Пример #1
0
 def projectData(self, XHat, n, maxiters=10, maxinner=10):
     ## store off the old ones
     origM = {REG_LOCATION: ktensor.copyTensor(self.M[REG_LOCATION]), AUG_LOCATION: ktensor.copyTensor(self.M[AUG_LOCATION])} 
     origX = self.X
     self.X = XHat
     ## randomize the nth 
     self.M[REG_LOCATION].U[n] = np.random.rand(self.X.shape[n], self.R)
     self.M[REG_LOCATION].lmbda = np.ones(self.R)
     self.M[AUG_LOCATION].U[n] = np.random.rand(self.X.shape[n], 1)
     self.M[AUG_LOCATION].lmbda = np.ones(1)
     ## renormalize
     self.M[REG_LOCATION].normalize(1)
     self.normalizeAugTensor()
     lastLL = tensorTools.loglikelihood(self.X,self.M)
     for iteration in range(maxiters):
         xsubs = self.X.subs[:,n]
         B, Pi, inI1, kktModeViolation1 = self.__solveSignalTensor(xsubs, self.M[AUG_LOCATION].U[n], n)
         inI2, kktModeViolation2 = self.__solveAugmentedTensor(xsubs, B, Pi, n)
         ll = tensorTools.loglikelihood(self.X,self.M)
         if np.abs(lastLL - ll) < self.dlTol:
             break
         lastLL = ll
     ## scale by summing across the rows
     totWeight = np.sum(self.M[REG_LOCATION].U[n], axis=1)
     zeroIdx = np.where(totWeight < 1e-100)[0]
     if len(zeroIdx) > 0:
         evenDist = 1.0 / self.M[REG_LOCATION].R
         self.M[REG_LOCATION].U[n][zeroIdx, :] = np.tile(evenDist, (len(zeroIdx), self.M[REG_LOCATION].R))
         totWeight = np.sum(self.M[REG_LOCATION].U[n], axis=1)
     twMat = np.repeat(totWeight, self.M[REG_LOCATION].R).reshape(self.X.shape[n], self.M[REG_LOCATION].R)
     projMat = self.M[REG_LOCATION].U[n] / twMat
     biasMat = self.M[AUG_LOCATION].U[n]
     self.M = origM
     self.X = origX
     return projMat, biasMat
Пример #2
0
 def computeDecomp(self, gamma=None, gradual=True):
     ## random initialize if not existing
     if self.M[REG_LOCATION] == None and self.M[AUG_LOCATION] == None:
         self.initialize()
     ## Kkeep track of the iteration information
     iterInfo = OrderedDict(sorted({}.items(), key=lambda t:t[1]))
     lastLL = tensorTools.loglikelihood(self.X, self.M)
     ## projection factor starts at 0 (unless there's no gradual)
     xi = 0 if gradual else 1
     ## if nothing is set, we're just not going to do any hard-thresholding
     if gamma == None:
         gamma = list(np.repeat(0, self.N))
     ## for outer iterations
     for iteration in range(self.maxIters):
         startIter = time.time()
         for n in range(self.N):
             startMode = time.time()
             ## first we calculate the "augmented" tensor matricization
             self.M[AUG_LOCATION].redistribute(n)
             xsubs = self.X.subs[:,n]
             B, Pi, inI1, kktModeViolation1 = self.__solveSignalTensor(xsubs, self.M[AUG_LOCATION].U[n], n)
             ## hard threshold based on the xi and gamma
             thr = xi * gamma[n]
             if (thr > 0):
                 self.M[REG_LOCATION].U[n] = tensorTools.hardThresholdMatrix(self.M[REG_LOCATION].U[n], thr)
                 # renormalize the mode
                 self.M[REG_LOCATION].normalize_mode(n, 1)
                 ## recalculate B using the new matrix
                 B = np.dot(self.M[REG_LOCATION].U[n], np.diag(self.M[REG_LOCATION].lmbda))
             elapsed1 = time.time() - startMode
             # now that we are done, we can calculate the new 'unaugmented matricization'
             inI2, kktModeViolation2 = self.__solveAugmentedTensor(xsubs, B, Pi, n)
             elapsed2 = time.time() - startMode
             ll = tensorTools.loglikelihood(self.X, self.M)
             iterInfo[str((iteration, n))] = { "Time": [elapsed1, elapsed2], 
                 "KKTViolation": [kktModeViolation1, kktModeViolation2],
                 "Iterations": [inI1, inI2],
                 "LL": ll}
         if gradual:
             xiTemp = 1-np.min([1, (np.absolute(lastLL - ll) / np.max(np.absolute([lastLL,ll])))])
             if xiTemp > xi:
                 ## take the mean of the two
                 xi = (xi + xiTemp) / 2
         print("Iteration {0}: Xi = {1}, dll = {2}, time = {3}".format(iteration, xi, np.abs(lastLL - ll), time.time() - startIter))
         if np.abs(lastLL - ll) < self.dlTol and xi >= 0.99:
             break;
         lastLL = ll
     return iterInfo
Пример #3
0
def cp_apr(X,
           R,
           Minit=None,
           tol=1e-4,
           maxiters=1000,
           maxinner=10,
           epsilon=1e-10,
           kappatol=1e-10,
           kappa=1e-2):
    """ 
    Compute nonnegative CP with alternative Poisson regression.
    Code is the python implementation of cp_apr in the MATLAB Tensor Toolbox 
    
