Пример #1
0
  def call(self, inputs, mask=None):
    input_shape = K.int_shape(inputs)
    if input_shape[0]:
      # batch size matters, use rnn-based implementation
      def step(x, _):
        output = self.layer.call(x)
        return output, []

      _, outputs, _ = K.rnn(
          step,
          inputs,
          initial_states=[],
          input_length=input_shape[1],
          unroll=False)
      y = outputs
    else:
      # No batch size specified, therefore the layer will be able
      # to process batches of any size.
      # We can go with reshape-based implementation for performance.
      input_length = input_shape[1]
      if not input_length:
        input_length = K.shape(inputs)[1]
      # Shape: (num_samples * timesteps, ...)
      inputs = K.reshape(inputs, (-1,) + input_shape[2:])
      y = self.layer.call(inputs)  # (num_samples * timesteps, ...)
      # Shape: (num_samples, timesteps, ...)
      output_shape = self._compute_output_shape(input_shape).as_list()  # pylint: disable=protected-access
      y = K.reshape(y, [-1, input_length] + output_shape[2:])

    # Apply activity regularizer if any:
    if (hasattr(self.layer, 'activity_regularizer') and
        self.layer.activity_regularizer is not None):
      regularization_loss = self.layer.activity_regularizer(y)
      self.add_loss(regularization_loss, inputs)
    return y
Пример #2
0
 def normalize_inference():
     if needs_broadcasting:
         # In this case we must explictly broadcast all parameters.
         broadcast_moving_mean = K.reshape(self.moving_mean,
                                           broadcast_shape)
         broadcast_moving_variance = K.reshape(
             self.moving_variance, broadcast_shape)
         if self.center:
             broadcast_beta = K.reshape(self.beta, broadcast_shape)
         else:
             broadcast_beta = None
         if self.scale:
             broadcast_gamma = K.reshape(self.gamma,
                                         broadcast_shape)
         else:
             broadcast_gamma = None
         return K.batch_normalization(inputs,
                                      broadcast_moving_mean,
                                      broadcast_moving_variance,
                                      broadcast_beta,
                                      broadcast_gamma,
                                      epsilon=self.epsilon)
     else:
         return K.batch_normalization(inputs,
                                      self.moving_mean,
                                      self.moving_variance,
                                      self.beta,
                                      self.gamma,
                                      epsilon=self.epsilon)
Пример #3
0
  def get_constants(self, inputs, training=None):
    constants = []
    if self.implementation != 0 and 0 < self.dropout < 1:
      input_shape = K.int_shape(inputs)
      input_dim = input_shape[-1]
      ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, int(input_dim)))

      def dropped_inputs():
        return K.dropout(ones, self.dropout)

      dp_mask = [
          K.in_train_phase(dropped_inputs, ones, training=training)
          for _ in range(3)
      ]
      constants.append(dp_mask)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])

    if 0 < self.recurrent_dropout < 1:
      ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, self.units))

      def dropped_inputs():  # pylint: disable=function-redefined
        return K.dropout(ones, self.recurrent_dropout)

      rec_dp_mask = [
          K.in_train_phase(dropped_inputs, ones, training=training)
          for _ in range(3)
      ]
      constants.append(rec_dp_mask)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])
    return constants
Пример #4
0
 def normalize_inference():
   if needs_broadcasting:
     # In this case we must explictly broadcast all parameters.
     broadcast_moving_mean = K.reshape(self.moving_mean, broadcast_shape)
     broadcast_moving_variance = K.reshape(self.moving_variance,
                                           broadcast_shape)
     if self.center:
       broadcast_beta = K.reshape(self.beta, broadcast_shape)
     else:
       broadcast_beta = None
     if self.scale:
       broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
     else:
       broadcast_gamma = None
     return K.batch_normalization(
         inputs,
         broadcast_moving_mean,
         broadcast_moving_variance,
         broadcast_beta,
         broadcast_gamma,
         epsilon=self.epsilon)
   else:
     return K.batch_normalization(
         inputs,
         self.moving_mean,
         self.moving_variance,
         self.beta,
         self.gamma,
         epsilon=self.epsilon)
Пример #5
0
  def call(self, inputs, mask=None):
    input_shape = K.int_shape(inputs)
    if input_shape[0]:
      # batch size matters, use rnn-based implementation
      def step(x, _):
        output = self.layer.call(x)
        return output, []

