Пример #1
0
def load_model(config):
    model_checkpoint_path = config.project_config['model_checkpoint_path']
    model_name = config.model_name
    weights = config.weights

    optimizer = Adam(learning_rate=config.train_config['learning_rate'])
    optimizer_weights_path = f'{model_path}/optimizer_{checkpoint}.pkl'
    with open(optimizer_weights_path, 'rb') as f:
        weight_values = pickle.load(f)
    optimizer.set_weights(weight_values)

    model, loss_inp = DeepICPBuilder(config.net_config).build()
    loss = get_loss(config.train_config["loss_alpha"])
    source_pts, target_pts, GT = loss_inp
    model.add_loss(loss(source_pts, target_pts, GT))

    optimizer = Adam(learning_rate=config.train_config['learning_rate'])
    model.compile(optimizer=optimizer)

    model.load_weights(model_weights)

    return model
Пример #2
0
    gen_A_to_B_zeros = [tf.zeros_like(w) for w in gen_A_to_B_vars]
    gen_B_to_A_zeros = [tf.zeros_like(w) for w in gen_B_to_A_vars]
    disc_A_zeros = [tf.zeros_like(w) for w in disc_A_vars]
    disc_B_zeros = [tf.zeros_like(w) for w in disc_B_vars]

    # Apply gradients which don't do nothing with Adam
    gen_A_to_B_optimizer.apply_gradients(zip(gen_A_to_B_zeros,
                                             gen_A_to_B_vars))
    gen_B_to_A_optimizer.apply_gradients(zip(gen_B_to_A_zeros,
                                             gen_B_to_A_vars))
    disc_A_optimizer.apply_gradients(zip(disc_A_zeros, disc_A_vars))
    disc_B_optimizer.apply_gradients(zip(disc_B_zeros, disc_B_vars))

    # Set the weights of the optimizer
    gen_A_to_B_optimizer.set_weights(gen_A_to_B_optimizer_weights)
    gen_B_to_A_optimizer.set_weights(gen_B_to_A_optimizer_weights)
    disc_A_optimizer.set_weights(disc_A_optimizer_weights)
    disc_B_optimizer.set_weights(disc_B_optimizer_weights)

    # load models again since optimizer might mess them up in first load
    gen_A_to_B = tf.keras.models.load_model(
        f'models/{DATASET}_{MAX_IMAGE_SIZE}/cycleGAN_e{LOAD_EPOCH:03}_gen_A_to_B'
    )
    gen_B_to_A = tf.keras.models.load_model(
        f'models/{DATASET}_{MAX_IMAGE_SIZE}/cycleGAN_e{LOAD_EPOCH:03}_gen_B_to_A'
    )
    disc_A = tf.keras.models.load_model(
        f'models/{DATASET}_{MAX_IMAGE_SIZE}/cycleGAN_e{LOAD_EPOCH:03}_disc_A')
    disc_B = tf.keras.models.load_model(
        f'models/{DATASET}_{MAX_IMAGE_SIZE}/cycleGAN_e{LOAD_EPOCH:03}_disc_B')