Пример #1
0
 def testWriterInitAndClose(self):
   logdir = self.get_temp_dir()
   get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
   with summary_ops.always_record_summaries():
     writer = summary_ops.create_file_writer(
         logdir, max_queue=100, flush_millis=1000000)
     self.assertEqual(1, get_total())  # file_version Event
     # Calling init() again while writer is open has no effect
     writer.init()
     self.assertEqual(1, get_total())
     try:
       # Not using .as_default() to avoid implicit flush when exiting
       writer.set_as_default()
       summary_ops.scalar('one', 1.0, step=1)
       self.assertEqual(1, get_total())
       # Calling .close() should do an implicit flush
       writer.close()
       self.assertEqual(2, get_total())
       # Calling init() on a closed writer should start a new file
       time.sleep(1.1)  # Ensure filename has a different timestamp
       writer.init()
       files = sorted(gfile.Glob(os.path.join(logdir, '*tfevents*')))
       self.assertEqual(2, len(files))
       get_total = lambda: len(summary_test_util.events_from_file(files[1]))
       self.assertEqual(1, get_total())  # file_version Event
       summary_ops.scalar('two', 2.0, step=2)
       writer.close()
       self.assertEqual(2, get_total())
     finally:
       # Clean up by resetting default writer
       summary_ops.create_file_writer(None).set_as_default()
Пример #2
0
 def testWriterInitAndClose(self):
     logdir = self.get_temp_dir()
     get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
     with summary_ops.always_record_summaries():
         writer = summary_ops.create_file_writer(logdir,
                                                 max_queue=100,
                                                 flush_millis=1000000)
         self.assertEqual(1, get_total())  # file_version Event
         # Calling init() again while writer is open has no effect
         writer.init()
         self.assertEqual(1, get_total())
         try:
             # Not using .as_default() to avoid implicit flush when exiting
             writer.set_as_default()
             summary_ops.scalar('one', 1.0, step=1)
             self.assertEqual(1, get_total())
             # Calling .close() should do an implicit flush
             writer.close()
             self.assertEqual(2, get_total())
             # Calling init() on a closed writer should start a new file
             time.sleep(1.1)  # Ensure filename has a different timestamp
             writer.init()
             files = sorted(gfile.Glob(os.path.join(logdir, '*tfevents*')))
             self.assertEqual(2, len(files))
             get_total = lambda: len(
                 summary_test_util.events_from_file(files[1]))
             self.assertEqual(1, get_total())  # file_version Event
             summary_ops.scalar('two', 2.0, step=2)
             writer.close()
             self.assertEqual(2, get_total())
         finally:
             # Clean up by resetting default writer
             summary_ops.create_file_writer(None).set_as_default()
  def testScalarSummaryNameScope(self):
    """Test record_summaries_every_n_global_steps and all_summaries()."""
    with ops.Graph().as_default(), self.cached_session() as sess:
      global_step = training_util.get_or_create_global_step()
      global_step.initializer.run()
      with ops.device('/cpu:0'):
        step_increment = state_ops.assign_add(global_step, 1)
      sess.run(step_increment)  # Increment global step from 0 to 1

      logdir = tempfile.mkdtemp()
      with summary_ops.create_file_writer(logdir, max_queue=0,
                                          name='t2').as_default():
        with summary_ops.record_summaries_every_n_global_steps(2):
          summary_ops.initialize()
          with ops.name_scope('scope'):
            summary_op = summary_ops.scalar('my_scalar', 2.0)

          # Neither of these should produce a summary because
          # global_step is 1 and "1 % 2 != 0"
          sess.run(summary_ops.all_summary_ops())
          sess.run(summary_op)
          events = summary_test_util.events_from_logdir(logdir)
          self.assertEqual(len(events), 1)

          # Increment global step from 1 to 2 and check that the summary
          # is now written
          sess.run(step_increment)
          sess.run(summary_ops.all_summary_ops())
          events = summary_test_util.events_from_logdir(logdir)
          self.assertEqual(len(events), 2)
          self.assertEqual(events[1].summary.value[0].tag, 'scope/my_scalar')
Пример #4
0
    def testScalarSummaryNameScope(self):
        """Test record_summaries_every_n_global_steps and all_summaries()."""
        with ops.Graph().as_default(), self.cached_session() as sess:
            global_step = training_util.get_or_create_global_step()
            global_step.initializer.run()
            with ops.device('/cpu:0'):
                step_increment = state_ops.assign_add(global_step, 1)
            sess.run(step_increment)  # Increment global step from 0 to 1

            logdir = tempfile.mkdtemp()
            with summary_ops.create_file_writer(logdir, max_queue=0,
                                                name='t2').as_default():
                with summary_ops.record_summaries_every_n_global_steps(2):
                    summary_ops.initialize()
                    with ops.name_scope('scope'):
                        summary_op = summary_ops.scalar('my_scalar', 2.0)

                    # Neither of these should produce a summary because
                    # global_step is 1 and "1 % 2 != 0"
                    sess.run(summary_ops.all_summary_ops())
                    sess.run(summary_op)
                    events = summary_test_util.events_from_logdir(logdir)
                    self.assertEqual(len(events), 1)