      _, outputs, _ = K.rnn(
          step,
          inputs,
          initial_states=[],
          input_length=input_shape[1],
          unroll=False)
      y = outputs
    else:
      # No batch size specified, therefore the layer will be able
      # to process batches of any size.
      # We can go with reshape-based implementation for performance.
      input_length = input_shape[1]
      if not input_length:
        input_length = K.shape(inputs)[1]
      # Shape: (num_samples * timesteps, ...)
      inputs = K.reshape(inputs, (-1,) + input_shape[2:])
      y = self.layer.call(inputs)  # (num_samples * timesteps, ...)
      # Shape: (num_samples, timesteps, ...)
      output_shape = self._compute_output_shape(input_shape).as_list()  # pylint: disable=protected-access
      y = K.reshape(y, [-1, input_length] + output_shape[2:])

    # Apply activity regularizer if any:
    if (hasattr(self.layer, 'activity_regularizer') and
        self.layer.activity_regularizer is not None):
      regularization_loss = self.layer.activity_regularizer(y)
      self.add_loss(regularization_loss, inputs)
    return y
Пример #6
0
  def get_constants(self, inputs, training=None):
    constants = []
    if self.implementation != 0 and 0 < self.dropout < 1:
      input_shape = K.int_shape(inputs)
      input_dim = input_shape[-1]
      ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, int(input_dim)))

      def dropped_inputs():
        return K.dropout(ones, self.dropout)

      dp_mask = [
          K.in_train_phase(dropped_inputs, ones, training=training)
          for _ in range(3)
      ]
      constants.append(dp_mask)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])

    if 0 < self.recurrent_dropout < 1:
      ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, self.units))

      def dropped_inputs():  # pylint: disable=function-redefined
        return K.dropout(ones, self.recurrent_dropout)

      rec_dp_mask = [
          K.in_train_phase(dropped_inputs, ones, training=training)
          for _ in range(3)
      ]
      constants.append(rec_dp_mask)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])
    return constants
 def call(self, inputs):
   if self._reshape_required:
     reshaped_inputs = []
     input_ndims = list(map(K.ndim, inputs))
     if None not in input_ndims:
       # If ranks of all inputs are available,
       # we simply expand each of them at axis=1
       # until all of them have the same rank.
       max_ndim = max(input_ndims)
       for x in inputs:
         x_ndim = K.ndim(x)
         for _ in range(max_ndim - x_ndim):
           x = K.expand_dims(x, 1)
         reshaped_inputs.append(x)
       return self._merge_function(reshaped_inputs)
     else:
       # Transpose all inputs so that batch size is the last dimension.
       # (batch_size, dim1, dim2, ... ) -> (dim1, dim2, ... , batch_size)
       transposed = False
       for x in inputs:
         x_ndim = K.ndim(x)
         if x_ndim is None:
           x_shape = K.shape(x)
           batch_size = x_shape[0]
           new_shape = K.concatenate([x_shape[1:], K.expand_dims(batch_size)])
           x_transposed = K.reshape(x,
                                    K.stack([batch_size,
                                             K.prod(x_shape[1:])]))
           x_transposed = K.permute_dimensions(x_transposed, (1, 0))
           x_transposed = K.reshape(x_transposed, new_shape)
           reshaped_inputs.append(x_transposed)
           transposed = True
         elif x_ndim > 1:
           dims = list(range(1, x_ndim)) + [0]
           reshaped_inputs.append(K.permute_dimensions(x, dims))
           transposed = True
         else:
           # We don't transpose inputs if they are 1D vectors or scalars.
           reshaped_inputs.append(x)
       y = self._merge_function(reshaped_inputs)
       y_ndim = K.ndim(y)
       if transposed:
         # If inputs have been transposed, we have to transpose the output too.
         if y_ndim is None:
           y_shape = K.shape(y)
           y_ndim = K.shape(y_shape)[0]
           batch_size = y_shape[y_ndim - 1]
           new_shape = K.concatenate(
               [K.expand_dims(batch_size), y_shape[:y_ndim - 1]])
           y = K.reshape(y, (-1, batch_size))
           y = K.permute_dimensions(y, (1, 0))
           y = K.reshape(y, new_shape)
         elif y_ndim > 1:
           dims = [y_ndim - 1] + list(range(y_ndim - 1))
           y = K.permute_dimensions(y, dims)
       return y
   else:
     return self._merge_function(inputs)
Пример #8
0
  def call(self, inputs, training=None, mask=None):
    kwargs = {}
    if has_arg(self.layer.call, 'training'):
      kwargs['training'] = training
    uses_learning_phase = False  # pylint: disable=redefined-outer-name

