Пример #1
0
 def _get_graph(self, *args, **kwargs):
     """Set up runs, then fetch and return the graph as a proto."""
     self.set_up_with_runs()
     (graph_pbtxt,
      mime_type) = self.plugin.graph_impl(self._RUN_WITH_GRAPH, *args,
                                          **kwargs)
     self.assertEqual(mime_type, 'text/x-protobuf')
     return text_format.Parse(graph_pbtxt, tf.GraphDef())
Пример #2
0
 def testOnlySummaryEventsTriggerDiscards(self):
     """Test that file version event does not trigger data purge."""
     gen = _EventGenerator(self)
     acc = ea.EventAccumulator(gen)
     gen.AddScalar('s1', wall_time=1, step=100, value=20)
     ev1 = tf.Event(wall_time=2, step=0, file_version='brain.Event:1')
     graph_bytes = tf.GraphDef().SerializeToString()
     ev2 = tf.Event(wall_time=3, step=0, graph_def=graph_bytes)
     gen.AddEvent(ev1)
     gen.AddEvent(ev2)
     acc.Reload()
     self.assertEqual([x.step for x in acc.Scalars('s1')], [100])
Пример #3
0
  def Graph(self):
    """Return the graph definition, if there is one.

    If the graph is stored directly, return that.  If no graph is stored
    directly but a metagraph is stored containing a graph, return that.

    Raises:
      ValueError: If there is no graph for this run.

    Returns:
      The `graph_def` proto.
    """
    graph = tf.GraphDef()
    if self._graph is not None:
      graph.ParseFromString(self._graph)
      return graph
    raise ValueError('There is no graph in this EventAccumulator')
Пример #4
0
  def _generate_test_data(self, run_name, experiment_name):
    """Generates the test data directory.

    The test data has a single run of the given name, containing:
      - a graph definition and metagraph definition

    Arguments:
      run_name: The directory under self.logdir into which to write
          events.
    """
    run_path = os.path.join(self.logdir, run_name)
    writer = tf.summary.FileWriter(run_path)

    # Add a simple graph event.
    graph_def = tf.GraphDef()
    node1 = graph_def.node.add()
    node1.name = 'a'
    node2 = graph_def.node.add()
    node2.name = 'b'
    node2.attr['very_large_attr'].s = b'a' * 2048  # 2 KB attribute

    meta_graph_def = tf.MetaGraphDef(graph_def=graph_def)

    if self._only_use_meta_graph:
      writer.add_meta_graph(meta_graph_def)
    else:
      writer.add_graph(graph_def)

    writer.flush()
    writer.close()

    # Write data for the run to the database.
    # TODO(nickfelt): Figure out why reseting the graph is necessary.
    tf.reset_default_graph()
    db_writer = tf.contrib.summary.create_db_writer(
        db_uri=self.db_path,
        experiment_name=experiment_name,
        run_name=run_name,
        user_name='user')
    with db_writer.as_default(), tf.contrib.summary.always_record_summaries():
      tf.contrib.summary.scalar('mytag', 1)

    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(tf.contrib.summary.summary_writer_initializer_op())
      sess.run(tf.contrib.summary.all_summary_ops())
Пример #5
0
def GenerateTestData(path):
    """Generates the test data directory."""
    run1_path = os.path.join(path, "run1")
    os.makedirs(run1_path)
    writer1 = tf.summary.FileWriter(run1_path)
    WriteScalarSeries(writer1, "foo/square", lambda x: x * x)
    WriteScalarSeries(writer1, "bar/square", lambda x: x * x)
    WriteScalarSeries(writer1, "foo/sin", math.sin)
    WriteScalarSeries(writer1, "foo/cos", math.cos)
    WriteHistogramSeries(writer1, "histo1",
                         [[0, 1], [0.3, 1], [0.5, 1], [0.7, 1], [1, 1]])
    WriteImageSeries(writer1, "im1")
    WriteImageSeries(writer1, "im2")
    WriteAudioSeries(writer1, "au1")

    run2_path = os.path.join(path, "run2")
    os.makedirs(run2_path)
    writer2 = tf.summary.FileWriter(run2_path)
    WriteScalarSeries(writer2, "foo/square", lambda x: x * x * 2)
    WriteScalarSeries(writer2, "bar/square", lambda x: x * x * 3)
    WriteScalarSeries(writer2, "foo/cos", lambda x: math.cos(x) * 2)
    WriteHistogramSeries(writer2, "histo1",
                         [[0, 2], [0.3, 2], [0.5, 2], [0.7, 2], [1, 2]])
    WriteHistogramSeries(writer2, "histo2",
                         [[0, 1], [0.3, 1], [0.5, 1], [0.7, 1], [1, 1]])
    WriteImageSeries(writer2, "im1")
    WriteAudioSeries(writer2, "au2")

    graph_def = tf.GraphDef()
    node1 = graph_def.node.add()
    node1.name = "a"
    node1.op = "matmul"
    node2 = graph_def.node.add()
    node2.name = "b"
    node2.op = "matmul"
    node2.input.extend(["a:0"])

    writer1.add_graph(graph_def)
    node3 = graph_def.node.add()
    node3.name = "c"
    node3.op = "matmul"
    node3.input.extend(["a:0", "b:0"])
    writer2.add_graph(graph_def)
    writer1.close()
    writer2.close()