Пример #1
0
def histogram_raw(name, min, max, num, sum, sum_squares, bucket_limits,
                  bucket_counts):
    # pylint: disable=line-too-long
    """Outputs a `Summary` protocol buffer with a histogram.
    The generated
    [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
    has one summary value containing a histogram for `values`.
    Args:
      name: A name for the generated node. Will also serve as a series name in
        TensorBoard.
      min: A float or int min value
      max: A float or int max value
      num: Int number of values
      sum: Float or int sum of all values
      sum_squares: Float or int sum of squares for all values
      bucket_limits: A numeric `Tensor` with upper value per bucket
      bucket_counts: A numeric `Tensor` with number of values per bucket
    Returns:
      A scalar `Tensor` of type `string`. The serialized `Summary` protocol
      buffer.
    """
    hist = HistogramProto(
        min=min,
        max=max,
        num=num,
        sum=sum,
        sum_squares=sum_squares,
        bucket_limit=bucket_limits,
        bucket=bucket_counts,
    )
    return Summary(value=[Summary.Value(tag=name, histo=hist)])
Пример #2
0
def make_histogram(values, bins, max_bins=None):
    """Convert values into a histogram proto using logic from histogram.cc."""
    if values.size == 0:
        raise ValueError("The input has no element.")
    values = values.reshape(-1)
    counts, limits = np.histogram(values, bins=bins)
    num_bins = len(counts)
    if max_bins is not None and num_bins > max_bins:
        subsampling = num_bins // max_bins
        subsampling_remainder = num_bins % subsampling
        if subsampling_remainder != 0:
            counts = np.pad(
                counts,
                pad_width=[[0, subsampling - subsampling_remainder]],
                mode="constant",
                constant_values=0,
            )
        counts = counts.reshape(-1, subsampling).sum(axis=-1)
        new_limits = np.empty((counts.size + 1, ), limits.dtype)
        new_limits[:-1] = limits[:-1:subsampling]
        new_limits[-1] = limits[-1]
        limits = new_limits

    # Find the first and the last bin defining the support of the histogram:
    cum_counts = np.cumsum(np.greater(counts, 0, dtype=np.int32))
    start, end = np.searchsorted(cum_counts, [0, cum_counts[-1] - 1],
                                 side="right")
    start = int(start)
    end = int(end) + 1
    del cum_counts

    # TensorBoard only includes the right bin limits. To still have the leftmost limit
    # included, we include an empty bin left.
    # If start == 0, we need to add an empty one left, otherwise we can just include the bin left to the
    # first nonzero-count bin:
    counts = (counts[start - 1:end]
              if start > 0 else np.concatenate([[0], counts[:end]]))
    limits = limits[start:end + 1]

    if counts.size == 0 or limits.size == 0:
        raise ValueError("The histogram is empty, please file a bug report.")

    sum_sq = values.dot(values)
    return HistogramProto(
        min=values.min(),
        max=values.max(),
        num=len(values),
        sum=values.sum(),
        sum_squares=sum_sq,
        bucket_limit=limits.tolist(),
        bucket=counts.tolist(),
    )
Пример #3
0
 def inferred_histo(summary, samples=1000):
     np.random.seed(
         hash(summary.std + summary.mean + summary.min + summary.max))
     samples = np.random.randn(samples) * summary.std + summary.mean
     samples = np.clip(samples, a_min=summary.min, a_max=summary.max)
     (hist, edges) = np.histogram(samples)
     upper_edges = edges[1:]
     r = HistogramProto(min=summary.min,
                        max=summary.max,
                        num=len(samples),
                        sum=samples.sum(),
                        sum_squares=(samples * samples).sum())
     r.bucket_limit.extend(upper_edges)
     r.bucket.extend(hist)
     return r