def testContainsIndexedSlices_PerReplica(self):
     t0 = math_ops._as_indexed_slices(
         constant_op.constant([[1., 2.], [0, 0], [3., 4.]]))
     t1 = math_ops._as_indexed_slices(
         constant_op.constant([[0., 0.], [5, 6], [7., 8.]]))
     per_replica = value_lib.PerReplica({"/gpu:0": t0, "/cpu:0": t1})
     self.assertTrue(cross_tower_utils.contains_indexed_slices(per_replica))
Пример #2
0
    def _reduce(self, aggregation, per_device_value, destinations):
        if cross_tower_utils.contains_indexed_slices(per_device_value):
            raise ValueError(
                "`IndexSlices` is not supported for Collective All-Reduce.")
        if context.executing_eagerly():
            raise ValueError(
                "Eager execution is not supported for Collective All-Reduce")

        all_reduced = self._batch_all_reduce(aggregation,
                                             [per_device_value])[0]
        if _devices_match(per_device_value, destinations):
            return all_reduced
        else:
            index = {}
            for d in get_devices_from(destinations):
                # pylint: disable=protected-access
                if d in all_reduced._index:
                    index[d] = all_reduced._index[d]
                else:
                    with ops.control_dependencies(
                            list(all_reduced._index.values())), ops.device(d):
                        index[d] = array_ops.identity(
                            list(all_reduced._index.values())[0])

            return value_lib.Mirrored(index)
 def testContainsIndexedSlices_PerReplica(self):
   t0 = math_ops._as_indexed_slices(
       constant_op.constant([[1., 2.], [0, 0], [3., 4.]]))
   t1 = math_ops._as_indexed_slices(
       constant_op.constant([[0., 0.], [5, 6], [7., 8.]]))
   per_replica = value_lib.PerReplica({"/gpu:0": t0, "/cpu:0": t1})
   self.assertTrue(cross_tower_utils.contains_indexed_slices(per_replica))
 def testContainsIndexedSlices_PerDeviceMapOutput(self):
   t0 = math_ops._as_indexed_slices(
       constant_op.constant([[1., 2.], [0, 0], [3., 4.]]))
   t1 = math_ops._as_indexed_slices(
       constant_op.constant([[0., 0.], [5, 6], [7., 8.]]))
   per_device = value_lib.PerDevice({
       "/gpu:0": value_lib.MapOutput([t0]),
       "/cpu:0": value_lib.MapOutput([t1])})
   self.assertTrue(cross_tower_utils.contains_indexed_slices(per_device))
Пример #5
0
  def _batch_reduce(self, aggregation, value_destination_pairs):
    all_devices_match = _all_devices_match(value_destination_pairs)
    contains_indexed_slices = cross_tower_utils.contains_indexed_slices(
        value_destination_pairs)
    if (all_devices_match and not context.executing_eagerly()
        and not contains_indexed_slices):
      return self._batch_all_reduce(aggregation,
                                    [v[0] for v in value_destination_pairs])
    else:
      if not all_devices_match:
        logging.warning("Efficient batch_reduce is not supported if "
                        "destinations are different.")

      return [
          self._reduce(aggregation, t, destinations=v)
          for t, v in value_destination_pairs
      ]
Пример #6
0
    def _batch_reduce(self, aggregation, value_destination_pairs):
        all_devices_match = _all_devices_match(value_destination_pairs)
        contains_indexed_slices = cross_tower_utils.contains_indexed_slices(
            value_destination_pairs)
        if (all_devices_match and not context.executing_eagerly()
                and not contains_indexed_slices):
            return self._batch_all_reduce(
                aggregation, [v[0] for v in value_destination_pairs])
        else:
            if not all_devices_match:
                logging.warning("Efficient batch_reduce is not supported if "
                                "destinations are different.")

            return [
                self._reduce(aggregation, t, destinations=v)
                for t, v in value_destination_pairs
            ]
Пример #7
0
  def _reduce(self, aggregation, per_device_value, destinations):
    contains_indexed_slices = cross_tower_utils.contains_indexed_slices(
        per_device_value)
    if ((destinations is None or _devices_match(per_device_value, destinations))
        and not context.executing_eagerly()
        and not contains_indexed_slices):
      return self._batch_all_reduce(aggregation, [per_device_value])[0]
    else:
      if contains_indexed_slices:
        logging.log_first_n(
            logging.WARN,
            "Efficient allreduce is not supported for IndexedSlices.", 10)

