def resnet50_part2(inputs,
                   is_training,
                   embedding_dim,
                   scope='resnet_v2_50',
                   reuse=False):
    with tf.variable_scope(scope, reuse=reuse):
        with arg_scope(resnet_arg_scope(is_training=is_training)):
            out = resnet_v2_block(inputs=inputs,
                                  base_depth=256,
                                  num_units=6,
                                  stride=2,
                                  scope='block3')
            out = resnet_v2_block(inputs=out,
                                  base_depth=512,
                                  num_units=3,
                                  stride=1,
                                  scope='block4')
            out = layers.batch_norm(out,
                                    activation_fn=nn_ops.relu,
                                    scope='postnorm')
            avg_out = tf.reduce_mean(out, axis=[1, 2], name='pool5')

    with tf.variable_scope('fc', reuse=reuse):
        with arg_scope(resnet_arg_scope(is_training=is_training)):
            fc_out = layers_lib.fully_connected(inputs=avg_out,
                                                num_outputs=embedding_dim,
                                                activation_fn=None)
            fc_out = layers.batch_norm(fc_out,
                                       activation_fn=None,
                                       scope='out_norm')

    return fc_out
Пример #2
0
 def batch_norm_layer(self, signal, scope, activation_fn=None):
     return tf.cond(
         self.is_training,
         lambda: batch_norm(signal,
                            is_training=True,
                            param_initializers={
                                "beta": tf.constant_initializer(3.),
                                "gamma": tf.constant_initializer(2.5)
                            },
                            center=True,
                            scale=True,
                            activation_fn=activation_fn,
                            decay=1.0,
                            scope=scope),
         lambda: batch_norm(signal,
                            is_training=False,
                            param_initializers={
                                "beta": tf.constant_initializer(3.),
                                "gamma": tf.constant_initializer(2.5)
                            },
                            center=True,
                            scale=True,
                            activation_fn=activation_fn,
                            decay=1.0,
                            scope=scope,
                            reuse=True))
Пример #3
0
 def batch_norm_layer(self, signal, scope):
     '''
     batch normalization layer before activation
     :param signal: input signal
     :param scope: name scope
     :return: normalized signal
     '''
     # Note: is_training is tf.placeholder(tf.bool) type
     return tf.cond(
         self.is_training,
         lambda: batch_norm(signal,
                            is_training=True,
                            param_initializers={
                                "beta": tf.constant_initializer(3.),
                                "gamma": tf.constant_initializer(2.5)
                            },
                            center=True,
                            scale=True,
                            activation_fn=tf.nn.relu,
                            decay=1.,
                            scope=scope),
         lambda: batch_norm(signal,
                            is_training=False,
                            param_initializers={
                                "beta": tf.constant_initializer(3.),
                                "gamma": tf.constant_initializer(2.5)
                            },
                            center=True,
                            scale=True,
                            activation_fn=tf.nn.relu,
                            decay=1.,
                            scope=scope,
                            reuse=True))
Пример #4
0
def add_BN_conv_layer(inputs, kernalWidth, inDepth, outDepth,
                      is_training_ph, scope , layername="layer",
                      activateFunc=tf.nn.relu, stride=[1, 1, 1, 1]):

    # inDepth = inputs.get_shape().as_list()[3]

    with tf.name_scope(layername):
        n = kernalWidth * kernalWidth * outDepth
        Weights = tf.Variable(tf.truncated_normal([kernalWidth, kernalWidth, inDepth, outDepth], stddev=np.sqrt(2.0/n)))
        biases = tf.Variable(tf.constant(0.1, tf.float32, [outDepth]))

        y1 = tf.nn.conv2d(inputs, Weights, stride, padding='SAME') + biases

        outputs = tf.cond(is_training_ph,
                           lambda: batch_norm(y1,decay=0.94, is_training=True,
                                              center=False, scale=True,
                                              activation_fn=activateFunc,
                                              updates_collections=None, scope=scope),
                           lambda: batch_norm(y1,decay=0.94, is_training=False,
                                              center=False, scale=True,
                                              activation_fn=activateFunc,
                                              updates_collections=None, scope=scope,
                                              reuse=True))

