def predict(frozen_model, training_cnf, predict_dir, image_size, output_path, num_classes, gpu_memory_fraction): cnf = util.load_module(training_cnf).cnf standardizer = cnf['standardizer'] graph = util.load_frozen_graph(frozen_model) preprocessor = convert_preprocessor(image_size) predictor = SegmentPredictor(graph, standardizer, preprocessor) # images = data.get_image_files(predict_dir) image_names = [ filename.strip() for filename in os.listdir(predict_dir) if filename.endswith('.jpg') ] hist = np.zeros((num_classes, num_classes)) for image_filename in image_names: final_prediction_map = predictor.predict( os.path.join(predict_dir, image_filename)) final_prediction_map = final_prediction_map.transpose(0, 2, 1).squeeze() gt_name = os.path.join(predict_dir, image_filename[:-4] + '_final_mask' + '.png') gt = convert(gt_name, image_size) gt = np.asarray(gt) gt = convert_labels(gt, image_size, image_size) hist += compute_hist(gt, final_prediction_map, num_classes=num_classes) iou = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) meaniou = np.nanmean(iou) print('Mean IOU %5.5f' % meaniou)
def predict(frozen_model, training_cnf, image_path, image_size, output_path, gpu_memory_fraction): cnf = util.load_module(training_cnf).cnf standardizer = cnf['standardizer'] graph = util.load_frozen_graph(frozen_model) preprocessor = convert_preprocessor(448) predictor = SegmentPredictor(graph, standardizer, preprocessor) final_prediction_map = predictor.predict(image_path) final_prediction_map = final_prediction_map.transpose(0, 2, 1).squeeze() image = data.load_image(image_path, preprocessor=preprocessor) img = image.transpose(2, 1, 0) img = Image.fromarray(img.astype('uint8'), 'RGB') img.save('/tmp/test.png') image_filename = image_path.split('/')[-1] plot_masks('/tmp/test.png', final_prediction_map, output_path) """
def predict(frozen_model, training_cnf, predict_dir, image_size, output_path, num_classes, gpu_memory_fraction): cnf = util.load_module(training_cnf).cnf standardizer = cnf['standardizer'] graph = util.load_frozen_graph(frozen_model) preprocessor = convert_preprocessor(image_size) predictor = SegmentPredictor(graph, standardizer, preprocessor) # images = data.get_image_files(predict_dir) image_names = [ filename.strip() for filename in os.listdir(predict_dir) if filename.endswith('.jpg') ] iou = IOU() per_class_iou = iou.per_class_iou(predictor, predict_dir, image_size) meaniou = iou.meaniou(predictor, predict_dir, image_size) print(per_class_iou) print('Mean IOU %5.5f' % meaniou)
def predict(model, model_def, output_layer, cnf, weights_from, convert, images, image_size, sync, predict_type): global predictors p_key = "%s-%s" % (weights_from, output_layer) predictor = predictors.get(p_key) if predictor is None: preprocessor = convert_preprocessor(image_size) if convert else None prediction_iterator = create_prediction_iter(cnf, model_def.crop_size, preprocessor, sync) if predict_type == 'quasi': predictor = QuasiCropPredictor(model, cnf, weights_from, prediction_iterator, 20, output_layer) elif predict_type == '1_crop': predictor = OneCropPredictor(model, cnf, weights_from, prediction_iterator, output_layer) else: raise ValueError('Unknown predict_type: %s' % predict_type) predictors[p_key] = predictor predictions = predictor.predict(images) return predictions
def predict(model, model_def, output_layer, cnf, weights_from, convert, images, image_size, sync, predict_type): preprocessor = convert_preprocessor(image_size) if convert else None prediction_iterator = create_prediction_iter(cnf, model_def.crop_size, preprocessor, sync) if predict_type == 'quasi': predictor = QuasiCropPredictor(model, cnf, weights_from, prediction_iterator, 20, output_layer) elif predict_type == '1_crop': predictor = OneCropPredictor(model, cnf, weights_from, prediction_iterator, output_layer) elif predict_type == '10_crop': predictor = TenCropPredictor(model, cnf, weights_from, prediction_iterator, model_def.crop_size[0], model_def.image_size[0], output_layer) else: raise ValueError('Unknown predict_type: %s' % predict_type) predictions = predictor.predict(images) return predictions