                    # Increment global step from 1 to 2 and check that the summary
                    # is now written
                    sess.run(step_increment)
                    sess.run(summary_ops.all_summary_ops())
                    events = summary_test_util.events_from_logdir(logdir)
                    self.assertEqual(len(events), 2)
                    self.assertEqual(events[1].summary.value[0].tag,
                                     'scope/my_scalar')
Пример #5
0
def train(training_dataset, preprocessing_type, base_model, optimizer, summary_dir,
        ckpt_dir, logging_every_n_steps, summary_every_n_steps, save_every_n_steps,
        restore_ckpt_file_path):
    # 获取 pretained model
    variables = base_model.variables + [tf.train.get_or_create_global_step()]
    saver = model_saver.Saver(variables)

    if restore_ckpt_file_path is not None:
        saver.restore(restore_ckpt_file_path)
    
    if tf.train.latest_checkpoint(ckpt_dir) is not None:
        saver.restore(tf.train.latest_checkpoint(ckpt_dir))
    

    # writer = tf.summary.FileWriter(train_dir, flush_secs=100)
    writer = summary.create_file_writer(summary_dir, flush_millis=100000)
    for i in range(configs['epoches']):
        tf.compat.v1.logging.info('epoch %d starting...' % (i + 1))
        start_time = time.time()
        with writer.as_default(), summary.always_record_summaries():
            train_one_epoch(dataset=training_dataset, base_model=base_model, optimizer=optimizer, preprocessing_type=preprocessing_type,
                        logging_every_n_steps=logging_every_n_steps, summary_every_n_steps=summary_every_n_steps,
                        save_path=ckpt_dir, saver=saver, save_every_n_steps=save_every_n_steps)
        tf.set_random_seed(1)
        end_time = time.time()
        tf.compat.v1.logging.info('epoch %d training finished, costing %d seconds...' % (i, end_time - start_time))
Пример #6
0
 def testFlushFunction(self):
     logdir = self.get_temp_dir()
     writer = summary_ops.create_file_writer(logdir,
                                             max_queue=999999,
                                             flush_millis=999999)
     with writer.as_default(), summary_ops.always_record_summaries():
         summary_ops.scalar('scalar', 2.0, step=1)
         flush_op = summary_ops.flush()
     with self.cached_session() as sess:
         sess.run(summary_ops.summary_writer_initializer_op())
         get_total = lambda: len(
             summary_test_util.events_from_logdir(logdir))
         # Note: First tf.Event is always file_version.
         self.assertEqual(1, get_total())
         sess.run(summary_ops.all_summary_ops())
         self.assertEqual(1, get_total())
         sess.run(flush_op)
         self.assertEqual(2, get_total())
         # Test "writer" parameter
         sess.run(summary_ops.all_summary_ops())
         sess.run(summary_ops.flush(writer=writer))
         self.assertEqual(3, get_total())
         sess.run(summary_ops.all_summary_ops())
         sess.run(summary_ops.flush(writer=writer._resource))  # pylint:disable=protected-access
         self.assertEqual(4, get_total())
 def testWriterInitAndClose(self):
   logdir = self.get_temp_dir()
   with summary_ops.always_record_summaries():
     writer = summary_ops.create_file_writer(
         logdir, max_queue=100, flush_millis=1000000)
     with writer.as_default():
       summary_ops.scalar('one', 1.0, step=1)
   with self.cached_session() as sess:
     sess.run(summary_ops.summary_writer_initializer_op())
     get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
     self.assertEqual(1, get_total())  # file_version Event
     # Running init() again while writer is open has no effect
     sess.run(writer.init())
     self.assertEqual(1, get_total())
     sess.run(summary_ops.all_summary_ops())
     self.assertEqual(1, get_total())
     # Running close() should do an implicit flush
     sess.run(writer.close())
     self.assertEqual(2, get_total())
     # Running init() on a closed writer should start a new file
     time.sleep(1.1)  # Ensure filename has a different timestamp
     sess.run(writer.init())
     sess.run(summary_ops.all_summary_ops())
     sess.run(writer.close())
     files = sorted(gfile.Glob(os.path.join(logdir, '*tfevents*')))
     self.assertEqual(2, len(files))
     self.assertEqual(2, len(summary_test_util.events_from_file(files[1])))
Пример #8
0
 def testWriterInitAndClose(self):
     logdir = self.get_temp_dir()
     with summary_ops.always_record_summaries():
         writer = summary_ops.create_file_writer(logdir,
                                                 max_queue=100,
                                                 flush_millis=1000000)
         with writer.as_default():
             summary_ops.scalar('one', 1.0, step=1)
     with self.cached_session() as sess:
         sess.run(summary_ops.summary_writer_initializer_op())
         get_total = lambda: len(
             summary_test_util.events_from_logdir(logdir))
         self.assertEqual(1, get_total())  # file_version Event
         # Running init() again while writer is open has no effect
         sess.run(writer.init())
         self.assertEqual(1, get_total())
         sess.run(summary_ops.all_summary_ops())
         self.assertEqual(1, get_total())
         # Running close() should do an implicit flush
         sess.run(writer.close())
         self.assertEqual(2, get_total())
         # Running init() on a closed writer should start a new file
         time.sleep(1.1)  # Ensure filename has a different timestamp
         sess.run(writer.init())
         sess.run(summary_ops.all_summary_ops())
         sess.run(writer.close())
         files = sorted(gfile.Glob(os.path.join(logdir, '*tfevents*')))
         self.assertEqual(2, len(files))
         self.assertEqual(2,
                          len(summary_test_util.events_from_file(files[1])))
Пример #9
0
    def testSharedName(self):
        logdir = self.get_temp_dir()
        with summary_ops.always_record_summaries():
            # Create with default shared name (should match logdir)
            writer1 = summary_ops.create_file_writer(logdir)
            with writer1.as_default():
                summary_ops.scalar('one', 1.0, step=1)
            # Create with explicit logdir shared name (should be same resource/file)
            shared_name = 'logdir:' + logdir
            writer2 = summary_ops.create_file_writer(logdir, name=shared_name)
            with writer2.as_default():
                summary_ops.scalar('two', 2.0, step=2)
            # Create with different shared name (should be separate resource/file)
            writer3 = summary_ops.create_file_writer(logdir, name='other')
            with writer3.as_default():
                summary_ops.scalar('three', 3.0, step=3)

