Пример #1
0
def GeneralGRUCell(candidate_transform,
                   memory_transform_fn=None,
                   gate_nonlinearity=core.Sigmoid,
                   candidate_nonlinearity=core.Tanh,
                   dropout_rate_c=0.1,
                   sigmoid_bias=0.5):
    r"""Parametrized Gated Recurrent Unit (GRU) cell construction.

  GRU update equations:
  $$ Update gate: u_t = \sigmoid(U' * s_{t-1} + B') $$
  $$ Reset gate: r_t = \sigmoid(U'' * s_{t-1} + B'') $$
  $$ Candidate memory: c_t = \tanh(U * (r_t \odot s_{t-1}) + B) $$
  $$ New State: s_t = u_t \odot s_{t-1} + (1 - u_t) \odot c_t $$

  See combinators.Gate for details on the gating function.


  Args:
    candidate_transform: Transform to apply inside the Candidate branch. Applied
      before nonlinearities.
    memory_transform_fn: Optional transformation on the memory before gating.
    gate_nonlinearity: Function to use as gate activation. Allows trying
      alternatives to Sigmoid, such as HardSigmoid.
    candidate_nonlinearity: Nonlinearity to apply after candidate branch. Allows
      trying alternatives to traditional Tanh, such as HardTanh
    dropout_rate_c: Amount of dropout on the transform (c) gate. Dropout works
      best in a GRU when applied exclusively to this branch.
    sigmoid_bias: Constant to add before sigmoid gates. Generally want to start
      off with a positive bias.

  Returns:
    A model representing a GRU cell with specified transforms.
  """
    gate_block = [  # u_t
        candidate_transform(),
        core.AddConstant(constant=sigmoid_bias),
        gate_nonlinearity(),
    ]
    reset_block = [  # r_t
        candidate_transform(),
        core.AddConstant(
            constant=sigmoid_bias),  # Want bias to start positive.
        gate_nonlinearity(),
    ]
    candidate_block = [
        cb.Branch([], reset_block),
        cb.Multiply(),  # Gate S{t-1} with sigmoid(candidate_transform(S{t-1}))
        candidate_transform(),  # Final projection + tanh to get Ct
        candidate_nonlinearity(),  # Candidate gate

        # Only apply dropout on the C gate. Paper reports 0.1 as a good default.
        core.Dropout(rate=dropout_rate_c)
    ]
    memory_transform = memory_transform_fn() if memory_transform_fn else []
    return cb.Serial([
        cb.Branch(memory_transform, gate_block, candidate_block),
        cb.Gate(),
    ])
Пример #2
0
 def test_branch_named(self):
     input_shape = (2, 3)
     expected_shape = {'a': (2, 3), 'b': (2, 3)}
     output_shape = base.check_shape_agreement(
         combinators.Branch(a=combinators.NoOp(), b=combinators.NoOp()),
         input_shape)
     self.assertEqual(output_shape, expected_shape)
Пример #3
0
 def test_branch(self):
     input_shape = (2, 3)
     expected_shape = ((2, 3), (2, 3))
     output_shape = base.check_shape_agreement(
         combinators.Branch(combinators.NoOp(), combinators.NoOp()),
         input_shape)
     self.assertEqual(output_shape, expected_shape)
Пример #4
0
def MultiHeadedAttention(feature_depth,
                         num_heads=8,
                         dropout=0.0,
                         mode='train'):
    """Transformer-style multi-headed attention.

  Accepts inputs of the form (x, mask) and constructs (q, k, v) from x.

  Args:
    feature_depth: int:  depth of embedding
    num_heads: int: number of attention heads
    dropout: float: dropout rate
    mode: str: 'train' or 'eval'

  Returns:
    Multi-headed self-attention layer.
  """
    return combinators.Serial(
        combinators.Parallel(
            # q = k = v = first input
            combinators.Branch(combinators.Copy(), combinators.Copy(),
                               combinators.Copy()),
            combinators.Copy()  # pass the mask
        ),
        MultiHeadedAttentionQKV(  # pylint: disable=no-value-for-parameter
            feature_depth,
            num_heads=num_heads,
            dropout=dropout,
            mode=mode),
    )
Пример #5
0
def ChunkedCausalMultiHeadedAttention(feature_depth,
                                      num_heads=8,
                                      dropout=0.0,
                                      chunk_selector=None,
                                      mode='train'):
    """Transformer-style causal multi-headed attention operating on chunks.

  Accepts inputs that are a list of chunks and applies causal attention.