    Parameters
    ----------
    X : input tensor of the class tensor or sptensor
    R : the rank of the CP
    Minit : the initial guess (in the form of a ktensor), if None random guess
    tol : tolerance on the inner KKT violation
    maxiters : maximum number of iterations
    maxinner : maximum number of inner iterations
    epsilon : parameter to avoid dividing by zero
    kappatol : tolerance on complementary slackness
    kappa : offset to fix complementary slackness

    Returns
    -------
    M : the CP model as a ktensor
    cpStats: the statistics for each inner iteration
    modelStats: a dictionary item with the final statistics for this tensor factorization
    """
    N = X.ndims()

    ## Random initialization
    if Minit == None:
        F = tensorTools.randomInit(X.shape, R)
        Minit = ktensor.ktensor(np.ones(R), F)

    nInnerIters = np.zeros(maxiters)

    ## Initialize M and Phi for iterations
    M = Minit
    M.normalize(1)
    Phi = [[] for i in range(N)]
    kktModeViolations = np.zeros(N)
    kktViolations = -np.ones(maxiters)
    nViolations = np.zeros(maxiters)

    ## statistics
    cpStats = np.zeros(7)

    for iteration in range(maxiters):
        startIter = time.time()
        isConverged = True
        for n in range(N):
            startMode = time.time()
            ## Make adjustments to M[n] entries that violate complementary slackness
            if iteration > 0:
                V = np.logical_and(Phi[n] > 1, M.U[n] < kappatol)
                if np.count_nonzero(V) > 0:
                    nViolations[iteration] = nViolations[iteration] + 1
                    M.U[n][V > 0] = M.U[n][V > 0] + kappa
            M, Phi[n], inner, kktModeViolations[
                n], isConverged = __solveSubproblem(X, M, n, maxinner,
                                                    isConverged, epsilon, tol)
            #print '****************************************'
            #print M.U[0][1,:]
            #print M.U[0].shape
            #print '****************************************'
            elapsed = time.time() - startMode
            # only write the outer iterations for now
            #cpStats = np.vstack((cpStats, np.array([iteration, n, inner, tensorTools.lsqrFit(X,M), tensorTools.loglikelihood(X,[M]), kktModeViolations[n], elapsed])))

        kktViolations[iteration] = np.max(kktModeViolations)
        elapsed = time.time() - startIter
        #cpStats = np.vstack((cpStats, np.array([iter, -1, -1, kktViolations[iter], __loglikelihood(X,M), elapsed])))
        print(
            "Iteration {0}: Inner Its={1} with KKT violation={2}, nViolations={3}, and elapsed time={4}"
            .format(iteration, nInnerIters[iteration],
                    kktViolations[iteration], nViolations[iteration], elapsed))
        if isConverged:
            break

