Пример #1
0
def clone_model(model, custom_objects={}):
    config = {
        'class_name': model.__class__.__name__,
        'config': model.get_config(),
    }
    clone = model_from_config(config, custom_objects=custom_objects)
    clone.set_weights(model.get_weights())
    return clone
Пример #2
0
def clone_model(model, custom_objects={}):
    # Requires Keras 1.0.7 since get_config has breaking changes.
    config = {
        'class_name': model.__class__.__name__,
        'config': model.get_config(),
    }
    clone = model_from_config(config, custom_objects=custom_objects)
    clone.set_weights(model.get_weights())
    return clone
def load_model(path, custom_objects={}, verbose=0):
    from tensorflow.keras.models import model_from_config
    import json

    path = splitext(path)[0]
    with open('%s.json' % path, 'r') as json_file:
        model_json = json_file.read()
        config = json.loads(model_json)
    model = model_from_config(config, custom_objects=custom_objects)
    model.load_weights('%s.h5' % path)
    if verbose: print('Loaded from %s' % path)
    return model
Пример #4
0
def layer_from_config(config):
    if 'class_name' not in config:
        raise ValueError('class_name is needed to define layer')

    if 'config' not in config:
        # auto add empty config for layer with only class_name
        config['config'] = {}

    if 'name' not in config['config'] and 'name' in config:
        config['config']['name'] = config['name']

    return model_from_config(config,
                             custom_objects={
                                 **Layers().layers,
                                 **Activations().activations
                             })
Пример #5
0
    def __init__(self, model, instance_state, tuner_state, metrics_config,
                 cloudservice):
        self.instance_state = instance_state
        self.tuner_state = tuner_state
        self.cloudservice = cloudservice
        self.state = ExecutionState(tuner_state.max_epochs, metrics_config)

        # Model rereation
        config = serialize_keras_object(model)
        self.model = model_from_config(config)

        optimizer_config = tf.keras.optimizers.serialize(model.optimizer)
        optimizer = tf.keras.optimizers.deserialize(optimizer_config)

        self.model.compile(optimizer=optimizer,
                           metrics=model.metrics,
                           loss=model.loss,
                           loss_weights=model.loss_weights)