        with self.cached_session() as sess:
            # Run init ops across writers sequentially to avoid race condition.
            # TODO(nickfelt): fix race condition in resource manager lookup or create
            sess.run(writer1.init())
            sess.run(writer2.init())
            time.sleep(1.1)  # Ensure filename has a different timestamp
            sess.run(writer3.init())
            sess.run(summary_ops.all_summary_ops())
            sess.run([writer1.flush(), writer2.flush(), writer3.flush()])

        event_files = iter(
            sorted(gfile.Glob(os.path.join(logdir, '*tfevents*'))))

        # First file has tags "one" and "two"
        events = summary_test_util.events_from_file(next(event_files))
        self.assertEqual('brain.Event:2', events[0].file_version)
        tags = [e.summary.value[0].tag for e in events[1:]]
        self.assertItemsEqual(['one', 'two'], tags)

        # Second file has tag "three"
        events = summary_test_util.events_from_file(next(event_files))
        self.assertEqual('brain.Event:2', events[0].file_version)
        tags = [e.summary.value[0].tag for e in events[1:]]
        self.assertItemsEqual(['three'], tags)

        # No more files
        self.assertRaises(StopIteration, lambda: next(event_files))
  def testSharedName(self):
    logdir = self.get_temp_dir()
    with summary_ops.always_record_summaries():
      # Create with default shared name (should match logdir)
      writer1 = summary_ops.create_file_writer(logdir)
      with writer1.as_default():
        summary_ops.scalar('one', 1.0, step=1)
      # Create with explicit logdir shared name (should be same resource/file)
      shared_name = 'logdir:' + logdir
      writer2 = summary_ops.create_file_writer(logdir, name=shared_name)
      with writer2.as_default():
        summary_ops.scalar('two', 2.0, step=2)
      # Create with different shared name (should be separate resource/file)
      writer3 = summary_ops.create_file_writer(logdir, name='other')
      with writer3.as_default():
        summary_ops.scalar('three', 3.0, step=3)

    with self.cached_session() as sess:
      # Run init ops across writers sequentially to avoid race condition.
      # TODO(nickfelt): fix race condition in resource manager lookup or create
      sess.run(writer1.init())
      sess.run(writer2.init())
      time.sleep(1.1)  # Ensure filename has a different timestamp
      sess.run(writer3.init())
      sess.run(summary_ops.all_summary_ops())
      sess.run([writer1.flush(), writer2.flush(), writer3.flush()])

    event_files = iter(sorted(gfile.Glob(os.path.join(logdir, '*tfevents*'))))

    # First file has tags "one" and "two"
    events = summary_test_util.events_from_file(next(event_files))
    self.assertEqual('brain.Event:2', events[0].file_version)
    tags = [e.summary.value[0].tag for e in events[1:]]
    self.assertItemsEqual(['one', 'two'], tags)

    # Second file has tag "three"
    events = summary_test_util.events_from_file(next(event_files))
    self.assertEqual('brain.Event:2', events[0].file_version)
    tags = [e.summary.value[0].tag for e in events[1:]]
    self.assertItemsEqual(['three'], tags)

