Пример #1
0
def double_conv_layer(x, filter_size, size, dropout, batch_norm=False):
    '''
    construction of a double convolutional layer using
    SAME padding
    RELU nonlinear activation function
    :param x: input
    :param filter_size: size of convolutional filter
    :param size: number of filters
    :param dropout: FLAG & RATE of dropout.
            if < 0 dropout cancelled, if > 0 set as the rate
    :param batch_norm: flag of if batch_norm used,
            if True batch normalization
    :return: output of a double convolutional layer
    '''
    axis = 3
    conv = layers.Conv2D(size, (filter_size, filter_size), padding='same')(x)
    if batch_norm is True:
        conv = layers.BatchNormalization(axis=axis)(conv)
    conv = layers.Activation('relu')(conv)
    conv = layers.Conv2D(size, (filter_size, filter_size),
                         padding='same')(conv)
    if batch_norm is True:
        conv = layers.BatchNormalization(axis=axis)(conv)
    conv = layers.Activation('relu')(conv)
    if dropout > 0:
        conv = layers.Dropout(dropout)(conv)

    shortcut = layers.Conv2D(size, kernel_size=(1, 1), padding='same')(x)
    if batch_norm is True:
        shortcut = layers.BatchNormalization(axis=axis)(shortcut)

    res_path = layers.add([shortcut, conv])
    return res_path
Пример #2
0
    def build_model(self):
        l2_kernel_regularization = 1e-5

        # Define input layers
        input_states = layers.Input(shape=(self.state_size, ),
                                    name='input_states')
        input_actions = layers.Input(shape=(self.action_size, ),
                                     name='input_actions')

        # Hidden layers for states
        model_states = layers.Dense(
            units=32,
            kernel_regularizer=regularizers.l2(l2_kernel_regularization))(
                input_states)
        model_states = layers.BatchNormalization()(model_states)
        model_states = layers.LeakyReLU(1e-2)(model_states)

        model_states = layers.Dense(
            units=64,
            kernel_regularizer=regularizers.l2(l2_kernel_regularization))(
                model_states)
        model_states = layers.BatchNormalization()(model_states)
        model_states = layers.LeakyReLU(1e-2)(model_states)

        # Hidden layers for actions
        model_actions = layers.Dense(
            units=64,
            kernel_regularizer=regularizers.l2(l2_kernel_regularization))(
                input_actions)
        model_actions = layers.BatchNormalization()(model_actions)
        model_actions = layers.LeakyReLU(1e-2)(model_actions)

        # Both models merge here
        model = layers.add([model_states, model_actions])

        # Fully connected and batch normalization
        model = layers.Dense(units=32,
                             kernel_regularizer=regularizers.l2(
                                 l2_kernel_regularization))(model)
        model = layers.BatchNormalization()(model)
        model = layers.LeakyReLU(1e-2)(model)

        # Q values / output layer
        Q_values = layers.Dense(
            units=1,
            activation=None,
            kernel_regularizer=regularizers.l2(l2_kernel_regularization),
            kernel_initializer=initializers.RandomUniform(minval=-5e-3,
                                                          maxval=5e-3),
            name='output_Q_values')(model)

        # Keras wrap the model
        self.model = models.Model(inputs=[input_states, input_actions],
                                  outputs=Q_values)
        optimizer = optimizers.Adam(lr=1e-2)
        self.model.compile(optimizer=optimizer, loss='mse')
        action_gradients = K.gradients(Q_values, input_actions)
        self.get_action_gradients = K.function(
            inputs=[*self.model.input, K.learning_phase()],
            outputs=action_gradients)
Пример #3
0
def attention_block(x, gating, inter_shape):
    shape_x = K.int_shape(x)
    shape_g = K.int_shape(gating)

    theta_x = layers.Conv2D(inter_shape, (2, 2),
                            strides=(2, 2),
                            padding='same')(x)  # 16
    shape_theta_x = K.int_shape(theta_x)