        return outputs
Пример #5
0
def batch_norm(input, is_training=None, scope=None, reuse=False):
    # return tf.cond(tf.equal(is_training, tf.constant(1, dtype=tf.int8)),
    return tf.cond(
        is_training, lambda: layers.batch_norm(input,
                                               is_training=True,
                                               scope=scope,
                                               reuse=reuse,
                                               **batch_norm_params),
        lambda: layers.batch_norm(input,
                                  is_training=False,
                                  scope=scope,
                                  reuse=True,
                                  **batch_norm_params))
Пример #6
0
def split_batch_norm(inputs, Nb_list, *args, **kwargs):
    log.debug('You are splitting the batchnorm layers')
    if len(Nb_list) > 1:
        with tf.variable_scope('bn_split'):
            source_output = layers.batch_norm(inputs=inputs[:Nb_list[0]], *args, **kwargs)
        with tf.variable_scope('bn_split', reuse=True):
            target_output = layers.batch_norm(inputs=inputs[Nb_list[0]:], *args, **kwargs)
        # with tf.variable_scope("split_bn_target"):
        #     # TODO initialize the layers of target with also parameters from the ResNET checkpoints
        #     kwargs.update({'param_regularizers': {'beta': l2_regularizer(0.00017)}})
        #     target_output = layers.batch_norm(inputs=inputs[Nb_list[0]:], *args, **kwargs)
        return concat((source_output, target_output), axis=0)
    else:
        with tf.variable_scope("bn_split"):
            return layers.batch_norm(inputs=inputs, *args, **kwargs)
Пример #7
0
    def _score_layer(self, bottom, name, num_classes,is_bn=True, train=True):
        with tf.variable_scope(name) as scope:
            # get number of input channels
            in_features = bottom.get_shape()[3].value
            shape = [1, 1, in_features, num_classes]
            # He initialization Sheme
            if name == "score_fr":
                num_input = in_features
                stddev = (2 / num_input)**0.5
            elif name == "score_pool4":
                stddev = 0.001
            elif name == "score_pool3":
                stddev = 0.0001
            # Apply convolution
            w_decay = self.wd

            weights = self._variable_with_weight_decay(shape, stddev, w_decay,
                                                       decoder=True)
            conv = tf.nn.conv2d(bottom, weights, [1, 1, 1, 1], padding='SAME')
            # Apply bias
            conv_biases = self._bias_variable([num_classes], constant=0.0)
            bias = tf.nn.bias_add(conv, conv_biases)

            # _activation_summary(bias)

            if (is_bn):
                # return utils.bn_layer(relu, is_training)
                return layers.batch_norm(bias, scope='afternorm', is_training=train)
            else:
                return bias
Пример #8
0
    def _fc_layer(self, bottom, name, shape, load=False, num_classes=None,
                  relu=True, debug=False, is_bn = True, train = True):
        with tf.variable_scope(name) as scope:
            if name == 'score_fr':
                name = 'fc8'
                filt = self.get_fc_weight_reshape(name, shape, load=load,
                                                  num_classes=num_classes)
            else:
                filt = self.get_fc_weight_reshape(name, shape, load=load)

            conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
            conv_biases = self.get_bias(name, shape[3], load=load,
                                        num_classes=num_classes)
            bias = tf.nn.bias_add(conv, conv_biases)

            if relu:
                bias = tf.nn.relu(bias)
            # _activation_summary(bias)

            if debug:
                bias = tf.Print(bias, [tf.shape(bias)],
                                message='Shape of %s' % name,
                                summarize=4, first_n=1)
            if (is_bn):
                # return utils.bn_layer(relu, is_training)
                return layers.batch_norm(bias, scope='afternorm', is_training=train)
            else:
                return bias
Пример #9
0
def conv_block(inp,
               relu=False,
               leaky_relu=False,
               bn=False,
               output_channels=64,
               stride=1,
               is_training_cond=None,
               reuse=False):
    inp_shape = inp.get_shape()
    kernel_shape = (3, 3, inp_shape[-1], output_channels)
    strides = [1, stride, stride, 1]

    weights = tf.get_variable(
        'weights',
        kernel_shape,
        initializer=tf.random_normal_initializer(stddev=0.02))
    h = tf.nn.conv2d(inp, weights, strides, padding='SAME')

    if leaky_relu:
        h = relu_block(h, alpha=0.01)

    if bn:
        h = batch_norm(h,
                       reuse=reuse,
                       is_training=is_training_cond,
                       scope=tf.get_variable_scope(),
                       scale=True)

    if relu:
        h = tf.nn.relu(h)

    return h
Пример #10
0
    def _LayerWithIdentity(self,
                           input_tensor=None,
                           scope='test',
                           post_activation_bypass=False):
        """Add a basic conv, identity, batch norm with skip to the default graph."""
        batch_size, height, width, depth = 5, 128, 128, 3
        if input_tensor is None:
            input_tensor = array_ops.zeros((batch_size, height, width, depth))
        weight_init = init_ops.truncated_normal_initializer
        with ops.name_scope(scope):
            output = layers.conv2d(input_tensor,
                                   depth, [5, 5],
                                   padding='SAME',
                                   weights_initializer=weight_init(0.09),
                                   activation_fn=None,
                                   normalizer_fn=None,
                                   biases_initializer=None)
            output = array_ops.identity(output, name='conv_out')

            output = layers.batch_norm(output,
                                       center=True,
                                       scale=True,
                                       decay=1.0 - 0.003,
                                       fused=True)