    # No more files
    self.assertRaises(StopIteration, lambda: next(event_files))
Пример #11
0
 def testSummaryName(self):
     logdir = self.get_temp_dir()
     writer = summary_ops.create_file_writer(logdir, max_queue=0)
     with writer.as_default(), summary_ops.always_record_summaries():
         summary_ops.scalar('scalar', 2.0, step=1)
     with self.cached_session() as sess:
         sess.run(summary_ops.summary_writer_initializer_op())
         sess.run(summary_ops.all_summary_ops())
     events = summary_test_util.events_from_logdir(logdir)
     self.assertEqual(2, len(events))
     self.assertEqual('scalar', events[1].summary.value[0].tag)
Пример #12
0
 def testEagerMemory(self):
   training_util.get_or_create_global_step()
   logdir = self.get_temp_dir()
   with summary_ops.create_file_writer(
       logdir, max_queue=0,
       name='t0').as_default(), summary_ops.always_record_summaries():
     summary_ops.generic('tensor', 1, '')
     summary_ops.scalar('scalar', 2.0)
     summary_ops.histogram('histogram', [1.0])
     summary_ops.image('image', [[[[1.0]]]])
     summary_ops.audio('audio', [[1.0]], 1.0, 1)
 def testSummaryName(self):
   logdir = self.get_temp_dir()
   writer = summary_ops.create_file_writer(logdir, max_queue=0)
   with writer.as_default(), summary_ops.always_record_summaries():
     summary_ops.scalar('scalar', 2.0, step=1)
   with self.cached_session() as sess:
     sess.run(summary_ops.summary_writer_initializer_op())
     sess.run(summary_ops.all_summary_ops())
   events = summary_test_util.events_from_logdir(logdir)
   self.assertEqual(2, len(events))
   self.assertEqual('scalar', events[1].summary.value[0].tag)
Пример #14
0
 def testEagerMemory(self):
     training_util.get_or_create_global_step()
     logdir = self.get_temp_dir()
     with summary_ops.create_file_writer(
             logdir, max_queue=0,
             name='t0').as_default(), summary_ops.always_record_summaries():
         summary_ops.generic('tensor', 1, '')
         summary_ops.scalar('scalar', 2.0)
         summary_ops.histogram('histogram', [1.0])
         summary_ops.image('image', [[[[1.0]]]])
         summary_ops.audio('audio', [[1.0]], 1.0, 1)
Пример #15
0
  def testSummaryGlobalStep(self):
    step = training_util.get_or_create_global_step()
    logdir = tempfile.mkdtemp()
    with summary_ops.create_file_writer(
        logdir, max_queue=0,
        name='t2').as_default(), summary_ops.always_record_summaries():

      summary_ops.scalar('scalar', 2.0, step=step)

      events = summary_test_util.events_from_logdir(logdir)
      self.assertEqual(len(events), 2)
      self.assertEqual(events[1].summary.value[0].tag, 'scalar')
Пример #16
0
    def testSummaryGlobalStep(self):
        step = training_util.get_or_create_global_step()
        logdir = tempfile.mkdtemp()
        with summary_ops.create_file_writer(
                logdir, max_queue=0,
                name='t2').as_default(), summary_ops.always_record_summaries():

            summary_ops.scalar('scalar', 2.0, step=step)

            events = summary_test_util.events_from_logdir(logdir)
            self.assertEqual(len(events), 2)
            self.assertEqual(events[1].summary.value[0].tag, 'scalar')
Пример #17
0
    def testSharedName(self):
        logdir = self.get_temp_dir()
        with summary_ops.always_record_summaries():
            # Create with default shared name (should match logdir)
            writer1 = summary_ops.create_file_writer(logdir)
            with writer1.as_default():
                summary_ops.scalar('one', 1.0, step=1)
                summary_ops.flush()
            # Create with explicit logdir shared name (should be same resource/file)
            shared_name = 'logdir:' + logdir
            writer2 = summary_ops.create_file_writer(logdir, name=shared_name)
            with writer2.as_default():
                summary_ops.scalar('two', 2.0, step=2)
                summary_ops.flush()
            # Create with different shared name (should be separate resource/file)
            time.sleep(1.1)  # Ensure filename has a different timestamp
            writer3 = summary_ops.create_file_writer(logdir, name='other')
            with writer3.as_default():
                summary_ops.scalar('three', 3.0, step=3)
                summary_ops.flush()

        event_files = iter(
            sorted(gfile.Glob(os.path.join(logdir, '*tfevents*'))))

        # First file has tags "one" and "two"
        events = iter(summary_test_util.events_from_file(next(event_files)))
        self.assertEqual('brain.Event:2', next(events).file_version)
        self.assertEqual('one', next(events).summary.value[0].tag)
        self.assertEqual('two', next(events).summary.value[0].tag)
        self.assertRaises(StopIteration, lambda: next(events))

        # Second file has tag "three"
        events = iter(summary_test_util.events_from_file(next(event_files)))
        self.assertEqual('brain.Event:2', next(events).file_version)
        self.assertEqual('three', next(events).summary.value[0].tag)
        self.assertRaises(StopIteration, lambda: next(events))

        # No more files
        self.assertRaises(StopIteration, lambda: next(event_files))
Пример #18
0
 def testMaxQueue(self):
     logs = tempfile.mkdtemp()
     with summary_ops.create_file_writer(
             logs, max_queue=1, flush_millis=999999, name='lol').as_default(
             ), summary_ops.always_record_summaries():
         get_total = lambda: len(summary_test_util.events_from_logdir(logs))
         # Note: First tf.compat.v1.Event is always file_version.
         self.assertEqual(1, get_total())
         summary_ops.scalar('scalar', 2.0, step=1)
         self.assertEqual(1, get_total())
         # Should flush after second summary since max_queue = 1
         summary_ops.scalar('scalar', 2.0, step=2)
         self.assertEqual(3, get_total())
Пример #19
0
 def testMaxQueue(self):
   logs = tempfile.mkdtemp()
   with summary_ops.create_file_writer(
       logs, max_queue=1, flush_millis=999999,
       name='lol').as_default(), summary_ops.always_record_summaries():
     get_total = lambda: len(summary_test_util.events_from_logdir(logs))
     # Note: First tf.Event is always file_version.
     self.assertEqual(1, get_total())
     summary_ops.scalar('scalar', 2.0, step=1)
     self.assertEqual(1, get_total())
     # Should flush after second summary since max_queue = 1
     summary_ops.scalar('scalar', 2.0, step=2)
     self.assertEqual(3, get_total())
Пример #20
0
  def testSharedName(self):
    logdir = self.get_temp_dir()
    with summary_ops.always_record_summaries():
      # Create with default shared name (should match logdir)
      writer1 = summary_ops.create_file_writer(logdir)
      with writer1.as_default():
        summary_ops.scalar('one', 1.0, step=1)
        summary_ops.flush()
      # Create with explicit logdir shared name (should be same resource/file)
      shared_name = 'logdir:' + logdir
      writer2 = summary_ops.create_file_writer(logdir, name=shared_name)
      with writer2.as_default():
        summary_ops.scalar('two', 2.0, step=2)
        summary_ops.flush()
      # Create with different shared name (should be separate resource/file)
      time.sleep(1.1)  # Ensure filename has a different timestamp
      writer3 = summary_ops.create_file_writer(logdir, name='other')
      with writer3.as_default():
        summary_ops.scalar('three', 3.0, step=3)
        summary_ops.flush()

