def testMultipleMetaGraphDef(self):
    """Test saved model with multiple MetaGraphDef."""
    saved_model_dir = os.path.join(self.get_temp_dir(), "savedmodel_two_mgd")
    builder = saved_model.builder.SavedModelBuilder(saved_model_dir)
    with session.Session(graph=ops.Graph()) as sess:
      # MetaGraphDef 1
      in_tensor = array_ops.placeholder(shape=[1, 28, 28], dtype=dtypes.float32)
      out_tensor = in_tensor + in_tensor
      sig_input_tensor = saved_model.utils.build_tensor_info(in_tensor)
      sig_input_tensor_signature = {"x": sig_input_tensor}
      sig_output_tensor = saved_model.utils.build_tensor_info(out_tensor)
      sig_output_tensor_signature = {"y": sig_output_tensor}
      predict_signature_def = (
          saved_model.signature_def_utils.build_signature_def(
              sig_input_tensor_signature, sig_output_tensor_signature,
              saved_model.signature_constants.PREDICT_METHOD_NAME))
      signature_def_map = {
          saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
              predict_signature_def
      }
      builder.add_meta_graph_and_variables(
          sess,
          tags=[saved_model.tag_constants.SERVING, "additional_test_tag"],
          signature_def_map=signature_def_map)
      # MetaGraphDef 2
      builder.add_meta_graph(tags=["tflite"])
      builder.save(True)

    # Convert to tflite
    convert_saved_model.convert(
        saved_model_dir=saved_model_dir,
        tag_set=set([saved_model.tag_constants.SERVING, "additional_test_tag"]))
 def testSimpleSavedModelWithMoreNoneInShape(self):
     """Test a simple savedmodel, fail as more None in input shape."""
     saved_model_dir = self._createSimpleSavedModel(
         shape=[None, 16, None, 3])
     # Convert to tflite: this should raise ValueError, as 3rd dim is None.
     with self.assertRaises(ValueError):
         convert_saved_model.convert(saved_model_dir=saved_model_dir)
 def testSimpleSavedModelWithWrongSignatureKey(self):
   """Test a simple savedmodel, fail as given signature is invalid."""
   saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
   # Convert to tflite: this should raise ValueError, as
   # signature_key does not exit in the saved_model.
   with self.assertRaises(ValueError):
     convert_saved_model.convert(
         saved_model_dir=saved_model_dir, signature_key="wrong-key")
 def testSimpleSavedModelWithWrongSignatureKey(self):
     """Test a simple savedmodel, fail as given signature is invalid."""
     saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
     # Convert to tflite: this should raise ValueError, as
     # signature_key does not exit in the saved_model.
     with self.assertRaises(ValueError):
         convert_saved_model.convert(saved_model_dir=saved_model_dir,
                                     signature_key="wrong-key")
 def testSimpleSavedModelWithWrongOutputArray(self):
   """Test a simple savedmodel, fail as given output_arrays is invalid."""
   # Create a simple savedmodel
   saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
   # Convert to tflite: this should raise ValueError, as
   # output_arrays is not valid for the saved_model.
   with self.assertRaises(ValueError):
     convert_saved_model.convert(
         saved_model_dir=saved_model_dir, output_arrays="wrong-output")
 def testSimpleSavedModelWithWrongOutputArray(self):
     """Test a simple savedmodel, fail as given output_arrays is invalid."""
     # Create a simple savedmodel
     saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
     # Convert to tflite: this should raise ValueError, as
     # output_arrays is not valid for the saved_model.
     with self.assertRaises(ValueError):
         convert_saved_model.convert(saved_model_dir=saved_model_dir,
                                     output_arrays="wrong-output")
 def testSimpleSavedModel(self):
   """Test a simple savedmodel created on the fly."""
   # Create a simple savedmodel
   saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
   # Convert to tflite
   result = convert_saved_model.convert(saved_model_dir=saved_model_dir)
   self.assertTrue(result)
  def testTrainedMnistSavedModel(self):
    """Test mnist savedmodel, trained with dummy data and small steps."""
    # Build classifier
    classifier = estimator.Estimator(
        model_fn=model_fn,
        params={
            "data_format": "channels_last"  # tflite format
        })

    # Train and pred for serving
    classifier.train(input_fn=dummy_input_fn, steps=2)
    image = array_ops.placeholder(dtypes.float32, [None, 28, 28])
    pred_input_fn = estimator.export.build_raw_serving_input_receiver_fn({
        "image": image,
    })

    # Export savedmodel
    saved_model_dir = os.path.join(self.get_temp_dir(), "mnist_savedmodel")
    classifier.export_savedmodel(saved_model_dir, pred_input_fn)