            output = array_ops.identity(output, name='bn_out')
            if post_activation_bypass:
                output += input_tensor
        return output
Пример #11
0
def model(images,
          filter_type,
          filter_trainable,
          weight_decay,
          batch_size,
          is_training,
          num_classes=2):
    with slim.arg_scope(resnet_v2.resnet_arg_scope(weight_decay=weight_decay)):
        inputs = get_residuals(images, filter_type, filter_trainable)
        _, end_points = resnet_small(inputs,
                                     num_classes=None,
                                     is_training=is_training,
                                     global_pool=False,
                                     output_stride=None,
                                     include_root_block=False)
        net = end_points['resnet_small/block4']
        net = tf.nn.conv2d_transpose(net, tf.Variable(bilinear_upsample_weights(4,64,1024),dtype=tf.float32,name='bilinear_kernel0'), \
                                     [batch_size, tf.shape(end_points['resnet_small/block2'])[1], tf.shape(end_points['resnet_small/block2'])[2], 64], strides=[1, 4, 4, 1], padding="SAME")
        end_points['upsample1'] = net
        net = tf.nn.conv2d_transpose(net, tf.Variable(bilinear_upsample_weights(4,4,64),dtype=tf.float32,name='bilinear_kernel1'), \
                                     [batch_size, tf.shape(inputs)[1], tf.shape(inputs)[2], 4], strides=[1, 4, 4, 1], padding="SAME")
        end_points['upsample2'] = net
        net = layers.batch_norm(net,
                                activation_fn=tf.nn.relu,
                                is_training=is_training,
                                scope='post_norm')
        logits = slim.conv2d(net,
                             num_classes, [5, 5],
                             activation_fn=None,
                             normalizer_fn=None,
                             scope='logits')
        preds = tf.cast(tf.argmax(logits, 3), tf.int32)
        preds_map = tf.nn.softmax(logits)[:, :, :, 1]

        return logits, preds, preds_map, net, end_points, inputs
Пример #12
0
  def _LayerWithActivationProcessing(self,
                                     input_tensor=None,
                                     scope='test',
                                     post_activation_bypass=False):

    batch_size, height, width, depth = 5, 128, 128, 3
    if input_tensor is None:
      input_tensor = array_ops.zeros((batch_size, height, width, depth))
    weight_init = init_ops.truncated_normal_initializer
    with ops.name_scope(scope):
      output = layers.conv2d(
          input_tensor,
          depth, [5, 5],
          padding='SAME',
          weights_initializer=weight_init(0.09),
          activation_fn=None,
          normalizer_fn=None,
          biases_initializer=None)

      output = layers.batch_norm(
          output, center=True, scale=True, decay=1.0 - 0.003, fused=True)

      output = nn_ops.relu6(output)
      scaled_output1 = math_ops.mul(2.0, output)
      scaled_output2 = math_ops.mul(3.0, output)
      output = scaled_output1 + scaled_output2
    return output
Пример #13
0
def _conv3d(input_data,
            k_d,
            k_h,
            k_w,
            c_o,
            s_d,
            s_h,
            s_w,
            name,
            relu=True,
            padding="SAME"):
    c_i = input_data.get_shape()[-1].value
    convolve = lambda i, k: tf.nn.conv3d(
        i, k, [1, s_d, s_h, s_w, 1], padding=padding)
    with tf.variable_scope(name) as scope:
        weights = tf.get_variable(
            name="weights",
            shape=[k_d, k_h, k_w, c_i, c_o],
            regularizer=tf.contrib.layers.l2_regularizer(scale=0.0001),
            initializer=tf.truncated_normal_initializer(stddev=1e-1,
                                                        dtype=tf.float32))
        #initializer=tf.contrib.layers.xavier_initializer(uniform=True))
        conv = convolve(input_data, weights)
        biases = tf.get_variable(
            name="biases",
            shape=[c_o],
            dtype=tf.float32,
            initializer=tf.constant_initializer(value=0.0))
        output = tf.nn.bias_add(conv, biases)
        if relu:
            output = tf.nn.relu(output, name=scope.name)
        return batch_norm(output)
Пример #14
0
    def _LayerWithActivationProcessing(self,
                                       input_tensor=None,
                                       scope='test',
                                       post_activation_bypass=False):

        batch_size, height, width, depth = 5, 128, 128, 3
        if input_tensor is None:
            input_tensor = array_ops.zeros((batch_size, height, width, depth))
        weight_init = init_ops.truncated_normal_initializer
        with ops.name_scope(scope):
            output = layers.conv2d(input_tensor,
                                   depth, [5, 5],
                                   padding='SAME',
                                   weights_initializer=weight_init(0.09),
                                   activation_fn=None,
                                   normalizer_fn=None,
                                   biases_initializer=None)

            output = layers.batch_norm(output,
                                       center=True,
                                       scale=True,
                                       decay=1.0 - 0.003,
                                       fused=True)

