def test_apply_gradients(self):

    x = variable_scope.get_variable("x", initializer=1., dtype=dtypes.float32)
    dataset = dataset_ops.Dataset.from_tensor_slices([np.nan, np.inf, 0.1])
    itr = dataset.make_one_shot_iterator()

    lr = 1
    opt = gd.GradientDescentOptimizer(lr)
    lsm = lsm_lib.FixedLossScaleManager(1.e4)
    opt = lso.LossScaleOptimizer(opt, lsm)
    train_fn = lambda: opt.apply_gradients([(itr.get_next(), x)])
    if not context.executing_eagerly():
      train_op = train_fn()

    expected_output = [1, 1, 1 - 0.1]
    actual_output = []

    self.evaluate(variables.global_variables_initializer())
    for _ in range(3):
      # nan or inf is not applied.
      if context.executing_eagerly():
        train_fn()
      else:
        self.evaluate(train_op)
      actual_output.append(self.evaluate(x))
    self.assertAllClose(expected_output, actual_output)
Пример #2
0
    def test_basic(self):
        itr = _GetExampleIter([True] * 10 + [False] * 10)

        loss_scale = 1000
        lsm = lsm_lib.FixedLossScaleManager(loss_scale)
        update_fn = lambda: lsm.update_loss_scale(itr.get_next())

        self.evaluate(variables.global_variables_initializer())
        if not context.executing_eagerly():
            update_op = update_fn()
        for _ in range(10):
            if context.executing_eagerly():
                update_fn()
            else:
                self.evaluate(update_op)
            self.assertEqual(loss_scale, self.evaluate(lsm.get_loss_scale()))
 def loss_scale_opt_fn(opt):
   return lso.LossScaleOptimizer(opt, lsm_lib.FixedLossScaleManager(1e4))