    phi_g = layers.Conv2D(inter_shape, (1, 1), padding='same')(gating)
    upsample_g = layers.Conv2DTranspose(
        inter_shape, (3, 3),
        strides=(shape_theta_x[1] // shape_g[1],
                 shape_theta_x[2] // shape_g[2]),
        padding='same')(phi_g)  # 16

    concat_xg = layers.add([upsample_g, theta_x])
    act_xg = layers.Activation('relu')(concat_xg)
    psi = layers.Conv2D(1, (1, 1), padding='same')(act_xg)
    sigmoid_xg = layers.Activation('sigmoid')(psi)
    shape_sigmoid = K.int_shape(sigmoid_xg)
    upsample_psi = layers.UpSampling2D(size=(shape_x[1] // shape_sigmoid[1],
                                             shape_x[2] // shape_sigmoid[2]))(
                                                 sigmoid_xg)  # 32

    upsample_psi = expend_as(upsample_psi, shape_x[3])

    y = layers.multiply([upsample_psi, x])

    result = layers.Conv2D(shape_x[3], (1, 1), padding='same')(y)
    result_bn = layers.BatchNormalization()(result)
    return result_bn
Пример #4
0
 def _bi_gru(units, x):
     x = layers.Dropout(0.2)(x)
     y1 = layers.GRU(units, return_sequences=True, kernel_initializer='he_normal',
                     recurrent_initializer='orthogonal')(x)
     y2 = layers.GRU(units, return_sequences=True, go_backwards=True, kernel_initializer='he_normal',
                     recurrent_initializer='orthogonal')(x)
     y = layers.add([y1, y2])
     return y
Пример #5
0
    def residual_block(y,
                       nb_channels_in,
                       nb_channels_out,
                       _strides=(1, 1),
                       _project_shortcut=False):
        """
        Our network consists of a stack of residual blocks. These blocks have the same topology,
        and are subject to two simple rules:
        - If producing spatial maps of the same size, the blocks share the same hyper-parameters (width and filter sizes).
        - Each time the spatial map is down-sampled by a factor of 2, the width of the blocks is multiplied by a factor of 2.
        """
        shortcut = y

        # we modify the residual building block as a bottleneck design to make the network more economical
        y = layers.Conv2D(nb_channels_in,
                          kernel_size=(1, 1),
                          strides=(1, 1),
                          padding='same')(y)
        y = add_common_layers(y)

        # ResNeXt (identical to ResNet when `cardinality` == 1)
        y = grouped_convolution(y, nb_channels_in, _strides=_strides)
        y = add_common_layers(y)

        y = layers.Conv2D(nb_channels_out,
                          kernel_size=(1, 1),
                          strides=(1, 1),
                          padding='same')(y)
        # batch normalization is employed after aggregating the transformations and before adding to the shortcut
        y = layers.BatchNormalization()(y)

        # identity shortcuts used directly when the input and output are of the same dimensions
        if _project_shortcut or _strides != (1, 1):
            # when the dimensions increase projection shortcut is used to match dimensions (done by 1×1 convolutions)
            # when the shortcuts go across feature maps of two sizes, they are performed with a stride of 2
            shortcut = layers.Conv2D(nb_channels_out,
                                     kernel_size=(1, 1),
                                     strides=_strides,
                                     padding='same')(shortcut)
            shortcut = layers.BatchNormalization()(shortcut)

        y = layers.add([shortcut, y])

        # relu is performed right after each batch normalization,
        # expect for the output of the block where relu is performed after the adding to the shortcut
        y = layers.LeakyReLU()(y)

        return y
Пример #6
0
def attention_block(x, gating, inter_shape, name):
    """
    self gated attention, attention mechanism on spatial dimension
    :param x: input feature map
    :param gating: gate signal, feature map from the lower layer
    :param inter_shape: intermedium channle numer
    :param name: name of attention layer, for output
    :return: attention weighted on spatial dimension feature map
    """

    shape_x = K.int_shape(x)
    shape_g = K.int_shape(gating)

    theta_x = layers.Conv2D(inter_shape, (2, 2),
                            strides=(2, 2),
                            padding='same')(x)  # 16
    shape_theta_x = K.int_shape(theta_x)

