- Animation.
        """
        error_handling.empty_ndarray(self.prop, "get_propagation or get_pumping")
        error_handling.positive_real(s, "s")
        error_handling.positive_real(fs, "fs")
        error_handling.prop_type(prop_type)
        error_handling.tuple_2elem(figsize, "figsize")
        if os.name == "posix":
            blit = False
        else:
            blit = True
        if prop_type == "real":
            color = self.prop.real
            max_val = max(np.max(color), -np.min(color))
            ticks = [-max_val, max_val]
            cmap = "seismic"
        elif prop_type == "imag":
            color = self.prop.imag
            max_val = max(np.max(color), -np.min(color))
            ticks = [-max_val, max_val]
            cmap = "seismic"
        else:
            color = np.abs(self.prop) ** 2
            ticks = [0.0, np.max(color)]
            cmap = "Reds"
        fig, ax = plt.subplots(figsize=figsize)
        plt.xlim([self.lat.coor["x"][0] - 1.0, self.lat.coor["x"][-1] + 1.0])
        plt.ylim([self.lat.coor["y"][0] - 1.0, self.lat.coor["y"][-1] + 1.0])
        scat = plt.scatter(
            self.lat.coor["x"],
            self.lat.coor["y"],
            c=color[:, 0],
            s=s,
            vmin=ticks[0],
            vmax=ticks[1],
            cmap=plt.get_cmap(cmap),
        )
        frame = plt.gca()
        frame.axes.get_xaxis().set_ticks([])
        frame.axes.get_yaxis().set_ticks([])
        ax.set_aspect("equal")
        if prop_type == "norm":
            cbar = fig.colorbar(scat, ticks=ticks)
            cbar.ax.set_yticklabels(["0", "max"])
        else:
            cbar = fig.colorbar(scat, ticks=[ticks[0], 0, ticks[1]])
            cbar.ax.set_yticklabels(["min", "0", "max"])

        def update(i, color, scat):
            scat.set_array(color[:, i])
            return (scat,)

        ani = animation.FuncAnimation(fig, update, frames=self.steps, fargs=(color, scat), blit=blit, repeat=False)
        return ani
Пример #12
0
    def get_animation_nb(self, s=300., fs=20., prop_type='real', figsize=None):
        '''
        Get time evolution animation for iPython notebooks.

        :param s: Default value 300. Circle shape.
        :param fs: Default value 20. Fontsize.

        :returns:
           * **ani** -- Animation.
        '''
        '''
        Get time evolution animation.

        :param s: Default value 300. Circle size.
        :param fs: Default value 20. Fontsize.
        :param figsize: Tuple. Default value None. Figsize.
        :param prop_type: Default value None. Figsize.

        :returns:
          * **ani** -- Animation.
        '''
        error_handling.empty_ndarray(self.prop, 'get_propagation or get_pumping')
        error_handling.positive_real(s, 's')
        error_handling.positive_real(fs, 'fs')
        error_handling.prop_type(prop_type)
        error_handling.tuple_2elem(figsize, 'figsize')
        if prop_type == 'real' or prop_type == 'imag':
            color = self.prop.real
            max_val = max(np.max(color[:, -1]), -np.min(color[:, -1]))
            ticks = [-max_val, max_val]
            cmap = 'seismic'
        else:
            color = np.abs(self.prop) ** 2
            ticks = [0., np.max(color)]
            cmap = 'Reds'
        fig = plt.figure()
        ax = plt.axes(xlim=(np.min(self.lat.coor['x']-.5), np.max(self.lat.coor['x']+.5)), 
                             ylim=(np.min(self.lat.coor['y']-.5), np.max(self.lat.coor['y']+.5)))
        ax.set_aspect('equal')
        frame = plt.gca()
        frame.axes.get_xaxis().set_ticks([])
        frame.axes.get_yaxis().set_ticks([])
        scat = plt.scatter(self.lat.coor['x'], self.lat.coor['y'], c=color[:, 0],
                                    s=s, vmin=ticks[0], vmax=ticks[1],
                                    cmap=cmap)
        if prop_type == 'real' or prop_type == 'imag':
            cbar = fig.colorbar(scat, ticks=[ticks[0], 0, ticks[1]])
            cbar.ax.set_yticklabels(['min', '0','max'])
        else:
            cbar = fig.colorbar(scat, ticks=[0, ticks[1]])
            cbar.ax.set_yticklabels(['0','max'])

        def init():
            scat.set_array(color[:, 0])
            return scat,

        def animate(i):
            scat.set_array(color[:, i])    
            return scat,

        return animation.FuncAnimation(fig, animate, init_func=init,
                                   frames=self.steps, interval=120, blit=True)