def test_recappl(self): batsize = 100 self.dims = [50, 20, 30, 40] recstack = RecStack(*[GRU(dim=self.dims[i], innerdim=self.dims[i+1]) for i in range(len(self.dims)-1)]) mu = RecPredictor(recstack) for i in range(3): inpval = np.random.random((batsize, 50)).astype("float32") outpvals = mu.feed(inpval) self.assertEqual(outpvals.shape, (batsize, self.dims[-1]))
def test_recappl_shapes_model_user(self): batsize = 100 model = SimpleSeqTransDec(indim=200, outdim=50, inpembdim=20, outembdim=20, innerdim=[40, 30]) mu = RecPredictor(model) inpval2 = np.random.randint(0, 50, (batsize,)).astype("int32") for i in range(5): inpval = np.random.randint(0, 200, (batsize,)).astype("int32") outpval = mu.feed(inpval, inpval2) inpval2 = np.argmax(outpval, axis=1).astype("int32") self.assertEqual(outpval.shape, (batsize, 50))
def test_recappl(self): batsize = 100 self.dims = [50, 20, 30, 40] recstack = RecStack(*[ GRU(dim=self.dims[i], innerdim=self.dims[i + 1]) for i in range(len(self.dims) - 1) ]) mu = RecPredictor(recstack) for i in range(3): inpval = np.random.random((batsize, 50)).astype("float32") outpvals = mu.feed(inpval) self.assertEqual(outpvals.shape, (batsize, self.dims[-1]))
def test_recappl_shapes_model_user(self): batsize = 100 model = SimpleSeqTransDec(indim=200, outdim=50, inpembdim=20, outembdim=20, innerdim=[40, 30]) mu = RecPredictor(model) inpval2 = np.random.randint(0, 50, (batsize, )).astype("int32") for i in range(5): inpval = np.random.randint(0, 200, (batsize, )).astype("int32") outpval = mu.feed(inpval, inpval2) inpval2 = np.argmax(outpval, axis=1).astype("int32") self.assertEqual(outpval.shape, (batsize, 50))
def __init__(self, model, beamsize=1, *buildargs, **kw): super(Searcher, self).__init__(**kw) self.beamsize = beamsize self.model = model self.mu = RecPredictor(model, *buildargs)