            output = nn_ops.relu6(output)
            scaled_output1 = math_ops.mul(2.0, output)
            scaled_output2 = math_ops.mul(3.0, output)
            output = scaled_output1 + scaled_output2
        return output
Пример #15
0
def _fully_connected(input_data, num_output, name, relu=True):
    with tf.variable_scope(name) as scope:
        input_shape = input_data.get_shape()
        if input_shape.ndims == 5:
            dim = 1
            for d in input_shape[1:].as_list():
                dim *= d
            feed_in = tf.reshape(input_data, [-1, dim])
        else:
            feed_in, dim = (input_data, input_shape[-1].value)
        weights = tf.get_variable(
            name="weights",
            shape=[dim, num_output],
            regularizer=tf.contrib.layers.l2_regularizer(scale=0.0001),
            initializer=tf.truncated_normal_initializer(stddev=1e-1,
                                                        dtype=tf.float32))
        #initializer=tf.contrib.layers.xavier_initializer(uniform=True))
        biases = tf.get_variable(
            name="biases",
            shape=[num_output],
            dtype=tf.float32,
            initializer=tf.constant_initializer(value=0.0))
        op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b
        output = op(feed_in, weights, biases, name=scope.name)
        return batch_norm(output)
Пример #16
0
  def _LayerWithIdentity(self,
                         input_tensor=None,
                         scope='test',
                         post_activation_bypass=False):
    """Add a basic conv, identity, batch norm with skip to the default graph."""
    batch_size, height, width, depth = 5, 128, 128, 3
    if input_tensor is None:
      input_tensor = array_ops.zeros((batch_size, height, width, depth))
    weight_init = init_ops.truncated_normal_initializer
    with ops.name_scope(scope):
      output = layers.conv2d(
          input_tensor,
          depth, [5, 5],
          padding='SAME',
          weights_initializer=weight_init(0.09),
          activation_fn=None,
          normalizer_fn=None,
          biases_initializer=None)
      output = array_ops.identity(output, name='conv_out')

      output = layers.batch_norm(
          output, center=True, scale=True, decay=1.0 - 0.003, fused=True)

      output = array_ops.identity(output, name='bn_out')
      if post_activation_bypass:
        output += input_tensor
    return output
Пример #17
0
def adv_encode(inputs, is_training, reuse=False):
    with tf.variable_scope('loss', reuse=reuse):
        with arg_scope(resnet_arg_scope(is_training=is_training)):
            out = tf.nn.l2_normalize(inputs, axis=1)
            out = layers_lib.fully_connected(out,
                                             128,
                                             activation_fn=None,
                                             biases_initializer=None)
            out = tf.stop_gradient(2 * out) - out
            out = layers.batch_norm(out, activation_fn=None)
            out = tf.nn.relu(out)
            out = layers_lib.fully_connected(out, 128, activation_fn=None)
            out = layers.batch_norm(out, activation_fn=None)
            out = tf.nn.l2_normalize(out, axis=1)

    return out
Пример #18
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None):
  """Bottleneck residual unit variant with BN before convolutions.

  This is the full preactivation residual unit variant proposed in [2]. See
  Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
  variant which has an extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = layers.batch_norm(
        inputs, activation_fn=nn_ops.relu, scope='preact')
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = layers_lib.conv2d(
          preact,
          depth, [1, 1],
          stride=stride,
          normalizer_fn=None,
          activation_fn=None,
          scope='shortcut')

    residual = layers_lib.conv2d(
        preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
    residual = resnet_utils.conv2d_same(
        residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
    residual = layers_lib.conv2d(
        residual,
        depth, [1, 1],
        stride=1,
        normalizer_fn=None,
        activation_fn=None,
        scope='conv3')

    output = shortcut + residual

    return utils.collect_named_outputs(outputs_collections, sc.name, output)
Пример #19
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None):
  """Bottleneck residual unit variant with BN before convolutions.

  This is the full preactivation residual unit variant proposed in [2]. See
  Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
  variant which has an extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = layers.batch_norm(
        inputs, activation_fn=nn_ops.relu, scope='preact')
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = layers_lib.conv2d(
          preact,
          depth, [1, 1],
          stride=stride,
          normalizer_fn=None,
          activation_fn=None,
          scope='shortcut')

    residual = layers_lib.conv2d(
        preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
    residual = resnet_utils.conv2d_same(
        residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
    residual = layers_lib.conv2d(
        residual,
        depth, [1, 1],
        stride=1,
        normalizer_fn=None,
        activation_fn=None,
        scope='conv3')