    phi_g = layers.Conv2D(inter_shape, (1, 1), padding='same')(gating)
    upsample_g = layers.Conv2DTranspose(
        inter_shape, (3, 3),
        strides=(shape_theta_x[1] // shape_g[1],
                 shape_theta_x[2] // shape_g[2]),
        padding='same')(phi_g)  # 16
    # upsample_g = layers.UpSampling2D(size=(shape_theta_x[1] // shape_g[1], shape_theta_x[2] // shape_g[2]),
    #                                  data_format="channels_last")(phi_g)

    concat_xg = layers.add([upsample_g, theta_x])
    act_xg = layers.Activation('relu')(concat_xg)
    psi = layers.Conv2D(1, (1, 1), padding='same')(act_xg)
    sigmoid_xg = layers.Activation('sigmoid')(psi)
    shape_sigmoid = K.int_shape(sigmoid_xg)
    upsample_psi = layers.UpSampling2D(size=(shape_x[1] // shape_sigmoid[1],
                                             shape_x[2] // shape_sigmoid[2]),
                                       name=name + '_weight')(sigmoid_xg)  # 32

    upsample_psi = expend_as(upsample_psi, shape_x[3])

    y = layers.multiply([upsample_psi, x])

    result = layers.Conv2D(shape_x[3], (1, 1), padding='same')(y)
    result_bn = layers.BatchNormalization()(result)
    return result_bn
Пример #7
0
def res_block(inputs, size):
    kernel_l2_reg = 1e-3
    net = layers.Dense(size,
                       activation=None,
                       kernel_regularizer=regularizers.l2(kernel_l2_reg),
                       kernel_initializer=initializers.RandomUniform(
                           minval=-5e-3, maxval=5e-3))(inputs)
    net = layers.BatchNormalization()(net)
    net = layers.LeakyReLU(1e-2)(net)

    net = layers.Dense(size,
                       activation=None,
                       kernel_regularizer=regularizers.l2(kernel_l2_reg),
                       kernel_initializer=initializers.RandomUniform(
                           minval=-5e-3, maxval=5e-3))(net)
    net = layers.BatchNormalization()(net)
    net = layers.LeakyReLU(1e-2)(net)
    net = layers.add([inputs, net])
    return net
Пример #8
0
    def build_model(self):
        #Define input layers
        inputStates = layers.Input(shape=(self.state_size, ),
                                   name='inputStates')
        inputActions = layers.Input(shape=(self.action_size, ),
                                    name='inputActions')

        # Hidden layers for states
        modelS = layers.Dense(units=128, activation='linear')(inputStates)
        modelS = layers.BatchNormalization()(modelS)
        modelS = layers.LeakyReLU(0.01)(modelS)
        modelS = layers.Dropout(0.3)(modelS)

        modelS = layers.Dense(units=256, activation='linear')(modelS)
        modelS = layers.BatchNormalization()(modelS)
        modelS = layers.LeakyReLU(0.01)(modelS)
        modelS = layers.Dropout(0.3)(modelS)

        modelA = layers.Dense(units=256, activation='linear')(inputActions)
        modelA = layers.LeakyReLU(0.01)(modelA)
        modelA = layers.BatchNormalization()(modelA)
        modelA = layers.Dropout(0.5)(modelA)

        #Merging the models
        model = layers.add([modelS, modelA])
        model = layers.Dense(units=256, activation='linear')(model)
        model = layers.BatchNormalization()(model)
        model = layers.LeakyReLU(0.01)(model)

        #Q Layer
        Qvalues = layers.Dense(units=1, activation=None,
                               name='outputQvalues')(model)

