Пример #1
0
def node_to_graph(node, ctx, nocompile_decorators):
    """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
    # TODO(mdan): Verify arguments for correctness.

    # TODO(mdan): Factor out common elements.
    # These include:
    #   * code move between blocks
    #   * visiting blocks in transformers

    # Certain steps, especially canonicalization, insert new symbols into the
    # tree, which must be accounted. Although less efficient, it is most robust
    # to re-run the analysis.

    node = _static_analysis_pass(node, ctx)
    # Past this point, line numbers are no longer accurate so we ignore the
    # source.
    # TODO(mdan): Is it feasible to reconstruct intermediate source code?
    ctx.source_code = None
    node = decorators.transform(node, nocompile_decorators)
    node = break_statements.transform(node, ctx)
    node = asserts.transform(node, ctx)

    # Note: sequencing continue canonicalization before for loop one avoids
    # dealing with the extra loop increment operation that the for
    # canonicalization creates.
    node = continue_statements.transform(node, ctx)
    ctx.namespace['len'] = len

    node = _static_analysis_pass(node, ctx)
    node = for_loops.transform(node, ctx)
    # for_loops may insert new global references.
    node = builtin_functions.transform(node, ctx)
    # TODO(mdan): Kept for CL consistency. Remove.
    # builtin_functions may insert new global references.
    ctx.namespace['print'] = print

    node = _static_analysis_pass(node, ctx)
    node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                                nocompile_decorators)
    node = control_flow.transform(node, ctx)

    # control_flow may create new symbols and change scopes.
    node = _static_analysis_pass(node, ctx)
    node = logical_expressions.transform(node)
    node = side_effect_guards.transform(node, ctx)

    return node
Пример #2
0
def node_to_graph(node, ctx, nocompile_decorators):
  """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
  # TODO(mdan): Verify arguments for correctness.

  # TODO(mdan): Factor out common elements.
  # These include:
  #   * code move between blocks
  #   * visiting blocks in transformers

  # Certain steps, especially canonicalization, insert new symbols into the
  # tree, which must be accounted. Although less efficient, it is most robust
  # to re-run the analysis.

  node = _static_analysis_pass(node, ctx)
  # Past this point, line numbers are no longer accurate so we ignore the
  # source.
  # TODO(mdan): Is it feasible to reconstruct intermediate source code?
  ctx.source_code = None
  node = decorators.transform(node, nocompile_decorators)
  node = break_canonicalization.transform(node, ctx)
  node = asserts.transform(node, ctx)

  # Note: sequencing continue canonicalization before for loop one avoids
  # dealing with the extra loop increment operation that the for
  # canonicalization creates.
  node = continue_canonicalization.transform(node, ctx)
  ctx.namespace['len'] = len

  node = _static_analysis_pass(node, ctx)
  node = for_canonicalization.transform(node, ctx)
  # for_canonicalization may insert new global references.
  node = builtin_functions.transform(node, ctx)
  # builtin_functions may insert new global references.
  ctx.namespace['print'] = print

  node = _static_analysis_pass(node, ctx)
  node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                              nocompile_decorators)
  node = control_flow.transform(node, ctx)

  # control_flow may create new symbols and change scopes.
  node = _static_analysis_pass(node, ctx)
  node = logical_expressions.transform(node)
  node = side_effect_guards.transform(node, ctx)

  return node
Пример #3
0
def node_to_graph(node, ctx, nocompile_decorators):
  """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
  # TODO(mdan): Verify arguments for correctness.

  # TODO(mdan): Factor out common elements.
  # These include:
  #   * keeping track of symbols that have been created
  #   * marking nodes (e.g. py_func wrappers) to suppress further processing
  #   * code move between blocks
  #   * insertion of new global references
  #   * visiting blocks in transformers

  # Certain steps, especially canonicalization, insert new symbols into the
  # tree, which must be accounted. Although less efficient, it is most robust
  # to re-run the analysis.

  node = _static_analysis_pass(node, ctx)
  node = decorators.transform(node, nocompile_decorators)
  node = break_canonicalization.transform(node, ctx.namer)

  # Note: sequencing continue canonicalization before for loop one avoids
  # dealing with the extra loop increment operation that the for
  # canonicalization creates.
  node = continue_canonicalization.transform(node, ctx.namer)
  ctx.namespace['len'] = len

  node = _static_analysis_pass(node, ctx)
  node = for_canonicalization.transform(node, ctx.namer)
  # for_canonicalization may insert new global references.
  node = builtin_functions.transform(node)
  # builtin_functions may insert new global references.
  ctx.namespace['print'] = print

  node = _static_analysis_pass(node, ctx)
  node = print_functions.transform(node)
  node = call_trees.transform(node, ctx.namer, ctx.namespace,
                              config.DEFAULT_UNCOMPILED_MODULES,
                              nocompile_decorators)
  node = control_flow.transform(node, ctx.namer)
  node = logical_expressions.transform(node)
  node = side_effect_guards.transform(node, ctx.namer)

  return node
    def test_bool_ops(self):
        def test_fn(a, b, c):
            return (a or b) and (a or b or c)

        node = self.parse_and_analyze(test_fn, {})
        node = logical_expressions.transform(node)
        result = compiler.ast_to_object(node)
        setattr(result, 'tf', math_ops)

        with self.test_session() as sess:
            self.assertTrue(sess.run(result.test_fn(True, False, True)))
    def test_equals(self):
        def test_fn(a, b):
            return a == b

        node = self.parse_and_analyze(test_fn, {})
        node = logical_expressions.transform(node)
        result = compiler.ast_to_object(node)
        setattr(result, 'tf', math_ops)

        with self.test_session() as sess:
            self.assertTrue(sess.run(result.test_fn(1, 1)))
            self.assertFalse(sess.run(result.test_fn(1, 2)))
  def test_bool_ops(self):

    def test_fn(a, b, c):
      return (a or b) and (a or b or c)

    node = self.parse_and_analyze(test_fn, {})
    node = logical_expressions.transform(node)
    result = compiler.ast_to_object(node)
    setattr(result, 'tf', math_ops)

    with self.test_session() as sess:
      self.assertTrue(sess.run(result.test_fn(True, False, True)))
  def test_bool_ops(self):

    def test_fn(a, b, c):
      return (a or b) and (a or b or c)

    node = self.parse_and_analyze(test_fn, {})
    node = logical_expressions.transform(node, self.ctx)

    with self.compiled(node, math_ops.logical_or,
                       math_ops.logical_and) as result:
      with self.test_session() as sess:
        self.assertTrue(sess.run(result.test_fn(True, False, True)))
  def test_equals(self):

    def test_fn(a, b):
      return a == b

    node = self.parse_and_analyze(test_fn, {})
    node = logical_expressions.transform(node, self.ctx)

    with self.compiled(node, math_ops.equal) as result:
      with self.test_session() as sess:
        self.assertTrue(sess.run(result.test_fn(1, 1)))
        self.assertFalse(sess.run(result.test_fn(1, 2)))
  def test_equals(self):

    def test_fn(a, b):
      return a == b

    node = self.parse_and_analyze(test_fn, {})
    node = logical_expressions.transform(node)
    result = compiler.ast_to_object(node)
    setattr(result, 'tf', math_ops)

    with self.test_session() as sess:
      self.assertTrue(sess.run(result.test_fn(1, 1)))
      self.assertFalse(sess.run(result.test_fn(1, 2)))