    event_files = iter(sorted(gfile.Glob(os.path.join(logdir, '*tfevents*'))))

    # First file has tags "one" and "two"
    events = iter(summary_test_util.events_from_file(next(event_files)))
    self.assertEqual('brain.Event:2', next(events).file_version)
    self.assertEqual('one', next(events).summary.value[0].tag)
    self.assertEqual('two', next(events).summary.value[0].tag)
    self.assertRaises(StopIteration, lambda: next(events))

    # Second file has tag "three"
    events = iter(summary_test_util.events_from_file(next(event_files)))
    self.assertEqual('brain.Event:2', next(events).file_version)
    self.assertEqual('three', next(events).summary.value[0].tag)
    self.assertRaises(StopIteration, lambda: next(events))

    # No more files
    self.assertRaises(StopIteration, lambda: next(event_files))
Пример #21
0
 def testSummaryGlobalStep(self):
   training_util.get_or_create_global_step()
   logdir = self.get_temp_dir()
   writer = summary_ops.create_file_writer(logdir, max_queue=0)
   with writer.as_default(), summary_ops.always_record_summaries():
     summary_ops.scalar('scalar', 2.0)
   with self.cached_session() as sess:
     sess.run(variables.global_variables_initializer())
     sess.run(summary_ops.summary_writer_initializer_op())
     step, _ = sess.run(
         [training_util.get_global_step(), summary_ops.all_summary_ops()])
   events = summary_test_util.events_from_logdir(logdir)
   self.assertEqual(2, len(events))
   self.assertEqual(step, events[1].step)
 def testSummaryGlobalStep(self):
   training_util.get_or_create_global_step()
   logdir = self.get_temp_dir()
   writer = summary_ops.create_file_writer(logdir, max_queue=0)
   with writer.as_default(), summary_ops.always_record_summaries():
     summary_ops.scalar('scalar', 2.0)
   with self.cached_session() as sess:
     sess.run(variables.global_variables_initializer())
     sess.run(summary_ops.summary_writer_initializer_op())
     step, _ = sess.run(
         [training_util.get_global_step(), summary_ops.all_summary_ops()])
   events = summary_test_util.events_from_logdir(logdir)
   self.assertEqual(2, len(events))
   self.assertEqual(step, events[1].step)
Пример #23
0
 def testSummaryOps(self):
   training_util.get_or_create_global_step()
   logdir = tempfile.mkdtemp()
   with summary_ops.create_file_writer(
       logdir, max_queue=0,
       name='t0').as_default(), summary_ops.always_record_summaries():
     summary_ops.generic('tensor', 1, '')
     summary_ops.scalar('scalar', 2.0)
     summary_ops.histogram('histogram', [1.0])
     summary_ops.image('image', [[[[1.0]]]])
     summary_ops.audio('audio', [[1.0]], 1.0, 1)
     # The working condition of the ops is tested in the C++ test so we just
     # test here that we're calling them correctly.
     self.assertTrue(gfile.Exists(logdir))
Пример #24
0
 def testSummaryOps(self):
     training_util.get_or_create_global_step()
     logdir = tempfile.mkdtemp()
     with summary_ops.create_file_writer(
             logdir, max_queue=0,
             name='t0').as_default(), summary_ops.always_record_summaries():
         summary_ops.generic('tensor', 1, '')
         summary_ops.scalar('scalar', 2.0)
         summary_ops.histogram('histogram', [1.0])
         summary_ops.image('image', [[[[1.0]]]])
         summary_ops.audio('audio', [[1.0]], 1.0, 1)
         # The working condition of the ops is tested in the C++ test so we just
         # test here that we're calling them correctly.
         self.assertTrue(gfile.Exists(logdir))
Пример #25
0
 def testSummaryOps(self):
     logdir = self.get_temp_dir()
     writer = summary_ops.create_file_writer(logdir, max_queue=0)
     with writer.as_default(), summary_ops.always_record_summaries():
         summary_ops.generic('tensor', 1, step=1)
         summary_ops.scalar('scalar', 2.0, step=1)
         summary_ops.histogram('histogram', [1.0], step=1)
         summary_ops.image('image', [[[[1.0]]]], step=1)
         summary_ops.audio('audio', [[1.0]], 1.0, 1, step=1)
     with self.cached_session() as sess:
         sess.run(summary_ops.summary_writer_initializer_op())
         sess.run(summary_ops.all_summary_ops())
     # The working condition of the ops is tested in the C++ test so we just
     # test here that we're calling them correctly.
     self.assertTrue(gfile.Exists(logdir))
Пример #26
0
 def testWriterFlush(self):
   logdir = self.get_temp_dir()
   get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
   with summary_ops.always_record_summaries():
     writer = summary_ops.create_file_writer(
         logdir, max_queue=100, flush_millis=1000000)
     self.assertEqual(1, get_total())  # file_version Event
     with writer.as_default():
       summary_ops.scalar('one', 1.0, step=1)
       self.assertEqual(1, get_total())
       writer.flush()
       self.assertEqual(2, get_total())
       summary_ops.scalar('two', 2.0, step=2)
     # Exiting the "as_default()" should do an implicit flush of the "two" tag
     self.assertEqual(3, get_total())
Пример #27
0
  def testDefunSummarys(self):
    training_util.get_or_create_global_step()
    logdir = tempfile.mkdtemp()
    with summary_ops.create_file_writer(
        logdir, max_queue=0,
        name='t1').as_default(), summary_ops.always_record_summaries():

