Пример #1
0
def image(tag, tensor, rescale=1, dataformats="CHW"):
    """Outputs a `Summary` protocol buffer with images. The summary has up to
    `max_images` summary values containing images. The images are built from
    `tensor` which must be 3-D with shape `[height, width, channels]` and where
    `channels` can be:

    *  1: `tensor` is interpreted as Grayscale.
    *  3: `tensor` is interpreted as RGB.
    *  4: `tensor` is interpreted as RGBA.

    Args:
      tag: A name for the generated node. Will also serve as a series name in
        TensorBoard.
      tensor: A 3-D `uint8` or `float32` `Tensor` of shape `[height, width,
        channels]` where `channels` is 1, 3, or 4.
        'tensor' can either have values in [0, 1] (float32) or [0, 255] (uint8).
        The image() function will scale the image values to [0, 255] by applying
        a scale factor of either 1 (uint8) or 255 (float32).
    Returns:
      A scalar `Tensor` of type `string`. The serialized `Summary` protocol
      buffer.
    """
    tag = tbxsummary._clean_tag(tag)
    tensor = tbxmake_np(tensor)
    tensor = convert_to_HWC(tensor, dataformats)
    # Do not assume that user passes in values in [0, 255], use data type to detect
    if tensor.dtype != np.uint8:
        tensor = (tensor * 255.0).astype(np.uint8)

    image = tbxsummary.make_image(tensor, rescale=rescale)
    return TBXSummary(value=[TBXSummary.Value(tag=tag, image=image)])
Пример #2
0
def tensor_to_video(tensor, fps=4):
    tensor = tbxmake_np(tensor)
    tensor = tbx_prepare_video(tensor)
    # If user passes in uint8, then we don't need to rescale by 255
    if tensor.dtype != np.uint8:
        tensor = (tensor * 255.0).astype(np.uint8)

    return tbxsummary.make_video(tensor, fps)
Пример #3
0
def tensor_to_clip(tensor, fps=4):
    tensor = tbxmake_np(tensor)
    tensor = tbx_prepare_video(tensor)
    # If user passes in uint8, then we don't need to rescale by 255
    if tensor.dtype != np.uint8:
        tensor = (tensor * 255.0).astype(np.uint8)

    t, h, w, c = tensor.shape

    clip = mpy.ImageSequenceClip(list(tensor), fps=fps)

    return clip, (h, w, c)