    input_shape = K.int_shape(inputs)
    if input_shape[0]:
      # batch size matters, use rnn-based implementation
      def step(x, _):
        global uses_learning_phase  # pylint: disable=global-variable-undefined
        output = self.layer.call(x, **kwargs)
        if hasattr(output, '_uses_learning_phase'):
          uses_learning_phase = (output._uses_learning_phase or
                                 uses_learning_phase)
        return output, []

      _, outputs, _ = K.rnn(
          step,
          inputs,
          initial_states=[],
          unroll=False)
      y = outputs
    else:
      # No batch size specified, therefore the layer will be able
      # to process batches of any size.
      # We can go with reshape-based implementation for performance.
      input_length = input_shape[1]
      if not input_length:
        input_length = K.shape(inputs)[1]
      # Shape: (num_samples * timesteps, ...). And track the
      # transformation in self._input_map.
      input_uid = tf_base_layers._object_list_uid(inputs)
      inputs = K.reshape(inputs, (-1,) + input_shape[2:])
      self._input_map[input_uid] = inputs
      # (num_samples * timesteps, ...)
      y = self.layer.call(inputs, **kwargs)
      if hasattr(y, '_uses_learning_phase'):
        uses_learning_phase = y._uses_learning_phase
      # Shape: (num_samples, timesteps, ...)
      output_shape = self._compute_output_shape(input_shape).as_list()
      y = K.reshape(y, (-1, input_length) + tuple(output_shape[2:]))

    # Apply activity regularizer if any:
    if (hasattr(self.layer, 'activity_regularizer') and
        self.layer.activity_regularizer is not None):
      regularization_loss = self.layer.activity_regularizer(y)
      self.add_loss(regularization_loss, inputs)

    if uses_learning_phase:
      y._uses_learning_phase = True
    return y
Пример #9
0
    def call(self, inputs, training=None, mask=None):
        kwargs = {}
        if has_arg(self.layer.call, 'training'):
            kwargs['training'] = training
        uses_learning_phase = False  # pylint: disable=redefined-outer-name

        input_shape = K.int_shape(inputs)
        if input_shape[0]:
            # batch size matters, use rnn-based implementation
            def step(x, _):
                global uses_learning_phase  # pylint: disable=global-variable-undefined
                output = self.layer.call(x, **kwargs)
                if hasattr(output, '_uses_learning_phase'):
                    uses_learning_phase = (output._uses_learning_phase
                                           or uses_learning_phase)
                return output, []

            _, outputs, _ = K.rnn(step,
                                  inputs,
                                  initial_states=[],
                                  unroll=False)
            y = outputs
        else:
            # No batch size specified, therefore the layer will be able
            # to process batches of any size.
            # We can go with reshape-based implementation for performance.
            input_length = input_shape[1]
            if not input_length:
                input_length = K.shape(inputs)[1]
            # Shape: (num_samples * timesteps, ...). And track the
            # transformation in self._input_map.
            input_uid = tf_base_layers._object_list_uid(inputs)
            inputs = K.reshape(inputs, (-1, ) + input_shape[2:])
            self._input_map[input_uid] = inputs
            # (num_samples * timesteps, ...)
            y = self.layer.call(inputs, **kwargs)
            if hasattr(y, '_uses_learning_phase'):
                uses_learning_phase = y._uses_learning_phase
            # Shape: (num_samples, timesteps, ...)
            output_shape = self._compute_output_shape(input_shape).as_list()
            y = K.reshape(y, (-1, input_length) + tuple(output_shape[2:]))