      @function.defun
      def write():
        summary_ops.scalar('scalar', 2.0)

      write()
      events = summary_test_util.events_from_logdir(logdir)
      self.assertEqual(len(events), 2)
      self.assertEqual(events[1].summary.value[0].simple_value, 2.0)
 def testWriterFlush(self):
   logdir = self.get_temp_dir()
   with summary_ops.always_record_summaries():
     writer = summary_ops.create_file_writer(
         logdir, max_queue=100, flush_millis=1000000)
     with writer.as_default():
       summary_ops.scalar('one', 1.0, step=1)
   with self.cached_session() as sess:
     sess.run(summary_ops.summary_writer_initializer_op())
     get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
     self.assertEqual(1, get_total())  # file_version Event
     sess.run(summary_ops.all_summary_ops())
     self.assertEqual(1, get_total())
     sess.run(writer.flush())
     self.assertEqual(2, get_total())
 def testSummaryOps(self):
   logdir = self.get_temp_dir()
   writer = summary_ops.create_file_writer(logdir, max_queue=0)
   with writer.as_default(), summary_ops.always_record_summaries():
     summary_ops.generic('tensor', 1, step=1)
     summary_ops.scalar('scalar', 2.0, step=1)
     summary_ops.histogram('histogram', [1.0], step=1)
     summary_ops.image('image', [[[[1.0]]]], step=1)
     summary_ops.audio('audio', [[1.0]], 1.0, 1, step=1)
   with self.cached_session() as sess:
     sess.run(summary_ops.summary_writer_initializer_op())
     sess.run(summary_ops.all_summary_ops())
   # The working condition of the ops is tested in the C++ test so we just
   # test here that we're calling them correctly.
   self.assertTrue(gfile.Exists(logdir))
Пример #30
0
    def testDefunSummarys(self):
        training_util.get_or_create_global_step()
        logdir = tempfile.mkdtemp()
        with summary_ops.create_file_writer(
                logdir, max_queue=0,
                name='t1').as_default(), summary_ops.always_record_summaries():

            @function.defun
            def write():
                summary_ops.scalar('scalar', 2.0)

            write()
            events = summary_test_util.events_from_logdir(logdir)
            self.assertEqual(len(events), 2)
            self.assertEqual(events[1].summary.value[0].simple_value, 2.0)
Пример #31
0
 def testWriterFlush(self):
   logdir = self.get_temp_dir()
   with summary_ops.always_record_summaries():
     writer = summary_ops.create_file_writer(
         logdir, max_queue=100, flush_millis=1000000)
     with writer.as_default():
       summary_ops.scalar('one', 1.0, step=1)
   with self.cached_session() as sess:
     sess.run(summary_ops.summary_writer_initializer_op())
     get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
     self.assertEqual(1, get_total())  # file_version Event
     sess.run(summary_ops.all_summary_ops())
     self.assertEqual(1, get_total())
     sess.run(writer.flush())
     self.assertEqual(2, get_total())
 def testMaxQueue(self):
   logdir = self.get_temp_dir()
   writer = summary_ops.create_file_writer(
       logdir, max_queue=1, flush_millis=999999)
   with writer.as_default(), summary_ops.always_record_summaries():
     summary_ops.scalar('scalar', 2.0, step=1)
   with self.cached_session() as sess:
     sess.run(summary_ops.summary_writer_initializer_op())
     get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
     # Note: First tf.Event is always file_version.
     self.assertEqual(1, get_total())
     sess.run(summary_ops.all_summary_ops())
     self.assertEqual(1, get_total())
     # Should flush after second summary since max_queue = 1
     sess.run(summary_ops.all_summary_ops())
     self.assertEqual(3, get_total())
Пример #33
0
 def testWriterFlush(self):
     logdir = self.get_temp_dir()
     get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
     with summary_ops.always_record_summaries():
         writer = summary_ops.create_file_writer(logdir,
                                                 max_queue=100,
                                                 flush_millis=1000000)
         self.assertEqual(1, get_total())  # file_version Event
         with writer.as_default():
             summary_ops.scalar('one', 1.0, step=1)
             self.assertEqual(1, get_total())
             writer.flush()
             self.assertEqual(2, get_total())
             summary_ops.scalar('two', 2.0, step=2)
         # Exiting the "as_default()" should do an implicit flush of the "two" tag
         self.assertEqual(3, get_total())
Пример #34
0
 def testMaxQueue(self):
   logdir = self.get_temp_dir()
   writer = summary_ops.create_file_writer(
       logdir, max_queue=1, flush_millis=999999)
   with writer.as_default(), summary_ops.always_record_summaries():
     summary_ops.scalar('scalar', 2.0, step=1)
   with self.cached_session() as sess:
     sess.run(summary_ops.summary_writer_initializer_op())
     get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
     # Note: First tf.compat.v1.Event is always file_version.
     self.assertEqual(1, get_total())
     sess.run(summary_ops.all_summary_ops())
     self.assertEqual(1, get_total())
     # Should flush after second summary since max_queue = 1
     sess.run(summary_ops.all_summary_ops())
     self.assertEqual(3, get_total())
Пример #35
0
    def testRecordEveryNGlobalSteps(self):
        step = training_util.get_or_create_global_step()
        logdir = tempfile.mkdtemp()

