Пример #1
0
def test__combine_t2s():
    """
    Test tedana.combine._combine_t2s
    """
    np.random.seed(0)
    n_voxels, n_echos, n_trs = 20, 3, 10
    data = np.random.random((n_voxels, n_echos, n_trs))
    tes = np.array([[10, 20, 30]])  # 1 x E

    # Voxel- and volume-wise T2* estimates
    t2s = np.random.random((n_voxels, n_trs, 1))  # M x T x 1
    comb = combine._combine_t2s(data, tes, t2s)
    assert comb.shape == (n_voxels, n_trs)

    # Voxel-wise T2* estimates
    t2s = np.random.random((n_voxels, 1))  # M x 1
    comb = combine._combine_t2s(data, tes, t2s)
    assert comb.shape == (n_voxels, n_trs)
Пример #2
0
def test__apply_t2s_floor():
    """
    _apply_t2s_floor applies a floor to T2* values to prevent a ZeroDivisionError during
    optimal combination.
    """
    n_voxels, n_echos, n_trs = 100, 5, 25
    echo_times = np.array([2, 23, 54, 75, 96])
    me_data = np.random.random((n_voxels, n_echos, n_trs))
    t2s = np.random.random((n_voxels)) * 1000
    t2s[t2s < 1] = 1  # Crop at 1 ms to be safe
    t2s[0] = 0.001

    # First establish a failure
    with pytest.raises(ZeroDivisionError):
        _ = combine._combine_t2s(me_data, echo_times[None, :], t2s[:, None])

    # Now correct the T2* map and get a successful result.
    t2s_corrected = me._apply_t2s_floor(t2s, echo_times)
    assert t2s_corrected[0] != t2s[0]  # First value should be corrected
    assert np.array_equal(t2s_corrected[1:],
                          t2s[1:])  # No other values should be corrected
    combined = combine._combine_t2s(me_data, echo_times[None, :],
                                    t2s_corrected[:, None])
    assert np.all(combined != 0)