  Args:
    feature_depth: int:  depth of embedding
    num_heads: int: number of attention heads
    dropout: float: dropout rate
    chunk_selector: a function from chunk number to list of chunks to attend.
    mode: str: 'train' or 'eval'

  Returns:
    Multi-headed self-attention layer.
  """
    prepare_attention_input = combinators.Serial(
        combinators.Branch(
            combinators.Branch(  # q = k = v = first input
                combinators.Copy(), combinators.Copy(), combinators.Copy()),
            CausalMask(axis=-2),  # pylint: disable=no-value-for-parameter
        ),
        combinators.Parallel(
            combinators.Parallel(
                core.Dense(feature_depth),
                core.Dense(feature_depth),
                core.Dense(feature_depth),
            ), combinators.Copy()))
    return combinators.Serial(
        combinators.Map(prepare_attention_input),
        ChunkedAttentionSelector(selector=chunk_selector),  # pylint: disable=no-value-for-parameter
        combinators.Map(
            PureMultiHeadedAttention(  # pylint: disable=no-value-for-parameter
                feature_depth=feature_depth,
                num_heads=num_heads,
                dropout=dropout,
                mode=mode),
            check_shapes=False),
        combinators.Map(combinators.Select(0),
                        check_shapes=False),  # drop masks
        combinators.Map(core.Dense(feature_depth)))
Пример #6
0
def GeneralGRUCell(candidate_transform,
                   memory_transform=combinators.Identity,
                   gate_nonlinearity=core.Sigmoid,
                   candidate_nonlinearity=core.Tanh,
                   dropout_rate_c=0.1,
                   sigmoid_bias=0.5):
  r"""Parametrized Gated Recurrent Unit (GRU) cell construction.

  GRU update equations:
  $$ Update gate: u_t = \sigmoid(U' * s_{t-1} + B') $$
  $$ Reset gate: r_t = \sigmoid(U'' * s_{t-1} + B'') $$
  $$ Candidate memory: c_t = \tanh(U * (r_t \odot s_{t-1}) + B) $$
  $$ New State: s_t = u_t \odot s_{t-1} + (1 - u_t) \odot c_t $$

  See combinators.GateBranches for details on the gating function.


  Args:
    candidate_transform: Transform to apply inside the Candidate branch. Applied
      before nonlinearities.
    memory_transform: Optional transformation on the memory before gating.
    gate_nonlinearity: Function to use as gate activation. Allows trying
      alternatives to Sigmoid, such as HardSigmoid.
    candidate_nonlinearity: Nonlinearity to apply after candidate branch. Allows
      trying alternatives to traditional Tanh, such as HardTanh
    dropout_rate_c: Amount of dropout on the transform (c) gate. Dropout works
      best in a GRU when applied exclusively to this branch.
    sigmoid_bias: Constant to add before sigmoid gates. Generally want to start
      off with a positive bias.

  Returns:
    A model representing a GRU cell with specified transforms.
  """
  return combinators.Serial(
      combinators.Branch(num_branches=3),
      combinators.Parallel(
          # s_{t-1} branch - optionally transform
          # Typically is an identity.
          memory_transform(),

          # u_t (Update gate) branch
          combinators.Serial(
              candidate_transform(),
              # Want bias to start out positive before sigmoids.
              core.AddConstant(constant=sigmoid_bias),
              gate_nonlinearity()),

          # c_t (Candidate) branch
          combinators.Serial(
              combinators.Branch(num_branches=2),
              combinators.Parallel(
                  combinators.Identity(),
                  # r_t (Reset) Branch
                  combinators.Serial(
                      candidate_transform(),
                      # Want bias to start out positive before sigmoids.
                      core.AddConstant(constant=sigmoid_bias),
                      gate_nonlinearity())),
              ## Gate S{t-1} with sigmoid(candidate_transform(S{t-1}))
              combinators.MultiplyBranches(),

              # Final projection + tanh to get Ct
              candidate_transform(),
              candidate_nonlinearity()),  # Candidate gate

          # Only apply dropout on the C gate.
          # Paper reports that 0.1 is a good default.
          core.Dropout(rate=dropout_rate_c)),

      # Gate memory and candidate
      combinators.GateBranches())
Пример #7
0
 def test_branch_op_not_defined(self):
     with self.assertRaises(AttributeError):
         cb.Branch([], [])
Пример #8
0
 def test_branch(self):
     input_shape = (2, 3)
     expected_shape = ((2, 3), (2, 3))
     output_shape = base.check_shape_agreement(cb.Branch([], []),
                                               input_shape)
     self.assertEqual(output_shape, expected_shape)