Пример #1
0
def yolo_head(feats, anchors, num_classes):

    # convert anchors to shape 1 , 1 , 1 , len of anchors , 2
    num_anchors = len(anchors)
    anchors_tensor = K.reshape(K.variable(anchors), [1, 1, 1, num_anchors, 2])
    # conv_dims , width and hight of the grid
    _, conv_height, conv_width, _ = K.int_shape(feats)
    conv_dims = K.variable([conv_width, conv_height])
    # reshape yolo network output to None , grid_width , grid_hight , num of amnchors , num of classes + 5
    feats = K.reshape(
        feats, [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5])
    # convert conv_dims after casting it to feats datatype to 1 , 1 , 1 , 2
    conv_dims = K.cast(K.reshape(conv_dims, [1, 1, 1, 1, 2]), K.dtype(feats))
    # create grid from (0 , 0 ) to (width , hight)
    conv_index = np.array([_ for _ in np.ndindex(conv_width, conv_height)])
    conv_index = conv_index[:, [1, 0]]  # swap columns for YOLO ordering.
    conv_index = K.variable(
        conv_index.reshape(1, conv_height, conv_width, 1, 2))

    box_confidence = K.sigmoid(feats[..., 4:5])
    box_xy = K.sigmoid(feats[..., :2])
    box_wh = K.exp(feats[..., 2:4])
    box_class_probs = K.softmax(feats[..., 5:])

    box_xy = (box_xy + conv_index) / conv_dims
    box_wh = box_wh * anchors_tensor / conv_dims

    return box_confidence, box_xy, box_wh, box_class_probs
Пример #2
0
def yolo_head(feats, anchors, num_classes, input_shape):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3]  # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
                    [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
                    [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats,
        [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    box_xy = K.sigmoid(feats[..., :2])
    box_wh = K.exp(feats[..., 2:4])
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (box_xy + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
    box_wh = box_wh * anchors_tensor / K.cast(input_shape[::-1],
                                              K.dtype(feats))

    return box_xy, box_wh, box_confidence, box_class_probs
Пример #3
0
    def call(self, inputs, output_shape=None):
        updates, mask = inputs[0], inputs[1]
        with tf.compat.v1.variable_scope(self.name):
            mask = K.cast(mask, "int32")
            input_shape = tf.shape(updates, out_type="int32")
            #  calculation new shape
            if output_shape is None:
                output_shape = (
                    input_shape[0],
                    input_shape[1] * self.size[0],
                    input_shape[2] * self.size[1],
                    input_shape[3],
                )
            self.output_shape1 = output_shape

            # calculation indices for batch, height, width and feature maps
            one_like_mask = K.ones_like(mask, dtype="int32")
            batch_shape = K.concatenate([[input_shape[0]], [1], [1], [1]],
                                        axis=0)
            batch_range = K.reshape(tf.range(output_shape[0], dtype="int32"),
                                    shape=batch_shape)
            b = one_like_mask * batch_range
            y = mask // (output_shape[2] * output_shape[3])
            x = (mask // output_shape[3]) % output_shape[2]
            feature_range = tf.range(output_shape[3], dtype="int32")
            f = one_like_mask * feature_range

            # transpose indices & reshape update values to one dimension
            updates_size = tf.size(updates)
            indices = K.transpose(
                K.reshape(K.stack([b, y, x, f]), [4, updates_size]))
            values = K.reshape(updates, [updates_size])
            ret = tf.scatter_nd(indices, values, output_shape)
            return ret
Пример #4
0
    def call(self, QKVs):
        """Core logic of multi-head self attention.

        Args:
            QKVs (list): inputs of multi-head self attention i.e. query, key and value.

        Returns:
            object: ouput tensors.
        """
        if len(QKVs) == 3:
            Q_seq, K_seq, V_seq = QKVs
            Q_len, V_len = None, None
        elif len(QKVs) == 5:
            Q_seq, K_seq, V_seq, Q_len, V_len = QKVs
        Q_seq = K.dot(Q_seq, self.WQ)
        Q_seq = K.reshape(Q_seq,
                          shape=(-1, K.shape(Q_seq)[1], self.multiheads,
                                 self.head_dim))
        Q_seq = K.permute_dimensions(Q_seq, pattern=(0, 2, 1, 3))

        K_seq = K.dot(K_seq, self.WK)
        K_seq = K.reshape(K_seq,
                          shape=(-1, K.shape(K_seq)[1], self.multiheads,
                                 self.head_dim))
        K_seq = K.permute_dimensions(K_seq, pattern=(0, 2, 1, 3))