    # Convert to tflite and test output
    saved_model_name = os.listdir(saved_model_dir)[0]
    saved_model_final_dir = os.path.join(saved_model_dir, saved_model_name)
    output_tflite = os.path.join(saved_model_dir,
                                 saved_model_final_dir + ".lite")
    # TODO(zhixianyan): no need to limit output_arrays to `Softmax'
    # once b/74205001 fixed and argmax implemented in tflite.
    result = convert_saved_model.convert(
        saved_model_dir=saved_model_final_dir,
        output_arrays="Softmax",
        output_tflite=output_tflite)

    self.assertTrue(result)
 def testSimpleSavedModel(self):
     """Test a simple savedmodel created on the fly."""
     # Create a simple savedmodel
     saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
     # Convert to tflite
     result = convert_saved_model.convert(saved_model_dir=saved_model_dir)
     self.assertTrue(result)
    def testTrainedMnistSavedModel(self):
        """Test mnist savedmodel, trained with dummy data and small steps."""
        # Build classifier
        classifier = estimator.Estimator(
            model_fn=model_fn,
            params={
                "data_format": "channels_last"  # tflite format
            })

        # Train and pred for serving
        classifier.train(input_fn=dummy_input_fn, steps=2)
        image = array_ops.placeholder(dtypes.float32, [None, 28, 28])
        pred_input_fn = estimator.export.build_raw_serving_input_receiver_fn({
            "image":
            image,
        })

        # Export savedmodel
        saved_model_dir = os.path.join(self.get_temp_dir(), "mnist_savedmodel")
        classifier.export_savedmodel(saved_model_dir, pred_input_fn)

        # Convert to tflite and test output
        saved_model_name = os.listdir(saved_model_dir)[0]
        saved_model_final_dir = os.path.join(saved_model_dir, saved_model_name)
        output_tflite = os.path.join(saved_model_dir,
                                     saved_model_final_dir + ".lite")
        # TODO(zhixianyan): no need to limit output_arrays to `Softmax'
        # once b/74205001 fixed and argmax implemented in tflite.
        result = convert_saved_model.convert(
            saved_model_dir=saved_model_final_dir,
            output_arrays="Softmax",
            output_tflite=output_tflite)

        self.assertTrue(result)
    def testMultipleMetaGraphDef(self):
        """Test saved model with multiple MetaGraphDef."""
        saved_model_dir = os.path.join(self.get_temp_dir(),
                                       "savedmodel_two_mgd")
        builder = saved_model.builder.SavedModelBuilder(saved_model_dir)
        with session.Session(graph=ops.Graph()) as sess:
            # MetaGraphDef 1
            in_tensor = array_ops.placeholder(shape=[1, 28, 28],
                                              dtype=dtypes.float32)
            out_tensor = in_tensor + in_tensor
            sig_input_tensor = saved_model.utils.build_tensor_info(in_tensor)
            sig_input_tensor_signature = {"x": sig_input_tensor}
            sig_output_tensor = saved_model.utils.build_tensor_info(out_tensor)
            sig_output_tensor_signature = {"y": sig_output_tensor}
            predict_signature_def = (
                saved_model.signature_def_utils.build_signature_def(
                    sig_input_tensor_signature, sig_output_tensor_signature,
                    saved_model.signature_constants.PREDICT_METHOD_NAME))
            signature_def_map = {
                saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                predict_signature_def
            }
            builder.add_meta_graph_and_variables(
                sess,
                tags=[
                    saved_model.tag_constants.SERVING, "additional_test_tag"
                ],
                signature_def_map=signature_def_map)
            # MetaGraphDef 2
            builder.add_meta_graph(tags=["tflite"])
            builder.save(True)

        # Convert to tflite
        convert_saved_model.convert(saved_model_dir=saved_model_dir,
                                    tag_set=set([
                                        saved_model.tag_constants.SERVING,
                                        "additional_test_tag"
                                    ]))
Пример #12
0
 def testSimpleSavedModelWithMoreNoneInShape(self):
   """Test a simple savedmodel, fail as more None in input shape."""
   saved_model_dir = self._createSimpleSavedModel(shape=[None, 16, None, 3])
   # Convert to tflite: this should raise ValueError, as 3rd dim is None.
   with self.assertRaises(ValueError):
     convert_saved_model.convert(saved_model_dir=saved_model_dir)
Пример #13
0
 def testSimpleSavedModelWithNoneBatchSizeInShape(self):
   """Test a simple savedmodel, with None in input tensor's shape."""
   saved_model_dir = self._createSimpleSavedModel(shape=[None, 16, 16, 3])
   result = convert_saved_model.convert(saved_model_dir=saved_model_dir)
   self.assertTrue(result)
 def testSimpleSavedModelWithNoneBatchSizeInShape(self):
     """Test a simple savedmodel, with None in input tensor's shape."""
     saved_model_dir = self._createSimpleSavedModel(shape=[None, 16, 16, 3])
     result = convert_saved_model.convert(saved_model_dir=saved_model_dir)
     self.assertTrue(result)