        def run_step():
            summary_ops.scalar('scalar', i, step=step)
            step.assign_add(1)

        with summary_ops.create_file_writer(logdir).as_default(
        ), summary_ops.record_summaries_every_n_global_steps(2, step):
            for i in range(10):
                run_step()
            # And another 10 steps as a graph function.
            run_step_fn = function.defun(run_step)
            for i in range(10):
                run_step_fn()

        events = summary_test_util.events_from_logdir(logdir)
        self.assertEqual(len(events), 11)
Пример #36
0
  def testSummaryGraphModeCond(self):
    with ops.Graph().as_default(), self.cached_session():
      training_util.get_or_create_global_step()
      logdir = tempfile.mkdtemp()
      with summary_ops.create_file_writer(
          logdir, max_queue=0,
          name='t2').as_default(), summary_ops.always_record_summaries():
        summary_ops.initialize()
        training_util.get_or_create_global_step().initializer.run()
        def f():
          summary_ops.scalar('scalar', 2.0)
          return constant_op.constant(True)
        pred = array_ops.placeholder(dtypes.bool)
        x = control_flow_ops.cond(pred, f,
                                  lambda: constant_op.constant(False))
        x.eval(feed_dict={pred: True})

      events = summary_test_util.events_from_logdir(logdir)
      self.assertEqual(len(events), 2)
      self.assertEqual(events[1].summary.value[0].tag, 'cond/scalar')
  def testSummaryGraphModeCond(self):
    with ops.Graph().as_default(), self.cached_session():
      training_util.get_or_create_global_step()
      logdir = tempfile.mkdtemp()
      with summary_ops.create_file_writer(
          logdir, max_queue=0,
          name='t2').as_default(), summary_ops.always_record_summaries():
        summary_ops.initialize()
        training_util.get_or_create_global_step().initializer.run()
        def f():
          summary_ops.scalar('scalar', 2.0)
          return constant_op.constant(True)
        pred = array_ops.placeholder(dtypes.bool)
        x = control_flow_ops.cond(pred, f,
                                  lambda: constant_op.constant(False))
        x.eval(feed_dict={pred: True})

      events = summary_test_util.events_from_logdir(logdir)
      self.assertEqual(len(events), 2)
      self.assertEqual(events[1].summary.value[0].tag, 'cond/scalar')
Пример #38
0
  def testRecordEveryNGlobalSteps(self):
    step = training_util.get_or_create_global_step()
    logdir = tempfile.mkdtemp()

    def run_step():
      summary_ops.scalar('scalar', i, step=step)
      step.assign_add(1)

    with summary_ops.create_file_writer(
        logdir).as_default(), summary_ops.record_summaries_every_n_global_steps(
            2, step):
      for i in range(10):
        run_step()
      # And another 10 steps as a graph function.
      run_step_fn = function.defun(run_step)
      for i in range(10):
        run_step_fn()