        V_seq = K.dot(V_seq, self.WV)
        V_seq = K.reshape(V_seq,
                          shape=(-1, K.shape(V_seq)[1], self.multiheads,
                                 self.head_dim))
        V_seq = K.permute_dimensions(V_seq, pattern=(0, 2, 1, 3))

        A = einsum("abij, abkj -> abik", Q_seq, K_seq) / K.sqrt(
            K.cast(self.head_dim, dtype="float32"))
        A = K.permute_dimensions(
            A, pattern=(0, 3, 2, 1)
        )  # A.shape=[batch_size,K_sequence_length,Q_sequence_length,self.multiheads]

        A = self.Mask(A, V_len, "add")
        A = K.permute_dimensions(A, pattern=(0, 3, 2, 1))

        if self.mask_right:
            ones = K.ones_like(A[:1, :1])
            lower_triangular = K.tf.matrix_band_part(ones,
                                                     num_lower=-1,
                                                     num_upper=0)
            mask = (ones - lower_triangular) * 1e12
            A = A - mask
        A = K.softmax(A)

        O_seq = einsum("abij, abjk -> abik", A, V_seq)
        O_seq = K.permute_dimensions(O_seq, pattern=(0, 2, 1, 3))

        O_seq = K.reshape(O_seq,
                          shape=(-1, K.shape(O_seq)[1], self.output_dim))
        O_seq = self.Mask(O_seq, Q_len, "mul")
        return O_seq
Пример #5
0
def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):
    '''Process Conv layer output'''
    box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats,
        anchors, num_classes, input_shape)
    boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)
    boxes = K.reshape(boxes, [-1, 4])
    box_scores = box_confidence * box_class_probs
    box_scores = K.reshape(box_scores, [-1, num_classes])
    return boxes, box_scores
Пример #6
0
 def _boxes_and_scores(self, feats, anchors, num_classes, input_shape,
                       image_shape):
     """Process Convolutional layer output"""
     box_xy, box_wh, box_confidence, box_class_probs = self._yolo_head(
         feats, anchors, num_classes, input_shape)
     boxes = self._correct_boxes(box_xy, box_wh, input_shape, image_shape)
     boxes = K.reshape(boxes, [-1, 4])
     box_scores = box_confidence * box_class_probs
     box_scores = K.reshape(box_scores, [-1, num_classes])
     return boxes, box_scores
Пример #7
0
def yolo_eval(yolo_outputs,
              image_shape,
              max_boxes=10,
              score_threshold=.6,
              iou_threshold=.5):
    """Evaluate YOLO model on given input batch and return filtered boxes."""
    box_xy, box_wh, box_confidence, box_class_probs = yolo_outputs
    boxes = yolo_boxes_to_corners(box_xy, box_wh)
    boxes, scores, classes = yolo_filter_boxes(
        boxes, box_confidence, box_class_probs, threshold=score_threshold)

    # Scale boxes back to original image shape.
    height = image_shape[0]
    width = image_shape[1]
    image_dims = K.stack([height, width, height, width])
    image_dims = K.reshape(image_dims, [1, 4])
    boxes = boxes * image_dims

    # TODO: Something must be done about this ugly hack!
    max_boxes_tensor = K.variable(max_boxes, dtype='int32')
    K.get_session().run(tf.compat.v1.variables_initializer([max_boxes_tensor]))
    nms_index = tf.image.non_max_suppression(
        boxes, scores, max_boxes_tensor, iou_threshold=iou_threshold)
    boxes = K.gather(boxes, nms_index)
    scores = K.gather(scores, nms_index)
    classes = K.gather(classes, nms_index)
    return boxes, scores, classes
Пример #8
0
def path_energy0(y, x, U, mask=None):
    """Path energy without boundary potential handling."""
    n_classes = K.shape(x)[2]
    y_one_hot = K.one_hot(y, n_classes)