    output = shortcut + residual

    return utils.collect_named_outputs(outputs_collections, sc.name, output)
Пример #20
0
 def batch_norm_layer(self, signal, scope):
     '''
     在激活之间批量归一化的层
     :param signal: input signal
     :param scope: name scope
     :return: normalized signal
     '''
     return tf.cond(self.is_training,
                    lambda : batch_norm(signal, is_training=True,
                                        param_initializers={"beta": tf.constant_initializer(3.),
                                                            "gamma": tf.constant_initializer(2,5)},
                                        center=True, scale=True, activation_fn=tf.nn.relu, decay=1., scope=scope),
                    lambda : batch_norm(signal, is_training=False,
                                        param_initializers={"beta": tf.constant_initializer(3.),
                                                            "gamma": tf.constant_initializer(2,5)},
                                        center=True, scale=True, activation_fn=tf.nn.relu, decay=1.,
                                        scope=scope, reuse=True))
Пример #21
0
def batch_norm(x, is_training, decay=0.997, epsilon=1e-5, scale=True, center=True):
    normed = layers.batch_norm(
        x,
        decay=decay,
        epsilon=epsilon,
        is_training=is_training,
        center=center,
        scale=scale
    )
    return normed
Пример #22
0
 def batch_norm_layer(self, signal, scope):
     '''
     batch normalization layer before activation
     :param signal: input signal
     :param scope: name scope
     :return: normalization signal
     '''
     # 注意: is_training 是 tf.palceholder(tf.bool) 类型
     # tf.cond 类似于c语言中的if...else...,用来控制数据流向
     # Batch Normalization通过减少内部协变量加速神经网络的训练
     return tf.cond(self.is_training,
                    lambda : batch_norm(signal, is_training=True,
                                        param_initializers={"beta": tf.constant_initializer(3.),
                                                            "gamma": tf.constant_initializer(2.5)},
                                        center=True, scale=True, activation_fn=tf.nn.relu, decay=1, scope=scope),
                    lambda : batch_norm(signal, is_training=False,
                                        param_initializers={"beta": tf.constant_initializer(3.),
                                                            "gamma": tf.constant_initializer(2.5)},
                                        center=True, scale=True, activation_fn=tf.nn.relu, decay=1,
                                        scope=scope, reuse=True))
Пример #23
0
def resnet50(image_input,
             is_training,
             embedding_dim,
             scope='resnet_v2_50',
             before_pool=False):
    with tf.variable_scope(scope):
        with arg_scope([layers.batch_norm],
                       is_training=is_training,
                       scale=True):
            with arg_scope([layers_lib.conv2d],
                           activation_fn=None,
                           normalizer_fn=None):
                out = conv2d_same(inputs=image_input,
                                  num_outputs=64,
                                  kernel_size=7,
                                  stride=2,
                                  scope='conv1')
            out = layers.max_pool2d(out, [3, 3], stride=2, scope='pool1')
            with arg_scope([layers_lib.conv2d],
                           activation_fn=nn_ops.relu,
                           normalizer_fn=layers.batch_norm):
                out = resnet_v2_block(inputs=out,
                                      base_depth=64,
                                      num_units=3,
                                      stride=2,
                                      scope='block1')
                out = resnet_v2_block(inputs=out,
                                      base_depth=128,
                                      num_units=4,
                                      stride=2,
                                      scope='block2')
                out = resnet_v2_block(inputs=out,
                                      base_depth=256,
                                      num_units=6,
                                      stride=2,
                                      scope='block3')
                out = resnet_v2_block(inputs=out,
                                      base_depth=512,
                                      num_units=3,
                                      stride=1,
                                      scope='block4')
            out = layers.batch_norm(out,
                                    activation_fn=nn_ops.relu,
                                    scope='postnorm')
            avg_out = tf.reduce_mean(out, axis=[1, 2], name='pool5')

    fc_out = tf.layers.dense(inputs=avg_out, units=embedding_dim)

    if before_pool:
        return out, fc_out
    else:
        return fc_out
Пример #24
0
def add_BN_conv_layer(inputs, kernalWidth, inDepth, outDepth,
                      is_training_ph, scope , layername="layer",
                      activateFunc=tf.nn.relu, stride=[1, 1, 1, 1]):

    # inDepth = inputs.get_shape().as_list()[3]

    with tf.name_scope(layername):
        Weights = tf.Variable(tf.truncated_normal([kernalWidth, kernalWidth, inDepth, outDepth], stddev=0.1))
        biases = tf.Variable(tf.constant(0.1, tf.float32, [outDepth]))

        y1 = tf.nn.conv2d(inputs, Weights, stride, padding='SAME') + biases

        outputs = tf.cond(is_training_ph,
                           lambda: batch_norm(y1,decay=0.94, is_training=True,
                                              center=False, scale=True,
                                              activation_fn=activateFunc,
                                              updates_collections=None, scope=scope),
                           lambda: batch_norm(y1,decay=0.94, is_training=False,
                                              center=False, scale=True,
                                              activation_fn=activateFunc,
                                              updates_collections=None, scope=scope,
                                              reuse=True))

        return outputs
Пример #25
0
    def _conv_layer(self, bottom, name, shape, load=False, is_bn=True, train=True):
        with tf.variable_scope(name) as scope:
            filt = self.get_conv_filter(name, shape, load)
            conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')

            conv_biases = self.get_bias(name, shape[3], load=load)
            bias = tf.nn.bias_add(conv, conv_biases)

            relu = tf.nn.relu(bias)
            # Add summary to Tensorboard
            # _activation_summary(relu)
            if (is_bn):
                # return utils.bn_layer(relu, is_training)
                return layers.batch_norm(relu, scope='afternorm', is_training=train)
            else:
                return relu
Пример #26
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None):
    """Bottleneck residual unit variant with BN before convolutions."""
    with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
        depth_in = utils.last_dimension(inputs.get_shape(), min_rank=3)
        preact = layers.batch_norm(inputs,
                                   activation_fn=nn_ops.relu,
                                   scope='preact')
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = layers.convolution(preact,
                                          depth,
                                          1,
                                          stride=stride,
                                          normalizer_fn=None,
                                          activation_fn=None,
                                          scope='shortcut')