    cpStats = np.delete(cpStats, (0),
                        axis=0)  # delete the first row which was superfluous
    ### Print the statistics
    fit = tensorTools.lsqrFit(X, M)
    ll = tensorTools.loglikelihood(X, [M])
    print("Number of iterations = {0}".format(iteration))
    print("Final least squares fit = {0}".format(fit))
    print("Final log-likelihood = {0}".format(ll))
    print("Final KKT Violation = {0}".format(kktViolations[iteration]))
    print("Total inner iterations = {0}".format(np.sum(nInnerIters)))

    modelStats = {
        "Iters": iter,
        "LS": fit,
        "LL": ll,
        "KKT": kktViolations[iteration]
    }
    return M, cpStats, modelStats
Пример #4
0
def cp_apr(X, R, Minit=None, tol=1e-4, maxiters=1000, maxinner=10, 
           epsilon=1e-10, kappatol=1e-10, kappa=1e-2):
    """ 
    Compute nonnegative CP with alternative Poisson regression.
    Code is the python implementation of cp_apr in the MATLAB Tensor Toolbox 
    
    Parameters
    ----------
    X : input tensor of the class tensor or sptensor
    R : the rank of the CP
    Minit : the initial guess (in the form of a ktensor), if None random guess
    tol : tolerance on the inner KKT violation
    maxiters : maximum number of iterations
    maxinner : maximum number of inner iterations
    epsilon : parameter to avoid dividing by zero
    kappatol : tolerance on complementary slackness
    kappa : offset to fix complementary slackness

    Returns
    -------
    M : the CP model as a ktensor
    cpStats: the statistics for each inner iteration
    modelStats: a dictionary item with the final statistics for this tensor factorization
    """
    N = X.ndims()
     
    ## Random initialization
    if Minit == None:
        F = tensorTools.randomInit(X.shape, R)
        Minit = ktensor.ktensor(np.ones(R), F);
        
    nInnerIters = np.zeros(maxiters);
    
    ## Initialize M and Phi for iterations
    M = Minit
    M.normalize(1)
    Phi = [[] for i in range(N)]
    kktModeViolations = np.zeros(N)
    kktViolations = -np.ones(maxiters)
    nViolations = np.zeros(maxiters)
    
    ## statistics
    cpStats = np.zeros(7)
    
    for iteration in range(maxiters):
        startIter = time.time()
        isConverged = True;
        for n in range(N):
            startMode = time.time()
            ## Make adjustments to M[n] entries that violate complementary slackness
            if iteration > 0:
                V = np.logical_and(Phi[n] > 1, M.U[n] < kappatol)
                if np.count_nonzero(V) > 0:
                    nViolations[iteration] = nViolations[iteration] + 1
                    M.U[n][V > 0] = M.U[n][V > 0] + kappa
            M, Phi[n], inner, kktModeViolations[n], isConverged = __solveSubproblem(X, M, n, maxinner, isConverged, epsilon, tol)
            elapsed = time.time() - startMode
            # only write the outer iterations for now
            cpStats = np.vstack((cpStats, np.array([iteration, n, inner, tensorTools.lsqrFit(X,M), tensorTools.loglikelihood(X,[M]), kktModeViolations[n], elapsed])))

        kktViolations[iteration] = np.max(kktModeViolations);
        elapsed = time.time()-startIter
        #cpStats = np.vstack((cpStats, np.array([iter, -1, -1, kktViolations[iter], __loglikelihood(X,M), elapsed])))
        print("Iteration {0}: Inner Its={1} with KKT violation={2}, nViolations={3}, and elapsed time={4}".format(iteration, nInnerIters[iteration], kktViolations[iteration], nViolations[iteration], elapsed));
        if isConverged:
            break;
    
    cpStats = np.delete(cpStats, (0), axis=0) # delete the first row which was superfluous
    ### Print the statistics
    fit = tensorTools.lsqrFit(X,M)
    ll = tensorTools.loglikelihood(X,[M])
    print("Number of iterations = {0}".format(iteration))
    print("Final least squares fit = {0}".format(fit))
    print("Final log-likelihood = {0}".format(ll))
    print("Final KKT Violation = {0}".format(kktViolations[iteration]))
    print("Total inner iterations = {0}".format(np.sum(nInnerIters)))
    
    modelStats = {"Iters" : iter, "LS" : fit, "LL" : ll, "KKT" : kktViolations[iteration]}
    return M, cpStats, modelStats