      devices = get_devices_from(destinations or per_device_value)
      reduce_to_device = devices[0]
      reduced = _simple_reduce(per_device_value, reduce_to_device,
                               math_ops.add_n, aggregation)
      return self.broadcast(reduced, devices)
Пример #8
0
  def _reduce(self, aggregation, per_device_value, destinations):
    contains_indexed_slices = cross_tower_utils.contains_indexed_slices(
        per_device_value)
    if ((destinations is None or _devices_match(per_device_value, destinations))
        and not context.executing_eagerly()
        and not contains_indexed_slices):
      return self._batch_all_reduce(aggregation, [per_device_value])[0]
    else:
      if contains_indexed_slices:
        logging.log_first_n(
            logging.WARN,
            "Efficient allreduce is not supported for IndexedSlices.", 10)

      devices = get_devices_from(destinations or per_device_value)
      reduce_to_device = devices[0]
      reduced = _simple_reduce(per_device_value, reduce_to_device,
                               math_ops.add_n, aggregation)
      return self.broadcast(reduced, devices)
Пример #9
0
  def _batch_reduce(self, aggregation, value_destination_pairs):
    if cross_tower_utils.contains_indexed_slices(value_destination_pairs):
      raise ValueError(
          "`IndexSlices` is not supported for Collective All-Reduce.")
    if context.executing_eagerly():
      raise ValueError(
          "Eager execution is not supported for Collective All-Reduce")

    all_devices_match = _all_devices_match(value_destination_pairs)
    if all_devices_match:
      return self._batch_all_reduce(aggregation,
                                    [v[0] for v in value_destination_pairs])
    else:
      if not all_devices_match:
        logging.log_first_n(
            logging.WARN, "Efficient batch_reduce is not supported if "
            "destinations are different.", 10)

      return [
          self._reduce(aggregation, t, destinations=v)
          for t, v in value_destination_pairs
      ]
Пример #10
0
  def _batch_reduce(self, aggregation, value_destination_pairs):
    if cross_tower_utils.contains_indexed_slices(value_destination_pairs):
      raise ValueError(
          "`IndexSlices` is not supported for Collective All-Reduce.")
    if context.executing_eagerly():
      raise ValueError(
          "Eager execution is not supported for Collective All-Reduce")

    all_devices_match = _all_devices_match(value_destination_pairs)
    if all_devices_match:
      return self._batch_all_reduce(aggregation,
                                    [v[0] for v in value_destination_pairs])
    else:
      if not all_devices_match:
        logging.log_first_n(
            logging.WARN, "Efficient batch_reduce is not supported if "
            "destinations are different.", 10)

      return [
          self._reduce(aggregation, t, destinations=v)
          for t, v in value_destination_pairs
      ]
Пример #11
0
  def _reduce(self, aggregation, per_device_value, destinations):
    if cross_tower_utils.contains_indexed_slices(per_device_value):
      raise ValueError(
          "`IndexSlices` is not supported for Collective All-Reduce.")
    if context.executing_eagerly():
      raise ValueError(
          "Eager execution is not supported for Collective All-Reduce")

    all_reduced = self._batch_all_reduce(aggregation, [per_device_value])[0]
    if _devices_match(per_device_value, destinations):
      return all_reduced
    else:
      index = {}
      for d in get_devices_from(destinations):
        # pylint: disable=protected-access
        if d in all_reduced._index:
          index[d] = all_reduced._index[d]
        else:
          with ops.control_dependencies(list(
              all_reduced._index.values())), ops.device(d):
            index[d] = array_ops.identity(list(all_reduced._index.values())[0])

      return value_lib.Mirrored(index)
 def testContainsIndexedSlices_Tuple(self):
   t0 = math_ops._as_indexed_slices(
       constant_op.constant([[1., 2.], [0, 0], [3., 4.]]))
   t1 = math_ops._as_indexed_slices(
       constant_op.constant([[0., 0.], [5, 6], [7., 8.]]))
   self.assertTrue(cross_tower_utils.contains_indexed_slices((t0, t1)))
 def testIsIndexedSlices(self):
   t = math_ops._as_indexed_slices(
       constant_op.constant([[1., 2.], [0, 0], [3., 4.]]))
   self.assertTrue(cross_tower_utils.contains_indexed_slices(t))
 def testContainsIndexedSlices_Tuple(self):
     t0 = math_ops._as_indexed_slices(
         constant_op.constant([[1., 2.], [0, 0], [3., 4.]]))
     t1 = math_ops._as_indexed_slices(
         constant_op.constant([[0., 0.], [5, 6], [7., 8.]]))
     self.assertTrue(cross_tower_utils.contains_indexed_slices((t0, t1)))
 def testIsIndexedSlices(self):
     t = math_ops._as_indexed_slices(
         constant_op.constant([[1., 2.], [0, 0], [3., 4.]]))
     self.assertTrue(cross_tower_utils.contains_indexed_slices(t))