        # Apply activity regularizer if any:
        if (hasattr(self.layer, 'activity_regularizer')
                and self.layer.activity_regularizer is not None):
            regularization_loss = self.layer.activity_regularizer(y)
            self.add_loss(regularization_loss, inputs)

        if uses_learning_phase:
            y._uses_learning_phase = True
        return y
Пример #10
0
def _time_distributed_dense(x,
                            w,
                            b=None,
                            dropout=None,
                            input_dim=None,
                            output_dim=None,
                            timesteps=None,
                            training=None):
  """Apply `y . w + b` for every temporal slice y of x.

  Arguments:
      x: input tensor.
      w: weight matrix.
      b: optional bias vector.
      dropout: wether to apply dropout (same dropout mask
          for every temporal slice of the input).
      input_dim: integer; optional dimensionality of the input.
      output_dim: integer; optional dimensionality of the output.
      timesteps: integer; optional number of timesteps.
      training: training phase tensor or boolean.

  Returns:
      Output tensor.
  """
  if not input_dim:
    input_dim = K.shape(x)[2]
  if not timesteps:
    timesteps = K.shape(x)[1]
  if not output_dim:
    output_dim = K.shape(w)[1]

  if dropout is not None and 0. < dropout < 1.:
    # apply the same dropout pattern at every timestep
    ones = K.ones_like(K.reshape(x[:, 0, :], (-1, input_dim)))
    dropout_matrix = K.dropout(ones, dropout)
    expanded_dropout_matrix = K.repeat(dropout_matrix, timesteps)
    x = K.in_train_phase(x * expanded_dropout_matrix, x, training=training)

  # collapse time dimension and batch dimension together
  x = K.reshape(x, (-1, input_dim))
  x = K.dot(x, w)
  if b is not None:
    x = K.bias_add(x, b)
  # reshape to 3D tensor
  if K.backend() == 'tensorflow':
    x = K.reshape(x, K.stack([-1, timesteps, output_dim]))
    x.set_shape([None, None, output_dim])
  else:
    x = K.reshape(x, (-1, timesteps, output_dim))
  return x
Пример #11
0
def _time_distributed_dense(x,
                            w,
                            b=None,
                            dropout=None,
                            input_dim=None,
                            output_dim=None,
                            timesteps=None,
                            training=None):
  """Apply `y . w + b` for every temporal slice y of x.

  Arguments:
      x: input tensor.
      w: weight matrix.
      b: optional bias vector.
      dropout: wether to apply dropout (same dropout mask
          for every temporal slice of the input).
      input_dim: integer; optional dimensionality of the input.
      output_dim: integer; optional dimensionality of the output.
      timesteps: integer; optional number of timesteps.
      training: training phase tensor or boolean.

  Returns:
      Output tensor.
  """
  if not input_dim:
    input_dim = K.shape(x)[2]
  if not timesteps:
    timesteps = K.shape(x)[1]
  if not output_dim:
    output_dim = K.shape(w)[1]

  if dropout is not None and 0. < dropout < 1.:
    # apply the same dropout pattern at every timestep
    ones = K.ones_like(K.reshape(x[:, 0, :], (-1, input_dim)))
    dropout_matrix = K.dropout(ones, dropout)
    expanded_dropout_matrix = K.repeat(dropout_matrix, timesteps)
    x = K.in_train_phase(x * expanded_dropout_matrix, x, training=training)

  # collapse time dimension and batch dimension together
  x = K.reshape(x, (-1, input_dim))
  x = K.dot(x, w)
  if b is not None:
    x = K.bias_add(x, b)
  # reshape to 3D tensor
  if K.backend() == 'tensorflow':
    x = K.reshape(x, K.stack([-1, timesteps, output_dim]))
    x.set_shape([None, None, output_dim])
  else:
    x = K.reshape(x, (-1, timesteps, output_dim))
  return x
Пример #12
0
def yolo_eval(yolo_outputs,
              image_shape,
              max_boxes=10,
              score_threshold=.6,
              iou_threshold=.5):
    """Evaluate YOLO model on given input batch and return filtered boxes."""
    box_xy, box_wh, box_confidence, box_class_probs = yolo_outputs
    boxes = yolo_boxes_to_corners(box_xy, box_wh)
    boxes, scores, classes = yolo_filter_boxes(boxes,
                                               box_confidence,
                                               box_class_probs,
                                               threshold=score_threshold)