        #Keras model
        self.model = models.Model(inputs=[inputStates, inputActions],
                                  outputs=Qvalues)
        optimizer = optimizers.Adam()
        self.model.compile(optimizer=optimizer, loss='mse')
        actionGradients = K.gradients(Qvalues, inputActions)
        self.get_action_gradients = K.function(
            inputs=[*self.model.input, K.learning_phase()],
            outputs=actionGradients)
def residual_layer(input_tensor, nb_in_filters=64, nb_bottleneck_filters=16, filter_sz=3, stage=0, reg=0.0):

    bn_name = 'bn' + str(stage)
    conv_name = 'conv' + str(stage)
    relu_name = 'relu' + str(stage)
    merge_name = 'add' + str(stage)

    # batchnorm-relu-conv, from nb_in_filters to nb_bottleneck_filters via 1x1 conv
    if stage>1: # first activation is just after conv1
        x = layers.BatchNormalization(axis=-1, name=bn_name+'a')(input_tensor)
        x = layers.Activation('relu', name=relu_name+'a')(x)
    else:
        x = input_tensor

    x = layers.Conv2D(nb_bottleneck_filters, (1, 1),
                      kernel_initializer='glorot_normal',
                      kernel_regularizer=regularizers.l2(reg),
                      use_bias=False,
                      name=conv_name+'a')(x)

    # batchnorm-relu-conv, from nb_bottleneck_filters to nb_bottleneck_filters via FxF conv
    x = layers.BatchNormalization(axis=-1, name=bn_name+'b')(x)
    x = layers.Activation('relu', name=relu_name+'b')(x)
    x = layers.Conv2D(nb_bottleneck_filters, (filter_sz, filter_sz),
                      padding='same',
                      kernel_initializer='glorot_normal',
                      kernel_regularizer=regularizers.l2(reg),
                      use_bias = False,
                      name=conv_name+'b')(x)

    # batchnorm-relu-conv, from nb_in_filters to nb_bottleneck_filters via 1x1 conv
    x = layers.BatchNormalization(axis=-1, name=bn_name+'c')(x)
    x = layers.Activation('relu', name=relu_name+'c')(x)
    x = layers.Conv2D(nb_in_filters, (1, 1),
                      kernel_initializer='glorot_normal',
                      kernel_regularizer=regularizers.l2(reg),
                      name=conv_name+'c')(x)

    # merge
    x = layers.add([x, input_tensor], name=merge_name)

    return x
Пример #10
0
    def shortcut(self, input, residual):
        """Adds a shortcut between input and residual block and merges them with "sum"
        """
        # Expand channels of shortcut to match residual.
        # Stride appropriately to match residual (width, height)
        # Should be int if network architecture is correctly configured.
        input_shape = K.int_shape(input)
        #residual_shape = K.int_shape(residual)


        try:
             residual_shape = np.shape(residual).as_list()
        except:
             residual_shape = np.shape(residual)


        stride_width = int(round(input_shape[ROW_AXIS] / residual_shape[ROW_AXIS]))
        stride_height = int(round(input_shape[COL_AXIS] / residual_shape[COL_AXIS]))
        equal_channels = input_shape[CHANNEL_AXIS] == residual_shape[CHANNEL_AXIS]
        

        #equal_width = input_shape[ROW_AXIS] == residual_shape[ROW_AXIS]
        #equal_heights = input_shape[COL_AXIS] == residual_shape[COL_AXIS]

        shortcut = input
        # 1 X 1 conv if shape is different. Else identity.
        if stride_width > 1 or stride_height > 1 or not equal_channels:
        #if not equal_width or not equal_height or not equal_channels:
            shortcut = layers.Conv2D(filters=residual_shape[CHANNEL_AXIS],
                              kernel_size=(1, 1),
                              strides=(stride_width, stride_height),
                              padding="valid",
                              kernel_initializer="he_normal",
                              kernel_regularizer=regularizers.l2(0.0001))(input)

