def fprop(self, X, corruption_level=None, noise_type="binomial", epoch=None, decay_rate=1.): """Forward pass of convolutional auto-encoder Parameters ---------- X : 4D tensor data in (batch size, channel, height, width) corruption_level : float corruption_level on data noise_type : string type of noise: "binomial" or "gaussian" Returns ------- out : 4-D tensor output list for each layer """ out=[]; if epoch is not None: self.corruption_level=corruption_level*(epoch**(-decay_rate)); else: self.corruption_level=corruption_level; if self.corruption_level is None: level_out=X; else: level_out=corrupt_input(X, self.corruption_level, noise_type); for k, layer in enumerate(self.layers): level_out=layer.apply(level_out); out.append(level_out); return out;
def fprop(self, X, corruption_level=None, noise_type="binomial", epoch=None, decay_rate=1.): """Forward pass of convolutional auto-encoder Parameters ---------- X : 4D tensor data in (batch size, channel, height, width) corruption_level : float corruption_level on data noise_type : string type of noise: "binomial" or "gaussian" Returns ------- out : 4-D tensor output list for each layer """ out = [] if epoch is not None: self.corruption_level = corruption_level * (epoch**(-decay_rate)) else: self.corruption_level = corruption_level if self.corruption_level is None: level_out = X else: level_out = corrupt_input(X, self.corruption_level, noise_type) for k, layer in enumerate(self.layers): level_out = layer.apply(level_out) out.append(level_out) return out
def fprop(self, X, corruption_level=None, noise_type="binomial", epoch=None, decay_rate=1.): """Forward pass of auto-encoder Parameters ---------- X : matrix number of samples in (number of samples, dim of sample) corruption_level : float corruption_level on data noise_type : string type of noise: "binomial" or "gaussian" Returns ------- out : matrix output list for each layer """ out=[]; if epoch is not None: self.corruption_level=corruption_level*(epoch**(-decay_rate)); else: self.corruption_level=corruption_level; if self.corruption_level == None: level_out=X; else: level_out=corrupt_input(X, self.corruption_level, noise_type); for k, layer in enumerate(self.layers): level_out=layer.apply(level_out); out.append(level_out); return out;
def fprop(self, X, corruption_level=None, noise_type="binomial", epoch=None, decay_rate=1.): """Forward pass of auto-encoder Parameters ---------- X : matrix number of samples in (number of samples, dim of sample) corruption_level : float corruption_level on data noise_type : string type of noise: "binomial" or "gaussian" Returns ------- out : matrix output list for each layer """ out = [] if epoch is not None: self.corruption_level = corruption_level * (epoch**(-decay_rate)) else: self.corruption_level = corruption_level if self.corruption_level == None: level_out = X else: level_out = corrupt_input(X, self.corruption_level, noise_type) for k, layer in enumerate(self.layers): level_out = layer.apply(level_out) out.append(level_out) return out