    # Tag path energy
    energy = K.sum(x * y_one_hot, 2)
    energy = K.sum(energy, 1)

    # Transition energy
    y_t = y[:, :-1]
    y_tp1 = y[:, 1:]
    U_flat = K.reshape(U, [-1])
    # Convert 2-dim indices (y_t, y_tp1) of U to 1-dim indices of U_flat:
    flat_indices = y_t * n_classes + y_tp1
    U_y_t_tp1 = K.gather(U_flat, flat_indices)

    if mask is not None:
        mask = K.cast(mask, K.floatx())
        y_t_mask = mask[:, :-1]
        y_tp1_mask = mask[:, 1:]
        U_y_t_tp1 *= y_t_mask * y_tp1_mask

    energy += K.sum(U_y_t_tp1, axis=1)

    return energy
Пример #9
0
def scale_boxes(boxes, image_shape):
    """ Scales the predicted boxes in order to be drawable on the image"""
    height = image_shape[0]
    width = image_shape[1]
    image_dims = K.stack([height, width, height, width])
    image_dims = K.reshape(image_dims, [1, 4])
    boxes = boxes * image_dims
    return boxes
Пример #10
0
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = anchors_per_level
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3]  # height, width
    grid_y = K.tile(
        tf.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1],
                   name='yolo_head/tile/reshape/grid_y'),
        [1, grid_shape[1], 1, 1])
    grid_x = K.tile(
        tf.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1],
                   name='yolo_head/tile/reshape/grid_x'),
        [grid_shape[0], 1, 1, 1])
    grid = tf.concat([grid_x, grid_y],
                     axis=-1,
                     name='yolo_head/concatenate/grid')
    grid = K.cast(grid, K.dtype(feats))
    feats = tf.reshape(feats, [
        -1, grid_shape[0], grid_shape[1], num_anchors,
        num_classes + 5 + NUM_ANGLES3
    ],
                       name='yolo_head/reshape/feats')

    # Adjust predictions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(
        grid_shape[..., ::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(
        input_shape[..., ::-1], K.dtype(feats))

    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:5 + num_classes])
    polygons_confidence = K.sigmoid(feats[..., 5 + num_classes + 2:5 +
                                          num_classes + NUM_ANGLES3:3])
    polygons_x = K.exp(feats[...,
                             5 + num_classes:num_classes + 5 + NUM_ANGLES3:3])

    dx = K.square(anchors_tensor[..., 0:1] / 2)
    dy = K.square(anchors_tensor[..., 1:2] / 2)
    d = K.cast(K.sqrt(dx + dy), K.dtype(polygons_x))
    a = K.pow(input_shape[..., ::-1], 2)
    a = K.cast(a, K.dtype(feats))
    b = K.sum(a)
    diagonal = K.cast(K.sqrt(b), K.dtype(feats))
    polygons_x = polygons_x * d / diagonal

    polygons_y = feats[...,
                       5 + num_classes + 1:num_classes + 5 + NUM_ANGLES3:3]
    polygons_y = K.sigmoid(polygons_y)

    if calc_loss == True:
        return grid, feats, box_xy, box_wh, polygons_confidence
    return box_xy, box_wh, box_confidence, box_class_probs, polygons_x, polygons_y, polygons_confidence
Пример #11
0
    def _yolo_head(self,
                   feats,
                   anchors,
                   num_classes,
                   input_shape,
                   calc_loss=False):
        """Convert final layer features to bounding box parameters"""

        num_anchors = len(anchors)
        anchors_tensor = K.reshape(K.constant(anchors),
                                   [1, 1, 1, num_anchors, 2])

        # height, width
        grid_shape = K.shape(feats)[1:3]
        grid_y = K.tile(
            K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
            [1, grid_shape[1], 1, 1],
        )
        grid_x = K.tile(
            K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
            [grid_shape[0], 1, 1, 1],
        )
        grid = K.concatenate([grid_x, grid_y])
        grid = K.cast(grid, K.dtype(feats))

        feats = K.reshape(
            feats,
            [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

        # Adjust preditions to each spatial grid point and anchor size.
        box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(
            grid_shape[::-1], K.dtype(feats))
        box_wh = (K.exp(feats[..., 2:4]) * anchors_tensor /
                  K.cast(input_shape[::-1], K.dtype(feats)))
        box_confidence = K.sigmoid(feats[..., 4:5])
        box_class_probs = K.sigmoid(feats[..., 5:])

        if calc_loss == True:
            return grid, feats, box_xy, box_wh
        return box_xy, box_wh, box_confidence, box_class_probs
Пример #12
0
    def call(self, x, mask=None):
        features_dim = self.features_dim
        step_dim = self.step_dim

        e = K.reshape(
            K.dot(K.reshape(x, (-1, features_dim)),
                  K.reshape(self.W, (features_dim, 1))),
            (-1, step_dim))  # e = K.dot(x, self.W)
        if self.bias:
            e += self.b
        e = K.tanh(e)

        a = K.exp(e)
        # apply mask after the exp. will be re-normalized next
        if mask is not None:
            # cast the mask to floatX to avoid float64 upcasting in theano
            a *= K.cast(mask, K.floatx())
        # in some cases especially in the early stages of training the sum may be almost zero
        # and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
        a = K.expand_dims(a)

        c = K.sum(a * x, axis=1)
        return c
Пример #13
0
def yolo_head(feats, anchors, num_classes):
    """Convert final layer features to bounding box parameters.