        residual = layers.convolution(preact,
                                      depth_bottleneck,
                                      1,
                                      stride=1,
                                      scope='conv1')
        residual = conv1d_same(residual,
                               depth_bottleneck,
                               3,
                               stride,
                               rate=rate,
                               scope='conv2')
        residual = layers.convolution(residual,
                                      depth,
                                      1,
                                      stride=1,
                                      normalizer_fn=None,
                                      activation_fn=None,
                                      scope='conv3')

        output = shortcut + residual

        return utils.collect_named_outputs(outputs_collections, sc.name,
                                           output)
Пример #27
0
def resnet50(image_input, is_training, scope='resnet_v2_50'):
    with tf.variable_scope(scope):
        with arg_scope([layers.batch_norm],
                       is_training=is_training,
                       scale=True):
            with arg_scope([layers_lib.conv2d],
                           activation_fn=None,
                           normalizer_fn=None):
                out = conv2d(inputs=image_input,
                             num_outputs=64,
                             kernel_size=7,
                             stride=2,
                             scope='conv1')
            out = max_pool(inputs=out, kernel_size=3, stride=2, scope=scope)
            with arg_scope([layers_lib.conv2d],
                           activation_fn=nn_ops.relu,
                           normalizer_fn=layers.batch_norm):
                out = resnet_v2_block(inputs=out,
                                      base_depth=64,
                                      num_units=3,
                                      stride=2,
                                      scope='block1')
                out = resnet_v2_block(inputs=out,
                                      base_depth=128,
                                      num_units=4,
                                      stride=2,
                                      scope='block2')
                out = resnet_v2_block(inputs=out,
                                      base_depth=256,
                                      num_units=6,
                                      stride=2,
                                      scope='block3')
                out = resnet_v2_block(inputs=out,
                                      base_depth=512,
                                      num_units=3,
                                      stride=1,
                                      scope='block4')
            out = layers.batch_norm(out,
                                    activation_fn=nn_ops.relu,
                                    scope='postnorm')
            out = tf.reduce_mean(out, axis=[1, 2], name='pool5')

    out = tf.layers.dense(inputs=out, units=128)
    out = tf.nn.l2_normalize(out, axis=1)

    return out
Пример #28
0
    def _upscore_layer(self, bottom, shape,
                       num_classes, name, debug,
                       ksize=4, stride=2,is_bn=True, train=True):
        strides = [1, stride, stride, 1]
        with tf.variable_scope(name):
            in_features = bottom.get_shape()[3].value

            if shape is None:
                # Compute shape out of Bottom
                in_shape = tf.shape(bottom)

                h = ((in_shape[1] - 1) * stride) + 1
                w = ((in_shape[2] - 1) * stride) + 1
                new_shape = [in_shape[0], h, w, num_classes]
            else:
                new_shape = [shape[0], shape[1], shape[2], num_classes]
            output_shape = tf.stack(new_shape)

            logging.debug("Layer: %s, Fan-in: %d" % (name, in_features))
            f_shape = [ksize, ksize, num_classes, in_features]

            # create
            num_input = ksize * ksize * in_features / stride
            stddev = (2 / num_input)**0.5

            weights = self.get_deconv_filter(f_shape)
            # weights = tf.Print(weights, [weights],
            #                    message='weights: ',
            #                    summarize=20, first_n=5)
            # self._add_wd_and_summary(weights, self.wd, "fc_wlosses")
            deconv = tf.nn.conv2d_transpose(bottom, weights, output_shape,
                                            strides=strides, padding='SAME')


            if debug:
                deconv = tf.Print(deconv, [tf.shape(deconv)],
                                  message='Shape of %s' % name,
                                  summarize=4, first_n=1)

            # _activation_summary(deconv)
            if (is_bn):
                # return utils.bn_layer(relu, is_training)
                return layers.batch_norm(deconv, scope='afternorm', is_training=train)
            else:
                return deconv
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None):
  with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = layers.batch_norm(
        inputs, activation_fn=nn_ops.relu, scope='preact')
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = layers_lib.conv2d(
          preact,
          depth, [1, 1],
          stride=stride,
          normalizer_fn=None,
          activation_fn=None,
          scope='shortcut')

    residual = preact
    residual = tf.layers.batch_normalization(residual)
    residual = tf.nn.relu(residual)
    residual = layers_lib.conv2d(
        residual, depth_bottleneck, [1, 1], stride=1, scope='conv1')
    residual = tf.layers.batch_normalization(residual)
    residual = tf.nn.relu(residual)
    residual = resnet_utils.conv2d_same(
        residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
    residual = tf.layers.batch_normalization(residual)
    residual = tf.nn.relu(residual)
    residual = layers_lib.conv2d(
        residual,
        depth, [1, 1],
        stride=1,
        normalizer_fn=None,
        activation_fn=None,
        scope='conv3')

