Пример #1
0
def yolo_head(feats, anchors, num_classes, input_shape):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3]  # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
                    [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
                    [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats,
        [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    box_xy = K.sigmoid(feats[..., :2])
    box_wh = K.exp(feats[..., 2:4])
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (box_xy + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
    box_wh = box_wh * anchors_tensor / K.cast(input_shape[::-1],
                                              K.dtype(feats))

    return box_xy, box_wh, box_confidence, box_class_probs
Пример #2
0
def yolo_eval(yolo_outputs,
              anchors,
              num_classes,
              image_shape,
              max_boxes=80,
              score_threshold=.5,
              iou_threshold=.5):
    """Evaluate YOLO model on given input and return filtered boxes."""
    input_shape = K.shape(yolo_outputs)[1:3] * grid_size_multiplier
    boxes = []
    box_scores = []
    polygons = []

    for l in range(1):
        _boxes, _box_scores, _polygons = yolo_boxes_and_scores(
            yolo_outputs, anchors[anchor_mask[l]], num_classes, input_shape,
            image_shape)
        boxes.append(_boxes)
        box_scores.append(_box_scores)
        polygons.append(_polygons)
    boxes = K.concatenate(boxes, axis=0)
    box_scores = K.concatenate(box_scores, axis=0)
    polygons = K.concatenate(polygons, axis=0)

    mask = box_scores >= score_threshold
    box_scores >= score_threshold
    max_boxes_tensor = K.constant(max_boxes, dtype='int32')
    boxes_ = []
    scores_ = []
    classes_ = []
    polygons_ = []
    for c in range(num_classes):
        # TODO: use keras backend instead of tf.
        class_boxes = tf.boolean_mask(boxes, mask[:, c])
        class_polygons = tf.boolean_mask(polygons, mask[:, c])
        class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
        nms_index = tf.image.non_max_suppression(class_boxes,
                                                 class_box_scores,
                                                 max_boxes_tensor,
                                                 iou_threshold=iou_threshold)
        class_boxes = K.gather(class_boxes, nms_index)
        class_box_scores = K.gather(class_box_scores, nms_index)
        class_polygons = K.gather(class_polygons, nms_index)
        classes = K.ones_like(class_box_scores, 'int32') * c
        boxes_.append(class_boxes)
        scores_.append(class_box_scores)
        classes_.append(classes)
        polygons_.append(class_polygons)
    polygons_ = K.concatenate(polygons_, axis=0)
    boxes_ = K.concatenate(boxes_, axis=0)
    scores_ = K.concatenate(scores_, axis=0)
    classes_ = K.concatenate(classes_, axis=0)

    return boxes_, scores_, classes_, polygons_
Пример #3
0
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = anchors_per_level
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3]  # height, width
    grid_y = K.tile(
        tf.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1],
                   name='yolo_head/tile/reshape/grid_y'),
        [1, grid_shape[1], 1, 1])
    grid_x = K.tile(
        tf.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1],
                   name='yolo_head/tile/reshape/grid_x'),
        [grid_shape[0], 1, 1, 1])
    grid = tf.concat([grid_x, grid_y],
                     axis=-1,
                     name='yolo_head/concatenate/grid')
    grid = K.cast(grid, K.dtype(feats))
    feats = tf.reshape(feats, [
        -1, grid_shape[0], grid_shape[1], num_anchors,
        num_classes + 5 + NUM_ANGLES3
    ],
                       name='yolo_head/reshape/feats')

    # Adjust predictions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(
        grid_shape[..., ::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(
        input_shape[..., ::-1], K.dtype(feats))