    Parameters
    ----------
    feats : tensor
        Final convolutional layer features.
    anchors : array-like
        Anchor box widths and heights.
    num_classes : int
        Number of target classes.

    Returns
    -------
    box_xy : tensor
        x, y box predictions adjusted by spatial location in conv layer.
    box_wh : tensor
        w, h box predictions adjusted by anchors and conv spatial resolution.
    box_conf : tensor
        Probability estimate for whether each box contains any object.
    box_class_pred : tensor
        Probability distribution estimate for each box over class labels.
    """
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.variable(anchors), [1, 1, 1, num_anchors, 2])

    # Static implementation for fixed models.
    # TODO: Remove or add option for static implementation.
    # _, conv_height, conv_width, _ = K.int_shape(feats)
    # conv_dims = K.variable([conv_width, conv_height])

    # Dynamic implementation of conv dims for fully convolutional model.
    conv_dims = K.shape(feats)[1:3]  # assuming channels last
    # In YOLO the height index is the inner most iteration.
    conv_height_index = K.arange(0, stop=conv_dims[0])
    conv_width_index = K.arange(0, stop=conv_dims[1])
    conv_height_index = K.tile(conv_height_index, [conv_dims[1]])

    # TODO: Repeat_elements and tf.split doesn't support dynamic splits.
    # conv_width_index = K.repeat_elements(conv_width_index, conv_dims[1], axis=0)
    conv_width_index = K.tile(
        K.expand_dims(conv_width_index, 0), [conv_dims[0], 1])
    conv_width_index = K.flatten(K.transpose(conv_width_index))
    conv_index = K.transpose(K.stack([conv_height_index, conv_width_index]))
    conv_index = K.reshape(conv_index, [1, conv_dims[0], conv_dims[1], 1, 2])
    conv_index = K.cast(conv_index, K.dtype(feats))

    feats = K.reshape(
        feats, [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5])
    conv_dims = K.cast(K.reshape(conv_dims, [1, 1, 1, 1, 2]), K.dtype(feats))

    # Static generation of conv_index:
    # conv_index = np.array([_ for _ in np.ndindex(conv_width, conv_height)])
    # conv_index = conv_index[:, [1, 0]]  # swap columns for YOLO ordering.
    # conv_index = K.variable(
    #     conv_index.reshape(1, conv_height, conv_width, 1, 2))
    # feats = Reshape(
    #     (conv_dims[0], conv_dims[1], num_anchors, num_classes + 5))(feats)

    box_xy = K.sigmoid(feats[..., :2])
    box_wh = K.exp(feats[..., 2:4])
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.softmax(feats[..., 5:])

    # Adjust preditions to each spatial grid point and anchor size.
    # Note: YOLO iterates over height index before width index.
    box_xy = (box_xy + conv_index) / conv_dims
    box_wh = box_wh * anchors_tensor / conv_dims

    return box_xy, box_wh, box_confidence, box_class_probs
Пример #14
0
def yolo_loss(args,
              anchors,
              num_classes,
              rescore_confidence=False,
              print_loss=False):
    """YOLO localization loss function.

    Parameters
    ----------
    yolo_output : tensor
        Final convolutional layer features.

    true_boxes : tensor
        Ground truth boxes tensor with shape [batch, num_true_boxes, 5]
        containing box x_center, y_center, width, height, and class.

    detectors_mask : array
        0/1 mask for detector positions where there is a matching ground truth.

    matching_true_boxes : array
        Corresponding ground truth boxes for positive detector positions.
        Already adjusted for conv height and width.

    anchors : tensor
        Anchor boxes for model.

    num_classes : int
        Number of object classes.

    rescore_confidence : bool, default=False
        If true then set confidence target to IOU of best predicted box with
        the closest matching ground truth box.

    print_loss : bool, default=False
        If True then use a tf.Print() to print the loss components.