        return layers.add([shortcut, residual])
def mbConvBlock(inputs,
                block_args,
                global_params,
                idx,
                training=True,
                drop_connect_rate=None):
    filters = block_args.input_filters * block_args.expand_ratio
    batch_norm_momentum = global_params.batch_norm_momentum
    batch_norm_epsilon = global_params.batch_norm_epsilon
    has_se = (block_args.se_ratio is not None) and (
        block_args.se_ratio > 0) and (block_args.se_ratio <= 1)
    x = inputs
    # block_name = 'efficientnet-b0_' + 'blocks_' + str(idx) + '_'
    block_name = 'blocks_' + str(idx) + '_'
    project_conv_name = block_name + 'conv2d'
    project_bn_name = block_name + 'tpu_batch_normalization_1'
    ndbn_name = block_name + 'tpu_batch_normalization'
    if block_args.expand_ratio != 1:
        # Expansion phase:
        expand_conv = layers.Conv2D(
            filters,
            kernel_size=[1, 1],
            strides=[1, 1],
            kernel_initializer=em.conv_kernel_initializer,
            padding='same',
            use_bias=False,
            name=project_conv_name)(x)
        bn0 = em.batchnorm(momentum=batch_norm_momentum,
                           epsilon=batch_norm_epsilon,
                           name=ndbn_name)(expand_conv)
        project_conv_name = block_name + 'conv2d_1'
        ndbn_name = block_name + 'tpu_batch_normalization_1'
        project_bn_name = block_name + 'tpu_batch_normalization_2'

        x = layers.Lambda(lambda x: em.relu_fn(x))(bn0)

    kernel_size = block_args.kernel_size
    # Depth-wise convolution phase:

    depthwise_conv = em.utils.DepthwiseConv2D(
        [kernel_size, kernel_size],
        strides=block_args.strides,
        depthwise_initializer=em.conv_kernel_initializer,
        padding='same',
        use_bias=False,
        name=block_name + 'depthwise_conv2d')(x)
    bn1 = em.batchnorm(momentum=batch_norm_momentum,
                       epsilon=batch_norm_epsilon,
                       name=ndbn_name)(depthwise_conv)
    x = layers.Lambda(lambda x: em.relu_fn(x))(bn1)

    if has_se:
        num_reduced_filters = max(
            1, int(block_args.input_filters * block_args.se_ratio))
        # Squeeze and Excitation layer.
        se_tensor = ReduceMean()(x)

        se_reduce = layers.Conv2D(
            num_reduced_filters,
            kernel_size=[1, 1],
            strides=[1, 1],
            kernel_initializer=em.conv_kernel_initializer,
            padding='same',
            name=block_name + 'se_' + 'conv2d',
            use_bias=True)(se_tensor)
        se_reduce = layers.Lambda(lambda x: em.relu_fn(x))(se_reduce)
        se_expand = layers.Conv2D(
            filters,
            kernel_size=[1, 1],
            strides=[1, 1],
            kernel_initializer=em.conv_kernel_initializer,
            padding='same',
            name=block_name + 'se_' + 'conv2d_1',
            use_bias=True)(se_reduce)
        x = SigmoidMul()([x, se_expand])

    # Output phase:
    filters = block_args.output_filters
    project_conv = layers.Conv2D(filters,
                                 kernel_size=[1, 1],
                                 strides=[1, 1],
                                 kernel_initializer=em.conv_kernel_initializer,
                                 padding='same',
                                 name=project_conv_name,
                                 use_bias=False)(x)
    x = em.batchnorm(momentum=batch_norm_momentum,
                     epsilon=batch_norm_epsilon,
                     name=project_bn_name)(project_conv)
    # x = layers.Lambda(lambda x: em.relu_fn(x))(bn2)
    if block_args.id_skip:
        if all(s == 1 for s in block_args.strides
               ) and block_args.input_filters == block_args.output_filters:
            # only apply drop_connect if skip presents.
            if drop_connect_rate:
                x = em.utils.drop_connect(x, training, drop_connect_rate)
            x = layers.add([x, inputs])
    return x
Пример #12
0
    def build_model(self):
        kernel_l2_reg = 1e-5

        # Dense Options
        # units = 200,
        # activation='relu',
        # activation = None,
        # activity_regularizer=regularizers.l2(0.01),
        # kernel_regularizer=regularizers.l2(kernel_l2_reg),
        # bias_initializer=initializers.Constant(1e-2),
        # use_bias = True
        # use_bias=False
        """Build a critic (value) network that maps (state, action) pairs -> Q-values."""
        # Define input layers
        states = layers.Input(shape=(self.state_size, ), name='states')
        actions = layers.Input(shape=(self.action_size, ), name='actions')