    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:5 + num_classes])
    polygons_confidence = K.sigmoid(feats[..., 5 + num_classes + 2:5 +
                                          num_classes + NUM_ANGLES3:3])
    polygons_x = K.exp(feats[...,
                             5 + num_classes:num_classes + 5 + NUM_ANGLES3:3])

    dx = K.square(anchors_tensor[..., 0:1] / 2)
    dy = K.square(anchors_tensor[..., 1:2] / 2)
    d = K.cast(K.sqrt(dx + dy), K.dtype(polygons_x))
    a = K.pow(input_shape[..., ::-1], 2)
    a = K.cast(a, K.dtype(feats))
    b = K.sum(a)
    diagonal = K.cast(K.sqrt(b), K.dtype(feats))
    polygons_x = polygons_x * d / diagonal

    polygons_y = feats[...,
                       5 + num_classes + 1:num_classes + 5 + NUM_ANGLES3:3]
    polygons_y = K.sigmoid(polygons_y)

    if calc_loss == True:
        return grid, feats, box_xy, box_wh, polygons_confidence
    return box_xy, box_wh, box_confidence, box_class_probs, polygons_x, polygons_y, polygons_confidence
Пример #4
0
def yolo_eval(yolo_outputs,
              anchors,
              num_classes,
              image_shape,
              max_boxes=20,
              score_threshold=.6,
              iou_threshold=.5):
    """Evaluate YOLO model on given input and return filtered boxes."""
    num_layers = len(yolo_outputs)
    anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [[
        3, 4, 5
    ], [1, 2, 3]]  # default setting
    input_shape = K.shape(yolo_outputs[0])[1:3] * 32
    boxes = []
    box_scores = []
    for l in range(num_layers):
        _boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],
                                                    anchors[anchor_mask[l]],
                                                    num_classes, input_shape,
                                                    image_shape)
        boxes.append(_boxes)
        box_scores.append(_box_scores)
    boxes = K.concatenate(boxes, axis=0)
    box_scores = K.concatenate(box_scores, axis=0)

    mask = box_scores >= score_threshold
    max_boxes_tensor = K.constant(max_boxes, dtype='int32')
    boxes_ = []
    scores_ = []
    classes_ = []
    for c in range(num_classes):
        # TODO: use keras backend instead of tf.
        class_boxes = tf.boolean_mask(boxes, mask[:, c])
        class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
        nms_index = tf.image.non_max_suppression(class_boxes,
                                                 class_box_scores,
                                                 max_boxes_tensor,
                                                 iou_threshold=iou_threshold)
        class_boxes = K.gather(class_boxes, nms_index)
        class_box_scores = K.gather(class_box_scores, nms_index)
        classes = K.ones_like(class_box_scores, 'int32') * c
        boxes_.append(class_boxes)
        scores_.append(class_box_scores)
        classes_.append(classes)
    boxes_ = K.concatenate(boxes_, axis=0)
    scores_ = K.concatenate(scores_, axis=0)
    classes_ = K.concatenate(classes_, axis=0)

    return boxes_, scores_, classes_
Пример #5
0
    def _yolo_head(self,
                   feats,
                   anchors,
                   num_classes,
                   input_shape,
                   calc_loss=False):
        """Convert final layer features to bounding box parameters"""

        num_anchors = len(anchors)
        anchors_tensor = K.reshape(K.constant(anchors),
                                   [1, 1, 1, num_anchors, 2])

        # height, width
        grid_shape = K.shape(feats)[1:3]
        grid_y = K.tile(
            K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
            [1, grid_shape[1], 1, 1],
        )
        grid_x = K.tile(
            K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
            [grid_shape[0], 1, 1, 1],
        )
        grid = K.concatenate([grid_x, grid_y])
        grid = K.cast(grid, K.dtype(feats))

        feats = K.reshape(
            feats,
            [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

        # Adjust preditions to each spatial grid point and anchor size.
        box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(
            grid_shape[::-1], K.dtype(feats))
        box_wh = (K.exp(feats[..., 2:4]) * anchors_tensor /
                  K.cast(input_shape[::-1], K.dtype(feats)))
        box_confidence = K.sigmoid(feats[..., 4:5])
        box_class_probs = K.sigmoid(feats[..., 5:])

        if calc_loss == True:
            return grid, feats, box_xy, box_wh
        return box_xy, box_wh, box_confidence, box_class_probs
Пример #6
0
 def call(self, inputs, **kwargs):
     return tf.scalar_mul(K.constant(self.scale_factor), inputs)