Пример #1
0
def MultiHeadedAttention(feature_depth,
                         num_heads=8,
                         dropout=0.0,
                         mode='train'):
    """Transformer-style multi-headed attention.

  Accepts inputs of the form (x, mask) and constructs (q, k, v) from x.

  Args:
    feature_depth: int:  depth of embedding
    num_heads: int: number of attention heads
    dropout: float: dropout rate
    mode: str: 'train' or 'eval'

  Returns:
    Multi-headed self-attention layer.
  """
    return combinators.Serial(
        combinators.Parallel(
            # q = k = v = first input
            combinators.Branch(combinators.Copy(), combinators.Copy(),
                               combinators.Copy()),
            combinators.Copy()  # pass the mask
        ),
        MultiHeadedAttentionQKV(  # pylint: disable=no-value-for-parameter
            feature_depth,
            num_heads=num_heads,
            dropout=dropout,
            mode=mode),
    )
Пример #2
0
def MultiHeadedAttentionQKV(feature_depth,
                            num_heads=8,
                            dropout=0.0,
                            mode='train'):
    """Transformer-style multi-headed attention.

  Accepts inputs of the form (q, k, v), mask.

  Args:
    feature_depth: int:  depth of embedding
    num_heads: int: number of attention heads
    dropout: float: dropout rate
    mode: str: 'train' or 'eval'

  Returns:
    Multi-headed self-attention result and the mask.
  """
    return combinators.Serial(
        combinators.Parallel(
            combinators.Parallel(
                core.Dense(feature_depth),
                core.Dense(feature_depth),
                core.Dense(feature_depth),
            ), combinators.Copy()),
        PureMultiHeadedAttention(  # pylint: disable=no-value-for-parameter
            feature_depth=feature_depth,
            num_heads=num_heads,
            dropout=dropout,
            mode=mode),
        combinators.Parallel(core.Dense(feature_depth), combinators.Copy()))
Пример #3
0
 def test_parallel(self):
     input_shape = ((2, 3), (2, 3))
     expected_shape = ((2, 3), (2, 3))
     output_shape = base.check_shape_agreement(
         combinators.Parallel(combinators.Copy(), combinators.Copy()),
         input_shape)
     self.assertEqual(output_shape, expected_shape)
Пример #4
0
 def test_branch_named(self):
     input_shape = (2, 3)
     expected_shape = {'a': (2, 3), 'b': (2, 3)}
     output_shape = base.check_shape_agreement(
         combinators.Branch(a=combinators.Copy(), b=combinators.Copy()),
         input_shape)
     self.assertEqual(output_shape, expected_shape)
Пример #5
0
def ChunkedCausalMultiHeadedAttention(feature_depth,
                                      num_heads=8,
                                      dropout=0.0,
                                      chunk_selector=None,
                                      mode='train'):
    """Transformer-style causal multi-headed attention operating on chunks.

  Accepts inputs that are a list of chunks and applies causal attention.

  Args:
    feature_depth: int:  depth of embedding
    num_heads: int: number of attention heads
    dropout: float: dropout rate
    chunk_selector: a function from chunk number to list of chunks to attend.
    mode: str: 'train' or 'eval'

  Returns:
    Multi-headed self-attention layer.
  """
    prepare_attention_input = combinators.Serial(
        combinators.Branch(
            combinators.Branch(  # q = k = v = first input
                combinators.Copy(), combinators.Copy(), combinators.Copy()),
            CausalMask(axis=-2),  # pylint: disable=no-value-for-parameter
        ),
        combinators.Parallel(
            combinators.Parallel(
                core.Dense(feature_depth),
                core.Dense(feature_depth),
                core.Dense(feature_depth),
            ), combinators.Copy()))
    return combinators.Serial(
        combinators.Map(prepare_attention_input),
        ChunkedAttentionSelector(selector=chunk_selector),  # pylint: disable=no-value-for-parameter
        combinators.Map(
            PureMultiHeadedAttention(  # pylint: disable=no-value-for-parameter
                feature_depth=feature_depth,
                num_heads=num_heads,
                dropout=dropout,
                mode=mode),
            check_shapes=False),
        combinators.Map(combinators.Select(0),
                        check_shapes=False),  # drop masks
        combinators.Map(core.Dense(feature_depth)))
Пример #6
0
def GeneralGRUCell(candidate_transform,
                   memory_transform=combinators.Copy,
                   gate_nonlinearity=core.Sigmoid,
                   candidate_nonlinearity=core.Tanh,
                   dropout_rate_c=0.1,
                   sigmoid_bias=0.5):
  r"""Parametrized Gated Recurrent Unit (GRU) cell construction.

  GRU update equations:
  $$ Update gate: u_t = \sigmoid(U' * s_{t-1} + B') $$
  $$ Reset gate: r_t = \sigmoid(U'' * s_{t-1} + B'') $$
  $$ Candidate memory: c_t = \tanh(U * (r_t \odot s_{t-1}) + B) $$
  $$ New State: s_t = u_t \odot s_{t-1} + (1 - u_t) \odot c_t $$

  See combinators.Gate for details on the gating function.


  Args:
    candidate_transform: Transform to apply inside the Candidate branch. Applied
      before nonlinearities.
    memory_transform: Optional transformation on the memory before gating.
    gate_nonlinearity: Function to use as gate activation. Allows trying
      alternatives to Sigmoid, such as HardSigmoid.
    candidate_nonlinearity: Nonlinearity to apply after candidate branch. Allows
      trying alternatives to traditional Tanh, such as HardTanh
    dropout_rate_c: Amount of dropout on the transform (c) gate. Dropout works
      best in a GRU when applied exclusively to this branch.
    sigmoid_bias: Constant to add before sigmoid gates. Generally want to start
      off with a positive bias.

  Returns:
    A model representing a GRU cell with specified transforms.
  """
  return combinators.Serial(
      combinators.Branch(
          # s_{t-1} branch - optionally transform
          # Typically is an identity.
          memory_transform(),

          # u_t (Update gate) branch
          combinators.Serial(
              candidate_transform(),
              # Want bias to start out positive before sigmoids.
              core.AddConstant(constant=sigmoid_bias),
              gate_nonlinearity()
          ),

          # c_t (Candidate) branch
          combinators.Serial(
              combinators.Branch(
                  combinators.Copy(),
                  # r_t (Reset) Branch
                  combinators.Serial(
                      candidate_transform(),
                      # Want bias to start out positive before sigmoids.
                      core.AddConstant(constant=sigmoid_bias),
                      gate_nonlinearity()
                  )
              ),
              ## Gate S{t-1} with sigmoid(candidate_transform(S{t-1}))
              combinators.Multiply(),

              # Final projection + tanh to get Ct
              candidate_transform(),
              candidate_nonlinearity(),  # Candidate gate

              # Only apply dropout on the C gate.
              # Paper reports that 0.1 is a good default.
              core.Dropout(rate=dropout_rate_c)
          ),
      ),
      # Gate memory and candidate
      combinators.Gate())
Пример #7
0
 def test_parallel_named(self):
     input_shape = {'a': (2, 3), 'b': (2, 3)}
     expected_shape = {'a': (2, 3), 'b': (2, 3)}
     output_shape = base.check_shape_agreement(
         combinators.Parallel(a=combinators.Copy()), input_shape)
     self.assertEqual(output_shape, expected_shape)