    events = summary_test_util.events_from_logdir(logdir)
    self.assertEqual(len(events), 11)
Пример #39
0
 def testFlushFunction(self):
   logs = tempfile.mkdtemp()
   writer = summary_ops.create_file_writer(
       logs, max_queue=999999, flush_millis=999999, name='lol')
   with writer.as_default(), summary_ops.always_record_summaries():
     get_total = lambda: len(summary_test_util.events_from_logdir(logs))
     # Note: First tf.Event is always file_version.
     self.assertEqual(1, get_total())
     summary_ops.scalar('scalar', 2.0, step=1)
     summary_ops.scalar('scalar', 2.0, step=2)
     self.assertEqual(1, get_total())
     summary_ops.flush()
     self.assertEqual(3, get_total())
     # Test "writer" parameter
     summary_ops.scalar('scalar', 2.0, step=3)
     summary_ops.flush(writer=writer)
     self.assertEqual(4, get_total())
     summary_ops.scalar('scalar', 2.0, step=4)
     summary_ops.flush(writer=writer._resource)  # pylint:disable=protected-access
     self.assertEqual(5, get_total())
Пример #40
0
 def testFlushFunction(self):
     logs = tempfile.mkdtemp()
     writer = summary_ops.create_file_writer(logs,
                                             max_queue=999999,
                                             flush_millis=999999,
                                             name='lol')
     with writer.as_default(), summary_ops.always_record_summaries():
         get_total = lambda: len(summary_test_util.events_from_logdir(logs))
         # Note: First tf.compat.v1.Event is always file_version.
         self.assertEqual(1, get_total())
         summary_ops.scalar('scalar', 2.0, step=1)
         summary_ops.scalar('scalar', 2.0, step=2)
         self.assertEqual(1, get_total())
         summary_ops.flush()
         self.assertEqual(3, get_total())
         # Test "writer" parameter
         summary_ops.scalar('scalar', 2.0, step=3)
         summary_ops.flush(writer=writer)
         self.assertEqual(4, get_total())
         summary_ops.scalar('scalar', 2.0, step=4)
         summary_ops.flush(writer=writer._resource)  # pylint:disable=protected-access
         self.assertEqual(5, get_total())
 def testFlushFunction(self):
   logdir = self.get_temp_dir()
   writer = summary_ops.create_file_writer(
       logdir, max_queue=999999, flush_millis=999999)
   with writer.as_default(), summary_ops.always_record_summaries():
     summary_ops.scalar('scalar', 2.0, step=1)
     flush_op = summary_ops.flush()
   with self.cached_session() as sess:
     sess.run(summary_ops.summary_writer_initializer_op())
     get_total = lambda: len(summary_test_util.events_from_logdir(logdir))
     # Note: First tf.Event is always file_version.
     self.assertEqual(1, get_total())
     sess.run(summary_ops.all_summary_ops())
     self.assertEqual(1, get_total())
     sess.run(flush_op)
     self.assertEqual(2, get_total())
     # Test "writer" parameter
     sess.run(summary_ops.all_summary_ops())
     sess.run(summary_ops.flush(writer=writer))
     self.assertEqual(3, get_total())
     sess.run(summary_ops.all_summary_ops())
     sess.run(summary_ops.flush(writer=writer._resource))  # pylint:disable=protected-access
     self.assertEqual(4, get_total())
Пример #42
0
              was not `None`, that operation also increments `global_step`.
    """

    return optimizer.minimize(loss=lambda: loss_func(model, inputs, labels, **kwargs),
                              global_step=tf.train.get_or_create_global_step())


train_accuracy = tfe.metrics.Accuracy()

epochs = 1000
logdir = '../logs/iris-eager'
acc = 0.0
_loss = 0.

# File writer for tensorboard visualization.
writer = summary.create_file_writer(logdir=logdir)
with writer.as_default():
    with summary.always_record_summaries():
        print('\n{}'.format(75 * '-'))
        print('Training started: {:%c}\n'.format(datetime.now()))
        start = time.time()
        for epoch in range(epochs):
            # Loop through each data batches.
            for X_batch, y_batch in tfe.Iterator(train_data):
                # Run the training step.
                train_step(model, optimizer, loss, X_batch, y_batch)

                # Estimate loss
                _loss = loss(model, X_batch, y_batch)
                tf.summary.scalar('loss', _loss)
Пример #43
0
tf.enable_eager_execution(conf)

SEED = 1234
tf.set_random_seed(SEED)

NUM_CLASS = 10
IMG_SHAPE = [28, 28]
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(
    '/data/ajy/datasets/MNIST/mnist.npz')
# scale to (0, 1), shape is (28, 28, 1)
x_train, x_test = [(np.expand_dims(x / 255., axis=-1)).astype(np.float32)
                   for x in [x_train, x_test]]
y_train, y_test = [tf.one_hot(i, depth=NUM_CLASS) for i in [y_train, y_test]]

# summary
writer = summary.create_file_writer('./logs/STN')
writer.set_as_default()


def get_dataset(batch_size, x, y, map_fn, shuffle=False, repeat=False):
    dataset = tf.data.Dataset.from_tensor_slices((x, y))
    if repeat:
        dataset = dataset.repeat()
    if shuffle:
        dataset = dataset.shuffle(batch_size * 10)
    dataset = dataset.map(map_fn,
                          num_parallel_calls=2).batch(batch_size).prefetch(1)
    return dataset


def distorted_image_fn(image, label):
Пример #44
0
dis_dropout_keep_prob = 0.75
dis_l2_reg_lambda = 0.2
dis_batch_size = 64

#########################################################################################
#  Basic Training Parameters
#########################################################################################
TOTAL_BATCH = 200
base_path = "/home/panxie/Documents/TextGan/seqgan/"
positive_file = base_path + 'save/real_data.txt'
negative_file = base_path + 'save/generator_sample.txt'
eval_file = base_path + 'save/eval_file.txt'
generated_num = 100
vocab_size = 5000

summary_writer = summary.create_file_writer(base_path + '/tmp/summaries')
summary_writer.set_as_default()
global_step = tf.train.get_or_create_global_step()


def main():
    random.seed(SEED)
    np.random.seed(SEED)
    assert START_TOKEN == 0

    #########################################################################################
    #  Generator, oracle(target-LSTM), discrimonator model.
    #########################################################################################
    #tf.logging.info("loading generator, discriminator, oracle model.")
    generator = Generator(vocab_size, BATCH_SIZE, EMB_DIM, HIDDEN_DIM,
                          SEQ_LENGTH, START_TOKEN)