        # size_repeat = 30
        # state_size = size_repeat*self.state_size
        # action_size = size_repeat*self.action_size
        # block_size = size_repeat*self.state_size + size_repeat*self.action_size
        # print("Critic block size = {}".format(block_size))
        #
        # net_states = layers.concatenate(size_repeat * [states])
        # net_states = layers.BatchNormalization()(net_states)
        # net_states = layers.Dropout(0.2)(net_states)
        #
        # net_actions = layers.concatenate(size_repeat * [actions])
        # net_actions = layers.BatchNormalization()(net_actions)
        # net_actions = layers.Dropout(0.2)(net_actions)
        #
        # # State pathway
        # for _ in range(3):
        #     net_states = res_block(net_states, state_size)
        #
        # # Action pathway
        # for _ in range(2):
        #     net_actions = res_block(net_actions, action_size)
        #
        # # Merge state and action pathways
        # net = layers.concatenate([net_states, net_actions])
        #
        # # Final blocks
        # for _ in range(3):
        #     net = res_block(net, block_size)

        # Add hidden layer(s) for state pathway
        net_states = layers.Dense(
            units=300,
            kernel_regularizer=regularizers.l2(kernel_l2_reg))(states)
        net_states = layers.BatchNormalization()(net_states)
        net_states = layers.LeakyReLU(1e-2)(net_states)

        net_states = layers.Dense(
            units=400,
            kernel_regularizer=regularizers.l2(kernel_l2_reg))(net_states)
        net_states = layers.BatchNormalization()(net_states)
        net_states = layers.LeakyReLU(1e-2)(net_states)

        # Add hidden layer(s) for action pathway
        net_actions = layers.Dense(
            units=400,
            kernel_regularizer=regularizers.l2(kernel_l2_reg))(actions)
        net_actions = layers.BatchNormalization()(net_actions)
        net_actions = layers.LeakyReLU(1e-2)(net_actions)

        # Merge state and action pathways
        net = layers.add([net_states, net_actions])

        net = layers.Dense(
            units=200, kernel_regularizer=regularizers.l2(kernel_l2_reg))(net)
        net = layers.BatchNormalization()(net)
        net = layers.LeakyReLU(1e-2)(net)

        # Add final output layer to prduce action values (Q values)
        Q_values = layers.Dense(
            units=1,
            activation=None,
            kernel_regularizer=regularizers.l2(kernel_l2_reg),
            kernel_initializer=initializers.RandomUniform(minval=-5e-3,
                                                          maxval=5e-3),
            # bias_initializer=initializers.RandomUniform(minval=-3e-3, maxval=3e-3),
            name='q_values')(net)

        # Create Keras model
        self.model = models.Model(inputs=[states, actions], outputs=Q_values)

        # Define optimizer and compile model for training with built-in loss function
        optimizer = optimizers.Adam(lr=1e-2)

        self.model.compile(optimizer=optimizer, loss='mse')

        # Compute action gradients (derivative of Q values w.r.t. to actions)
        action_gradients = K.gradients(Q_values, actions)

        # Define an additional function to fetch action gradients (to be used by actor model)
        self.get_action_gradients = K.function(
            inputs=[*self.model.input, K.learning_phase()],
            outputs=action_gradients)
Пример #13
0
    def create_model(self, img_shape, num_class):

        concat_axis = 3
        inputs = layers.Input(shape=img_shape)

        conv1 = layers.Conv2D(32, (3, 3),
                              activation='relu',
                              padding='same',
                              name='conv1_1')(inputs)
        conv1 = layers.Conv2D(32, (3, 3), activation='relu',
                              padding='same')(conv1)
        pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)
        conv2 = layers.Conv2D(64, (3, 3), activation='relu',
                              padding='same')(pool1)
        conv2 = layers.Conv2D(64, (3, 3), activation='relu',
                              padding='same')(conv2)
        pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)