    # Scale boxes back to original image shape.
    height = image_shape[0]
    width = image_shape[1]
    image_dims = K.stack([height, width, height, width])
    image_dims = K.reshape(image_dims, [1, 4])
    boxes = boxes * image_dims

    # TODO: Something must be done about this ugly hack!
    max_boxes_tensor = K.variable(max_boxes, dtype='int32')
    K.get_session().run(tf.variables_initializer([max_boxes_tensor]))
    nms_index = tf.image.non_max_suppression(boxes,
                                             scores,
                                             max_boxes_tensor,
                                             iou_threshold=iou_threshold)
    boxes = K.gather(boxes, nms_index)
    scores = K.gather(scores, nms_index)
    classes = K.gather(classes, nms_index)
    return boxes, scores, classes
Пример #13
0
 def call(self, inputs):
   # In case the target shape is not fully defined,
   # we need access to the shape of x.
   target_shape = self.target_shape
   if -1 in target_shape:
     # target shape not fully defined
     target_shape = self._compute_output_shape(inputs.get_shape())
     target_shape = target_shape.as_list()[1:]
   return K.reshape(inputs, (-1,) + tuple(target_shape))
Пример #14
0
  def call(self, inputs):
    stride = self.strides[0]
    output_length, feature_dim, filters = self.kernel_shape

    xs = []
    for i in range(output_length):
      slice_length = slice(i * stride, i * stride + self.kernel_size[0])
      xs.append(K.reshape(inputs[:, slice_length, :], (1, -1, feature_dim)))
    x_aggregate = K.concatenate(xs, axis=0)
    # Shape: `(output_length, batch_size, filters)`.
    output = K.batch_dot(x_aggregate, self.kernel)
    output = K.permute_dimensions(output, (1, 0, 2))

    if self.use_bias:
      output += K.reshape(self.bias, (1, output_length, filters))
    if self.activation is not None:
      output = self.activation(output)
    return output
Пример #15
0
 def call(self, inputs):
   # In case the target shape is not fully defined,
   # we need access to the shape of x.
   target_shape = self.target_shape
   if -1 in target_shape:
     # target shape not fully defined
     target_shape = self._compute_output_shape(inputs.get_shape())
     target_shape = target_shape.as_list()[1:]
   return K.reshape(inputs, (-1,) + tuple(target_shape))
Пример #16
0
  def call(self, inputs):
    stride = self.strides[0]
    output_length, feature_dim, filters = self.kernel_shape

    xs = []
    for i in range(output_length):
      slice_length = slice(i * stride, i * stride + self.kernel_size[0])
      xs.append(K.reshape(inputs[:, slice_length, :], (1, -1, feature_dim)))
    x_aggregate = K.concatenate(xs, axis=0)
    # Shape: `(output_length, batch_size, filters)`.
    output = K.batch_dot(x_aggregate, self.kernel)
    output = K.permute_dimensions(output, (1, 0, 2))

    if self.use_bias:
      output += K.reshape(self.bias, (1, output_length, filters))
    if self.activation is not None:
      output = self.activation(output)
    return output
Пример #17
0
  def call(self, inputs):
    stride_row, stride_col = self.strides
    _, feature_dim, filters = self.kernel_shape

    if self.data_format == 'channels_first':
      if K.backend() == 'theano':
        output = []
        for i in range(self.output_row):
          for j in range(self.output_col):
            slice_row = slice(i * stride_row,
                              i * stride_row + self.kernel_size[0])
            slice_col = slice(j * stride_col,
                              j * stride_col + self.kernel_size[1])
            x_flatten = K.reshape(inputs[:, :, slice_row, slice_col],
                                  (1, -1, feature_dim))
            output.append(
                K.dot(x_flatten, self.kernel[i * self.output_col + j, :, :]))
        output = K.concatenate(output, axis=0)
      else:
        xs = []
        for i in range(self.output_row):
          for j in range(self.output_col):
            slice_row = slice(i * stride_row,
                              i * stride_row + self.kernel_size[0])
            slice_col = slice(j * stride_col,
                              j * stride_col + self.kernel_size[1])
            xs.append(
                K.reshape(inputs[:, :, slice_row, slice_col], (1, -1,
                                                               feature_dim)))
        x_aggregate = K.concatenate(xs, axis=0)
        output = K.batch_dot(x_aggregate, self.kernel)
      output = K.reshape(output, (self.output_row, self.output_col, -1,
                                  filters))
      output = K.permute_dimensions(output, (2, 3, 0, 1))