    output = shortcut + residual

    return utils.collect_named_outputs(outputs_collections, sc.name, output)
Пример #30
0
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1):
    with tf.variable_scope('bottleneck_v2'):
        depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = layers.batch_norm(inputs,
                                   activation_fn=nn_ops.relu,
                                   scope='preact')
        if depth == depth_in:
            shortcut = max_pool(inputs=inputs,
                                kernel_size=1,
                                stride=stride,
                                scope='shortcut')
        else:
            with arg_scope([layers_lib.conv2d],
                           normalizer_fn=None,
                           activation_fn=None):
                shortcut = conv2d(preact,
                                  depth,
                                  1,
                                  stride=stride,
                                  scope='shortcut')

        residual = layers_lib.conv2d(preact,
                                     depth_bottleneck,
                                     1,
                                     stride=1,
                                     scope='conv1')
        residual = conv2d(residual,
                          depth_bottleneck,
                          3,
                          stride,
                          rate=rate,
                          scope='conv2')
        residual = layers_lib.conv2d(residual,
                                     depth,
                                     1,
                                     stride=1,
                                     normalizer_fn=None,
                                     activation_fn=None,
                                     scope='conv3')

    output = shortcut + residual

    return output
Пример #31
0
def conv_relu(input_, ksize, filter_num, name, activation=True):
    """ convolutional layer, with specific activation func and  batch_normal
    """

    with tf.variable_scope(name):
        if activation is True:
            _, h, w, d = input_.shape  # _ is the batch size
            filter_shape = (ksize, ksize, input_.get_shape()[-1].value,
                            filter_num)

            # filter_ = tf.Variable(np.zeros(filter_shape, dtype=np.float32))
            filter_ = tf.get_variable('weights', filter_shape, tf.float32)

            # bias = tf.Variable(np.zeros(filter_num, dtype=np.float32))
            bias = tf.get_variable('bias', filter_num, dtype=tf.float32)

            conv = tf.nn.conv2d(input_,
                                filter_,
                                strides=[1, 1, 1, 1],
                                padding="SAME")
            conv = tf.nn.bias_add(conv, bias)
            if batch_normalization:
                btn = tf_ctb_layers.batch_norm(conv, scale=True)
                output = tf.nn.relu(btn)
            else:
                output = tf.nn.relu(conv)

        else:
            filter_shape = [
                ksize, ksize,
                input_.get_shape()[-1].value, filter_num
            ]

            filter_ = tf.get_variable("weights", filter_shape, tf.float32)
            # filter_ = tf.Variable(np.zeros(filter_shape, dtype=np.float32))

            output = tf.nn.conv2d(input_,
                                  filter_,
                                  strides=[1, 1, 1, 1],
                                  padding="SAME")
    logging.info("layer {0}, filter{1}, output{2}".format(
        name, filter_shape, output.shape))
    return output
Пример #32
0
def deconv(input_, filter_num, factor, name):
    """ de-convolutional layer, tf.nn.using conv2d_transpose()

    Note:
        the op tf.nn.conv2d_transpose, consume the significant time.
    """

    with tf.variable_scope(name):

        batch_size_, h, w, d = input_.shape

        # filter_shape = (h, w, d, filter_num)
        # filter_shape = (h, w, filter_num, d)
        filter_shape = (3, 3, filter_num, d)

        # filter_ = tf.Variable(np.zeros(filter_shape, dtype=np.float32))
        filter_ = tf.get_variable('weights', filter_shape, tf.float32)
        # bias_ = tf.Variable(np.zeros(filter_num, dtype=np.float32))
        bias_ = tf.get_variable('bias', filter_num)

        # output_shape_ = tf.stack([batch_size_, h * factor, w * factor, d])
        output_shape_ = tf.TensorShape(
            [batch_size_, h * factor, w * factor, d])

        deconv_ = tf.nn.conv2d_transpose(input_,
                                         filter_,
                                         output_shape=output_shape_,
                                         strides=[1, factor, factor, 1],
                                         padding="SAME")
        deconv_ = tf.nn.bias_add(deconv_, bias_)

        if batch_normalization:
            btn = tf_ctb_layers.batch_norm(deconv_, scale=True)
            output = tf.nn.relu(btn)
        else:
            output = tf.nn.relu(deconv_)

    logging.info("layer {0}, {1}".format(name, output.shape))
    return output
Пример #33
0
def resnet50(image_input, is_training, scope='resnet_v2_50'):
    with tf.variable_scope(scope):
        with arg_scope(resnet_arg_scope(is_training=is_training)):
            with arg_scope([layers_lib.conv2d],
                           activation_fn=None,
                           normalizer_fn=None):
                out = conv2d_same(inputs=image_input,
                                  num_outputs=64,
                                  kernel_size=7,
                                  stride=2,
                                  scope='conv1')
            out = layers.max_pool2d(out, [3, 3], stride=2, scope='pool1')
            out = resnet_v2_block(inputs=out,
                                  base_depth=64,
                                  num_units=3,
                                  stride=2,
                                  scope='block1')
            out = resnet_v2_block(inputs=out,
                                  base_depth=128,
                                  num_units=4,
                                  stride=2,
                                  scope='block2')
            out = resnet_v2_block(inputs=out,
                                  base_depth=256,
                                  num_units=6,
                                  stride=2,
                                  scope='block3')
            out = resnet_v2_block(inputs=out,
                                  base_depth=512,
                                  num_units=3,
                                  stride=1,
                                  scope='block4')
            out = layers.batch_norm(out,
                                    activation_fn=nn_ops.relu,
                                    scope='postnorm')

    return out
Пример #34
0
def resnet_v2(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
    """Generator for v2 (preactivation) ResNet models.