        conv3 = layers.Conv2D(128, (3, 3), activation='relu',
                              padding='same')(pool2)
        conv3 = layers.Conv2D(128, (3, 3), activation='relu',
                              padding='same')(conv3)
        pool3 = layers.MaxPooling2D(pool_size=(2, 2))(conv3)

        conv4 = layers.Conv2D(256, (3, 3), activation='relu',
                              padding='same')(pool3)
        conv4 = layers.Conv2D(256, (3, 3), activation='relu',
                              padding='same')(conv4)
        pool4 = layers.MaxPooling2D(pool_size=(2, 2))(conv4)

        ## Use dilated convolution
        x = pool4
        depth = 3  #3 #6
        dilated_layers = []
        mode = 'cascade'

        if mode == 'cascade':
            for i in range(depth):
                x = layers.Conv2D(512, (3, 3),
                                  activation='relu',
                                  padding='same',
                                  dilation_rate=2**i)(x)
                dilated_layers.append(x)
            conv5 = layers.add(dilated_layers)
        elif mode == 'parallel':  #"Atrous Spatial Pyramid Pooling"
            for i in range(depth):
                dilated_layers.append(
                    layers.Conv2D(512, (3, 3),
                                  activation='relu',
                                  padding='same',
                                  dilation_rate=2**i)(x))
            conv5 = layers.add(dilated_layers)

#conv5 = layers.Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)
#conv5 = layers.Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)

        up_conv5 = layers.UpSampling2D(size=(2, 2))(conv5)
        ch, cw = self.get_crop_shape(conv4, up_conv5)
        crop_conv4 = layers.Cropping2D(cropping=(ch, cw))(conv4)
        up6 = layers.concatenate([up_conv5, crop_conv4], axis=concat_axis)
        conv6 = layers.Conv2D(256, (3, 3), activation='relu',
                              padding='same')(up6)
        conv6 = layers.Conv2D(256, (3, 3), activation='relu',
                              padding='same')(conv6)

        up_conv6 = layers.UpSampling2D(size=(2, 2))(conv6)
        ch, cw = self.get_crop_shape(conv3, up_conv6)
        crop_conv3 = layers.Cropping2D(cropping=(ch, cw))(conv3)
        up7 = layers.concatenate([up_conv6, crop_conv3], axis=concat_axis)
        conv7 = layers.Conv2D(128, (3, 3), activation='relu',
                              padding='same')(up7)
        conv7 = layers.Conv2D(128, (3, 3), activation='relu',
                              padding='same')(conv7)

        up_conv7 = layers.UpSampling2D(size=(2, 2))(conv7)
        ch, cw = self.get_crop_shape(conv2, up_conv7)
        crop_conv2 = layers.Cropping2D(cropping=(ch, cw))(conv2)
        up8 = layers.concatenate([up_conv7, crop_conv2], axis=concat_axis)
        conv8 = layers.Conv2D(64, (3, 3), activation='relu',
                              padding='same')(up8)
        conv8 = layers.Conv2D(64, (3, 3), activation='relu',
                              padding='same')(conv8)

        up_conv8 = layers.UpSampling2D(size=(2, 2))(conv8)
        ch, cw = self.get_crop_shape(conv1, up_conv8)
        crop_conv1 = layers.Cropping2D(cropping=(ch, cw))(conv1)
        up9 = layers.concatenate([up_conv8, crop_conv1], axis=concat_axis)
        conv9 = layers.Conv2D(32, (3, 3), activation='relu',
                              padding='same')(up9)
        conv9 = layers.Conv2D(32, (3, 3), activation='relu',
                              padding='same')(conv9)

        ch, cw = self.get_crop_shape(inputs, conv9)
        conv9 = layers.ZeroPadding2D(padding=((ch[0], ch[1]), (cw[0],
                                                               cw[1])))(conv9)
        conv10 = layers.Conv2D(num_class, (1, 1))(conv9)

        model = models.Model(inputs=inputs, outputs=conv10)

        return model