def predict(model, training_cnf, predict_dir, weights_from, dataset_name, convert, image_size, sync, test_type): model_def = util.load_module(model) model = model_def.model cnf = util.load_module(training_cnf).cnf weights_from = str(weights_from) images = data.get_image_files(predict_dir) standardizer = cnf.get('standardizer', None) preprocessor = convert_preprocessor(image_size) if convert else None prediction_iterator = create_prediction_iter(cnf, standardizer, model_def.crop_size, preprocessor, sync) if test_type == 'quasi': predictor = QuasiCropPredictor(model, cnf, weights_from, prediction_iterator, 20) predictions = predictor.predict(images) if not os.path.exists(os.path.join(predict_dir, '..', 'results')): os.mkdir(os.path.join(predict_dir, '..', 'results')) if not os.path.exists( os.path.join(predict_dir, '..', 'results', dataset_name)): os.mkdir(os.path.join(predict_dir, '..', 'results', dataset_name)) names = data.get_names(images) image_prediction_prob = np.column_stack([names, predictions]) headers = ['score%d' % (i + 1) for i in range(predictions.shape[1])] title = np.array(['image'] + headers) image_prediction_prob = np.vstack([title, image_prediction_prob]) labels_file_prob = os.path.abspath( os.path.join(predict_dir, '..', 'results', dataset_name, 'predictions.csv')) np.savetxt(labels_file_prob, image_prediction_prob, delimiter=",", fmt="%s")
def predict(model, training_cnf, predict_dir, weights_from, dataset_name, convert, image_size, sync, predict_type): model_def = util.load_module(model) model = model_def.model cnf = util.load_module(training_cnf).cnf weights_from = str(weights_from) images = data.get_image_files(predict_dir) standardizer = cnf.get('standardizer', NoOpStandardizer()) preprocessor = convert_preprocessor(image_size) if convert else None prediction_iterator = create_prediction_iter(cnf, model_def.crop_size, preprocessor, sync) if predict_type == 'quasi': predictor = QuasiCropPredictor(model, cnf, weights_from, prediction_iterator, 20) elif predict_type == '1_crop': predictor = OneCropPredictor(model, cnf, weights_from, prediction_iterator) elif predict_type == '10_crop': predictor = TenCropPredictor(model, cnf, weights_from, prediction_iterator, model_def.crop_size[0], model_def.image_size[0]) else: raise ValueError('Unknown predict_type: %s' % predict_type) predictions = predictor.predict(images) predictions = predictions.reshape(-1, 1000) # print(predictions) names = data.get_names(images) for i, name in enumerate(names): print("---Predictions for %s:" % name) preds = (np.argsort(predictions[i])[::-1])[0:5] for p in preds: print(class_names[p], predictions[i][p])
def predict(model, training_cnf, predict_dir, weights_from, dataset_name, convert, image_size, sync, predict_type): images = data.get_image_files(predict_dir) # Form now, hard coded models, cnfs, and weights # Need to take these from program inputs or an ensembling config file print('Creating predictor 1') weights_from1 = 'weights.sa/model-epoch-97.ckpt' model1 = 'examples/mnist_model_sa.py' training_cnf1 = 'examples/mnist_cnf.py' model_def1 = util.load_module(model1) model1 = model_def1.model cnf1 = util.load_module(training_cnf1).cnf standardizer = cnf1.get('standardizer', NoOpStandardizer()) preprocessor = convert_preprocessor( model_def1.image_size[0]) if convert else None prediction_iterator1 = create_prediction_iter(cnf1, standardizer, model_def1.crop_size, preprocessor, sync) predictor1 = QuasiCropPredictor(model1, cnf1, weights_from1, prediction_iterator1, 20) # predictor1 = OneCropPredictor(model1, cnf1, weights_from1, prediction_iterator1) print('Creating predictor 2') weights_from2 = 'weights.rv/model-epoch-31.ckpt' model2 = 'examples/mnist_model.py' training_cnf2 = 'examples/mnist_cnf.py' model_def2 = util.load_module(model2) model2 = model_def2.model cnf2 = util.load_module(training_cnf2).cnf standardizer = cnf2.get('standardizer', NoOpStandardizer()) preprocessor = convert_preprocessor( model_def2.image_size[0]) if convert else None prediction_iterator2 = create_prediction_iter(cnf2, standardizer, model_def2.crop_size, preprocessor, sync) predictor2 = QuasiCropPredictor(model2, cnf2, weights_from2, prediction_iterator2, 20) # predictor2 = OneCropPredictor(model2, cnf2, weights_from2, prediction_iterator2) predictor = EnsemblePredictor([predictor1, predictor2]) predictions = predictor.predict(images) if not os.path.exists(os.path.join(predict_dir, '..', 'results')): os.mkdir(os.path.join(predict_dir, '..', 'results')) if not os.path.exists( os.path.join(predict_dir, '..', 'results', dataset_name)): os.mkdir(os.path.join(predict_dir, '..', 'results', dataset_name)) names = data.get_names(images) image_prediction_probs = np.column_stack([names, predictions]) headers = ['score%d' % (i + 1) for i in range(predictions.shape[1])] title = np.array(['image'] + headers) image_prediction_probs = np.vstack([title, image_prediction_probs]) prediction_probs_file = os.path.abspath( os.path.join(predict_dir, '..', 'results', dataset_name, 'predictions.csv')) np.savetxt(prediction_probs_file, image_prediction_probs, delimiter=",", fmt="%s") print('Predictions saved to: %s' % prediction_probs_file) if cnf1['classification']: class_predictions = np.argmax(predictions, axis=1) image_class_predictions = np.column_stack([names, class_predictions]) title = np.array(['image', 'label']) image_class_predictions = np.vstack([title, image_class_predictions]) prediction_class_file = os.path.abspath( os.path.join(predict_dir, '..', 'results', dataset_name, 'predictions_class.csv')) np.savetxt(prediction_class_file, image_class_predictions, delimiter=",", fmt="%s") print('Class predictions saved to: %s' % prediction_class_file)
def predict(model, output_layer, training_cnf, predict_dir, weights_from, tag, convert, image_size, sync, predict_type): util.check_required_program_args( [model, training_cnf, predict_dir, weights_from]) model_def = util.load_module(model) model = model_def.model cnf = util.load_module(training_cnf).cnf weights_from = str(weights_from) images = data.get_image_files(predict_dir) preprocessor = convert_preprocessor(image_size) if convert else None prediction_iterator = create_prediction_iter(cnf, model_def.crop_size, preprocessor, sync) if predict_type == 'quasi': predictor = QuasiCropPredictor(model, cnf, weights_from, prediction_iterator, 20, output_layer) elif predict_type == '1_crop': predictor = OneCropPredictor(model, cnf, weights_from, prediction_iterator, output_layer) elif predict_type == '10_crop': predictor = TenCropPredictor(model, cnf, weights_from, prediction_iterator, model_def.crop_size[0], model_def.image_size[0], output_layer) else: raise ValueError('Unknown predict_type: %s' % predict_type) predictions = predictor.predict(images) prediction_results_dir = os.path.abspath( os.path.join(predict_dir, '..', 'predictions', tag)) if not os.path.exists(prediction_results_dir): os.makedirs(prediction_results_dir) if output_layer == 'predictions': names = data.get_names(images) image_prediction_probs = np.column_stack([names, predictions]) headers = ['score%d' % (i + 1) for i in range(predictions.shape[1])] title = np.array(['image'] + headers) image_prediction_probs = np.vstack([title, image_prediction_probs]) prediction_probs_file = os.path.join(prediction_results_dir, 'predictions.csv') np.savetxt(prediction_probs_file, image_prediction_probs, delimiter=",", fmt="%s") print('Predictions saved to: %s' % prediction_probs_file) if cnf['classification']: class_predictions = np.argmax(predictions, axis=1) image_class_predictions = np.column_stack( [names, class_predictions]) title = np.array(['image', 'label']) image_class_predictions = np.vstack( [title, image_class_predictions]) prediction_class_file = os.path.join(prediction_results_dir, 'predictions_class.csv') np.savetxt(prediction_class_file, image_class_predictions, delimiter=",", fmt="%s") print('Class predictions saved to: %s' % prediction_class_file) else: # feature extraction features_file = os.path.join(prediction_results_dir, 'features.npy') np.save(features_file, predictions) print('Features from layer: %s saved to: %s' % (output_layer, features_file))