  This function generates a family of ResNet v2 models. See the resnet_v2_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether batch_norm layers are in training mode.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it. If excluded, `inputs` should be the
      results of an activation-less convolution.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.


  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
    with variable_scope.variable_scope(scope,
                                       'resnet_v2', [inputs],
                                       reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope(
            [layers_lib.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with arg_scope([layers.batch_norm], is_training=is_training):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    # We do not include batch normalization or activation functions in
                    # conv1 because the first ResNet unit will perform these. Cf.
                    # Appendix of [2].
                    with arg_scope([layers_lib.conv2d],
                                   activation_fn=None,
                                   normalizer_fn=None):
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                    net = layers.max_pool2d(net, [3, 3],
                                            stride=2,
                                            scope='pool1',
                                            padding="SAME")
                net = resnet_utils.stack_blocks_dense(net, blocks,
                                                      output_stride)
                # This is needed because the pre-activation variant does not have batch
                # normalization or activation functions in the residual unit output. See
                # Appendix of [2].
                net = layers.batch_norm(net,
                                        activation_fn=nn_ops.relu,
                                        scope='postnorm')
                if global_pool:
                    # Global average pooling.
                    import tensorflow as tf
                    net = tf.reduce_mean(net, [1, 2],
                                         name='pool5',
                                         keep_dims=True)
                if num_classes is not None:
                    net = layers_lib.conv2d(net,
                                            num_classes, [1, 1],
                                            activation_fn=None,
                                            normalizer_fn=None,
                                            scope='logits')
                # Convert end_points_collection into a dictionary of end_points.
                end_points = utils.convert_collection_to_dict(
                    end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = layers.softmax(
                        net, scope='predictions')
                return net, end_points
Пример #35
0
def batchnorm_classifier(inputs):
  inputs = layers.batch_norm(inputs, decay=0.1)
  return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
Пример #36
0
 def f(x):
   x = convolutional.conv1d(x, self.CHANNELS // 2, 3, padding="same")
   x = layers.batch_norm(x, is_training=False)
   x = convolutional.conv1d(x, self.CHANNELS // 2, 3, padding="same")
   x = layers.batch_norm(x, is_training=False)
   return x
Пример #37
0
def resnet_v2(inputs,
              blocks,
              num_classes=None,
              is_training=None,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
  """Generator for v2 (preactivation) ResNet models.

  This function generates a family of ResNet v2 models. See the resnet_v2_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether is training or not. If None, the value inherited from
      the resnet_arg_scope is used. Specifying value None is deprecated.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it. If excluded, `inputs` should be the
      results of an activation-less convolution.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.


  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
  with variable_scope.variable_scope(
      scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
    end_points_collection = sc.original_name_scope + '_end_points'
    with arg_scope(
        [layers_lib.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
        outputs_collections=end_points_collection):
      if is_training is not None:
        bn_scope = arg_scope([layers.batch_norm], is_training=is_training)
      else:
        bn_scope = arg_scope([])
      with bn_scope:
        net = inputs
        if include_root_block:
          if output_stride is not None:
            if output_stride % 4 != 0:
              raise ValueError('The output_stride needs to be a multiple of 4.')
            output_stride /= 4
          # We do not include batch normalization or activation functions in
          # conv1 because the first ResNet unit will perform these. Cf.
          # Appendix of [2].
          with arg_scope(
              [layers_lib.conv2d], activation_fn=None, normalizer_fn=None):
            net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
          net = layers.max_pool2d(net, [3, 3], stride=2, scope='pool1')
        net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
        # This is needed because the pre-activation variant does not have batch
        # normalization or activation functions in the residual unit output. See
        # Appendix of [2].
        net = layers.batch_norm(
            net, activation_fn=nn_ops.relu, scope='postnorm')
        if global_pool:
          # Global average pooling.
          net = math_ops.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
        if num_classes is not None:
          net = layers_lib.conv2d(
              net,
              num_classes, [1, 1],
              activation_fn=None,
              normalizer_fn=None,
              scope='logits')
        # Convert end_points_collection into a dictionary of end_points.
        end_points = utils.convert_collection_to_dict(end_points_collection)
        if num_classes is not None:
          end_points['predictions'] = layers.softmax(net, scope='predictions')
        return net, end_points
Пример #38
0
def BatchNormClassifier(inputs):
  inputs = layers.batch_norm(inputs, decay=0.1, fused=True)
  return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)