    Returns
    -------
    mean_loss : float
        mean localization loss across minibatch
    """
    (yolo_output, true_boxes, detectors_mask, matching_true_boxes) = args
    num_anchors = len(anchors)
    object_scale = 5
    no_object_scale = 1
    class_scale = 1
    coordinates_scale = 1
    pred_xy, pred_wh, pred_confidence, pred_class_prob = yolo_head(
        yolo_output, anchors, num_classes)

    # Unadjusted box predictions for loss.
    # TODO: Remove extra computation shared with yolo_head.
    yolo_output_shape = K.shape(yolo_output)
    feats = K.reshape(yolo_output, [
        -1, yolo_output_shape[1], yolo_output_shape[2], num_anchors,
        num_classes + 5
    ])
    pred_boxes = K.concatenate(
        (K.sigmoid(feats[..., 0:2]), feats[..., 2:4]), axis=-1)

    # TODO: Adjust predictions by image width/height for non-square images?
    # IOUs may be off due to different aspect ratio.

    # Expand pred x,y,w,h to allow comparison with ground truth.
    # batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params
    pred_xy = K.expand_dims(pred_xy, 4)
    pred_wh = K.expand_dims(pred_wh, 4)

    pred_wh_half = pred_wh / 2.
    pred_mins = pred_xy - pred_wh_half
    pred_maxes = pred_xy + pred_wh_half

    true_boxes_shape = K.shape(true_boxes)

    # batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params
    true_boxes = K.reshape(true_boxes, [
        true_boxes_shape[0], 1, 1, 1, true_boxes_shape[1], true_boxes_shape[2]
    ])
    true_xy = true_boxes[..., 0:2]
    true_wh = true_boxes[..., 2:4]

    # Find IOU of each predicted box with each ground truth box.
    true_wh_half = true_wh / 2.
    true_mins = true_xy - true_wh_half
    true_maxes = true_xy + true_wh_half

    intersect_mins = K.maximum(pred_mins, true_mins)
    intersect_maxes = K.minimum(pred_maxes, true_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1]

    pred_areas = pred_wh[..., 0] * pred_wh[..., 1]
    true_areas = true_wh[..., 0] * true_wh[..., 1]

    union_areas = pred_areas + true_areas - intersect_areas
    iou_scores = intersect_areas / union_areas

    # Best IOUs for each location.
    best_ious = K.max(iou_scores, axis=4)  # Best IOU scores.
    best_ious = K.expand_dims(best_ious)

    # A detector has found an object if IOU > thresh for some true box.
    object_detections = K.cast(best_ious > 0.6, K.dtype(best_ious))

    # TODO: Darknet region training includes extra coordinate loss for early
    # training steps to encourage predictions to match anchor priors.

    # Determine confidence weights from object and no_object weights.
    # NOTE: YOLO does not use binary cross-entropy here.
    no_object_weights = (no_object_scale * (1 - object_detections) *
                         (1 - detectors_mask))
    no_objects_loss = no_object_weights * K.square(-pred_confidence)

    if rescore_confidence:
        objects_loss = (object_scale * detectors_mask *
                        K.square(best_ious - pred_confidence))
    else:
        objects_loss = (object_scale * detectors_mask *
                        K.square(1 - pred_confidence))
    confidence_loss = objects_loss + no_objects_loss

    # Classification loss for matching detections.
    # NOTE: YOLO does not use categorical cross-entropy loss here.
    matching_classes = K.cast(matching_true_boxes[..., 4], 'int32')
    matching_classes = K.one_hot(matching_classes, num_classes)
    classification_loss = (class_scale * detectors_mask *
                           K.square(matching_classes - pred_class_prob))

    # Coordinate loss for matching detection boxes.
    matching_boxes = matching_true_boxes[..., 0:4]
    coordinates_loss = (coordinates_scale * detectors_mask *
                        K.square(matching_boxes - pred_boxes))

    confidence_loss_sum = K.sum(confidence_loss)
    classification_loss_sum = K.sum(classification_loss)
    coordinates_loss_sum = K.sum(coordinates_loss)
    total_loss = 0.5 * (
        confidence_loss_sum + classification_loss_sum + coordinates_loss_sum)
    if print_loss:
        total_loss = tf.Print(
            total_loss, [
                total_loss, confidence_loss_sum, classification_loss_sum,
                coordinates_loss_sum
            ],
            message='yolo_loss, conf_loss, class_loss, box_coord_loss:')

    return total_loss