    elif self.data_format == 'channels_last':
      xs = []
      for i in range(self.output_row):
        for j in range(self.output_col):
          slice_row = slice(i * stride_row,
                            i * stride_row + self.kernel_size[0])
          slice_col = slice(j * stride_col,
                            j * stride_col + self.kernel_size[1])
          xs.append(
              K.reshape(inputs[:, slice_row, slice_col, :], (1, -1, feature_dim
                                                            )))
      x_aggregate = K.concatenate(xs, axis=0)
      output = K.batch_dot(x_aggregate, self.kernel)
      output = K.reshape(output, (self.output_row, self.output_col, -1,
                                  filters))
      output = K.permute_dimensions(output, (2, 0, 1, 3))

    if self.use_bias:
      if self.data_format == 'channels_first':
        output += K.reshape(self.bias, (1, filters, self.output_row,
                                        self.output_col))
      elif self.data_format == 'channels_last':
        output += K.reshape(self.bias, (1, self.output_row, self.output_col,
                                        filters))
    output = self.activation(output)
    return output
Пример #18
0
  def call(self, inputs):
    stride_row, stride_col = self.strides
    _, feature_dim, filters = self.kernel_shape

    if self.data_format == 'channels_first':
      if K.backend() == 'theano':
        output = []
        for i in range(self.output_row):
          for j in range(self.output_col):
            slice_row = slice(i * stride_row,
                              i * stride_row + self.kernel_size[0])
            slice_col = slice(j * stride_col,
                              j * stride_col + self.kernel_size[1])
            x_flatten = K.reshape(inputs[:, :, slice_row, slice_col],
                                  (1, -1, feature_dim))
            output.append(
                K.dot(x_flatten, self.kernel[i * self.output_col + j, :, :]))
        output = K.concatenate(output, axis=0)
      else:
        xs = []
        for i in range(self.output_row):
          for j in range(self.output_col):
            slice_row = slice(i * stride_row,
                              i * stride_row + self.kernel_size[0])
            slice_col = slice(j * stride_col,
                              j * stride_col + self.kernel_size[1])
            xs.append(
                K.reshape(inputs[:, :, slice_row, slice_col], (1, -1,
                                                               feature_dim)))
        x_aggregate = K.concatenate(xs, axis=0)
        output = K.batch_dot(x_aggregate, self.kernel)
      output = K.reshape(output, (self.output_row, self.output_col, -1,
                                  filters))
      output = K.permute_dimensions(output, (2, 3, 0, 1))

    elif self.data_format == 'channels_last':
      xs = []
      for i in range(self.output_row):
        for j in range(self.output_col):
          slice_row = slice(i * stride_row,
                            i * stride_row + self.kernel_size[0])
          slice_col = slice(j * stride_col,
                            j * stride_col + self.kernel_size[1])
          xs.append(
              K.reshape(inputs[:, slice_row, slice_col, :], (1, -1, feature_dim
                                                            )))
      x_aggregate = K.concatenate(xs, axis=0)
      output = K.batch_dot(x_aggregate, self.kernel)
      output = K.reshape(output, (self.output_row, self.output_col, -1,
                                  filters))
      output = K.permute_dimensions(output, (2, 0, 1, 3))

    if self.use_bias:
      if self.data_format == 'channels_first':
        output += K.reshape(self.bias, (1, filters, self.output_row,
                                        self.output_col))
      elif self.data_format == 'channels_last':
        output += K.reshape(self.bias, (1, self.output_row, self.output_col,
                                        filters))
    output = self.activation(output)
    return output